

2

Jon Kerridge

Using Concurrency and
Parallelism Effectively – I

Download free eBooks at bookboon.com

3

Using Concurrency and Parallelism Effectively – I
2nd edition
© 2015 Jon Kerridge & bookboon.com
ISBN 978-87-403-1038-2

Download free eBooks at bookboon.com

http://bookboon.com

Using Concurrency and
Parallelism Effectively – I

4

Contents

Contents

	 Preface	 13
	 Background	 14
	 Why Java and Groovy and Eclipse?	 14
	 Example Presentation	 15
	 Organisation of the Book	 15
	 Supporting Materials	 15
	 Acknowledgements	 16

1	 A Challenge – Thinking Parallel	 17
1.1	 Concurrency and Parallelism	 17
1.2	 Why Parallel?	 18
1.3	 A Multi-player Game Scenario	 19
1.4	 The Basic Concepts	 26
1.5	 Summary	 29

Download free eBooks at bookboon.com

Click on the ad to read more

https://inspiredbusinessmedia.co.uk/conferences/cmo-inspired-oct-2018/

Using Concurrency and
Parallelism Effectively – I

5

Contents

2	� Producer Consumer: A Fundamental Design Pattern	 30
2.1	 A Parallel Hello World	 31
2.2	 Hello Name	 33
2.3	 Processing Simple Streams of Data	 34
2.4	 Summary	 37
2.5	 Exercises	 37

3	� Process Networks: Build It Like Lego 	 38
3.1	 Prefix Process	 39
3.2	 Successor Process	 39
3.3	 Parallel Copy	 40
3.4	 Generating a Sequence of Integers	 41
3.5	 Testing GNumbers	 43
3.6	 Creating a Running Sum	 44
3.7	 Generating the Fibonacci Sequence	 48
3.8	 Generating Squares of Numbers	 54
3.9	 Printing in Parallel	 55
3.10	 Summary	 60
3.11	 Exercises	 60

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read more

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

Using Concurrency and
Parallelism Effectively – I

6

Contents

4	� Parallel Processes: Non Deterministic Input	 62
4.1	 Reset Numbers	 63
4.2	 Exercising ResetNumbers	 66
4.3	 Summary	 69
4.4	 Exercises	 69

5	� Extending the Alternative: A Scaling Device and Queues	 70
5.1	 The Scaling Device Definition	 71
5.2	 Managing A Circular Queue Using Alternative Pre-conditions	 79
5.3	 Summary	 84
5.4	 Exercises	 84

6	� Testing Parallel Systems: First Steps	 85
6.1	 Testing Hello World	 85
6.2	 Testing the Queue Process	 87
6.3	 The Queue Test Script	 89
6.4	 Summary	 90
6.5	 Exercises	 90

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

Using Concurrency and
Parallelism Effectively – I

7

Contents

7	 Deadlock: An Introduction	 91
7.1	 Deadlocking Producer and Consumer	 91
7.2	 Multiple Network Servers	 93
7.3	 Summary	 100
7.4	 Exercises	 100

8	� Client-Server: Deadlock Avoidance by Design	 101
8.1	 Analysing the Queue Accessing System	 101
8.2	 Client and Server Design Patterns	 103
8.3	 Analysing the Crossed Servers Network	 104
8.4	 Deadlock Free Multi-Client and Servers Interactions	 106
8.5	 Summary	 112
8.6	 Exercises	 113

9	� External Events: Handling Data Sources	 114
9.1	 An Event Handling Design Pattern	 115
9.2	 Utilising the Event Handing Pattern	 116
9.3	 Analysing Performance Bounds	 122

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

TMP PRODUCTION NY026057B

PSTANKIE

gl/rv/rv/baf

ACCCTR0005

Bookboon Ad Creative

4

6 x 4

12/13/2013

Bring your talent and passion to a
global organization at the forefront of
business, technology and innovation.
Discover how great you can be.

Visit accenture.com/bookboon

©
2013 Accenture.

All rights reserved.

http://s.bookboon.com/accentureCZintl

Using Concurrency and
Parallelism Effectively – I

8

Contents

9.4	 Simple Demonstration of the Event Handling System	 122
9.5	 Processing Multiple Event Streams	 127
9.6	 Summary	 130
9.7	 Exercises	 130

10	� Deadlock Revisited: Circular Structures	 132
10.1	 A First Sensible Attempt	 133
10.2	 An Improvement	 136
10.3	 A Final Resolution	 139
10.4	 Summary	 142

11	� Graphical User Interfaces: Brownian Motion	 143
11.1	 Active AWT Widgets	 143
11.2	 The Particle System – Brownian Motion	 144
11.3	 Summary	 162
11.4	 Exercises	 162

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

 .

http://s.bookboon.com/AlcatelLucent

Using Concurrency and
Parallelism Effectively – I

9

Contents

12	� Dining Philosophers: A Classic Problem	 163
12.1	 Naïve Management	 164
12.2	 Proactive Management	 169
12.3	 A More Sophisticated Canteen	 171
12.4	 Summary	 178

13	� Accessing Shared Resources: CREW	 179
13.1	 CrewMap	 180
13.2	 The DataBase Process	 182
13.3	 The Read Clerk Process	 184
13.4	 The Write Clerk Process	 185
13.5	 The Read Process	 186
13.6	 The Write Process	 187
13.7	 Creating the System	 187
13.8	 Summary	 190
13.9	 Challenge	 190

14	� Barriers and Buckets: Hand-Eye Co-ordination Test	 191
14.1	 Barrier Manager	 200
14.2	 Target Controller	 200
14.3	 Target Manager	 203
14.4	 Target Flusher	 204
14.5	 Display Controller	 206
14.6	 Gallery	 210
14.7	 Mouse Buffer	 212
14.8	 Mouse Buffer Prompt	 213
14.9	 Target Process	 213
14.10	 Running the System	 219
14.11	 Summary	 222

	 Index	 223

	 Preface	 Part II
	 Organisation of the Book	 Part II
	 Supporting Materials	 Part II

15	� Communication over Networks: Process Parallelism	 Part II
15.1	 Network Nodes and Channel Numbers	 Part II
15.2	 Multiple Writers to One Reader	 Part II

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

10

Contents

15.3	 A Single Writer Connected to Multiple Readers	 Part II
15.4	 Networked Dining Philosophers	 Part II
15.5	 Running the CREW Database in a Network	 Part II
15.6	 Summary	 Part II

16	� Dynamic Process Networks: A Print Server	 Part II
16.1	 Print Spooler Data Objects	 Part II
16.2	 The PrintUser Process	 Part II
16.3	 The PrintSpooler Process	 Part II
16.4	 Invoking The PrintSpooler Node	 Part II
16.5	 Invoking A PrintUser Node	 Part II
16.6	 Summary	 Part II

17	� More Testing: Non-terminating Processes	 Part II
17.1	 The Test-Network	 Part II
17.2	 The Process Network Under Test	 Part II
17.3	 Running The Test	 Part II
17.4	 Summary	 Part II

18	 Mobile Agents: Going for a Trip	 Part II
18.1	 Mobile Agent Interface	 Part II
18.2	 A First Parallel Agent System	 Part II
18.3	 Running the Agent on a Network of Nodes	 Part II
18.4	 Result Returning Agent	 Part II
18.5	 An Agent with Forward and Back Channels	 Part II
18.6	 Let’s Go On A trip	 Part II
18.7	 Summary	 Part II

19	� Mobile Processes: Ubiquitous Access	 Part II
19.1	 The Travellers’ Meeting System	 Part II
19.2	 The Service Architecture	 Part II

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

11

Contents

19.3	 Universal Client	 Part II
19.4	 The Access Server	 Part II
19.5	 Group Location Service	 Part II
19.6	 Running the System	 Part II
19.7	 Commentary	 Part II

20	� Redirecting Channels: A Self-Monitoring Process Ring	 Part II
20.1	 Architectural Overview	 Part II
20.2	 The Receiver process	 Part II
20.3	 The Prompter Process	 Part II
20.4	 The Queue Process	 Part II
20.5	 The State Manager Process	 Part II
20.6	 The Stop Agent	 Part II
20.7	 The Restart Agent	 Part II
20.8	 The Ring Agent Element Process	 Part II
20.9	 Running A Node	 Part II
20.10	 Observing The System’s Operation	 Part II
20.11	 Summary	 Part II
20.12	 Challenges	 Part II

21	 Mobility: Process Discovery	 Part II
21.1	 The Adaptive Agent 	 Part II
21.2	 The Node Process	 Part II
21.3	 The Data Generator Process	 Part II
21.4	 The Gatherer Process	 Part II
21.5	 Definition of the Data Processing Processes	 Part II
21.6	 Running the System	 Part II
21.7	 Typical Output From the Gatherer Process	 Part II
21.8	 Summary	 Part II
21.9	 Challenge	 Part II

22	� Automatic Class Loading – Process Farms	 Part II
22.1	 Data Parallel Architectures	 Part II
22.2	 Task Parallel Architectures	 Part II
22.3	 Generic Architectures	 Part II
22.4	 Architectural Implementation	 Part II
22.5	 Summary	 Part II

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

12

Contents

23	� Programming High Performance Clusters	 Part II
23.1	 Architectural Overview	 Part II
23.2	 The Host and Node Scripts	 Part II
23.3	 An Application – Montecarlo Pi	 Part II
23.4	 Summary	 Part II

24	 Big Data – Solution Scaling	 Part II
24.1	 Concordance – A Typical Problem	 Part II
24.2	 Concordance Data Structures	 Part II
24.3	 The Algorithm	 Part II
24.4	 Analysis of Total Time Results	 Part II
24.5	 Analysis of Algorithm Phases	 Part II
24.6	 Dealing with Larger Data Sets	 Part II
24.7	 Implementation of the Scalable Architecture	 Part II
24.8	 Performance Analysis of the Distributed System	 Part II
24.9	 Summary	 Part II

25	 Concluding Remarks	 Part II
25.1	 The Initial Challenge – A Review	 Part II
25.2	 Final Thoughts	 Part II

26	 References	 Part II

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

13

Preface

Preface
The aim of this book is to show both students and practitioners that concurrent and parallel programming
does not need to be as hard as it is often portrayed and in fact is often easier than building the equivalent
sequential system. This will be achieved by presenting a set of example systems that demonstrate the
underlying principles of parallel system design based upon real world examples. Each chapter will discuss
the complete implementation of such a system, rather than presenting fragments of solutions. The
approach will therefore be founded in principled engineering rather than a detailed exploration of the
scientific underpinning. The science has been explored in many books but these have not demonstrated
the engineering aspects of actually designing and building parallel systems.

For the purposes of this book; Concurrent means a system built from a set of processes that execute
on a single processor. Parallel means that more than one processor is used to execute the processes and
these communicate over some form of network. Within a parallel system it is likely that some of the
processors will run some processes concurrently.

The book will use as its underpinning parallel environment a package called JCSP (Communicating
Sequential Processes for Java) that is available under the LGPL software licence from the University
of Kent, Canterbury UK (Welch, 2002) (Welch, 2013). This package implements the Communicating
Sequential Process concepts developed by Professor Hoare some 30 years ago (Hoare, 1978) in a form that
makes them easily accessible to the programmer. The book’s emphasis is on the engineering of parallel
systems using these well-defined concepts without delving into their detailed theoretical aspects. The
JCSP package essentially hides Java’s underlying thread model from the programmer in a manner that
allows easy implementation of concurrent and parallel systems. It is immaterial whether a process is
executed concurrently or in parallel, the process definition remains the same. The JCSP implementation
is essentially a re-implementation of the occam programming language (Inmos Ltd, 1988) developed for
the Inmos Transputer. (Wikipedia, 2013).

The underlying theory for JCSP is based upon Hoare’s Communicating Sequential Processes (Hoare,
1985) (Hoare, 1978) and is still the subject of research and development. CSP allows the designer to
reason about the behaviour of their system, provided they use some well-defined patterns. In this book
we shall be creating designs that use these design patterns to ensure that our designs behave correctly.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

14

Preface

Understanding the principles behind parallel processing is an increasingly important skill with the advent
of multi-core processors. Much effort has been made by processor manufacturers to hide the underlying
parallel design techniques by providing tools that will take an existing code and extract some parallelism
from it. This hides the real need to actually design and build parallel systems from the outset. Far too
many people have been put off concurrent and parallel programming because they believe that they
have to understand the underlying thread model supplied as part of the language or operating system
environment. The goal of the book is to dispel all these misconceptions and show that parallel systems
can be built quite easily with a very few simple design patterns and that such parallel systems can be
easily implemented on a single processor or a collection of networked processors. Furthermore the
advent of multi-core processors means that we can now start to build genuinely parallel systems for the
commonest desktop workstations in which we can exploit the inherent parallelism more. The extension
to a network of multi-core processors becomes even easier. Equally important is that the same design
principles can be used to build mobile systems that permit interactions between mobile devices and
fixed services using wireless (wi-fi) and Bluetooth technology.

Background

The book results from a module taught during the spring semester to masters and undergraduate students,
though the approach would be applicable to professional programmers. As part of the module, students
were asked to complete a practical portfolio and these exercises are included in the book. The source
coding for all the examples and exercises is also available.

Parallelism, as such, has been a topic that has been avoided by many educational establishments, possibly
because of the lack of appropriate software environments and approachable tools. It also suffers from the
underlying models being overly complex and difficult to reason about. This book addresses these issues
by providing a model of parallel programming based in the Object Oriented paradigm that builds upon
many years of research into the design and implementation of parallel systems. It attempts to demonstrate
that parallel programming is not hard and perhaps should be considered as a more appropriate first design
environment for the teaching of programming as it is closer to the way in which humans understand
and investigate solutions to problems.

Why Java and Groovy and Eclipse?

Java is widely used and, increasingly in mobile applications, where the ability to build parallel systems
is crucial. Most user interfaces are in fact concurrent in nature but you would not think so given the
contortions a Java programmer has to go to make them appear sequential. Groovy is a scripting language
for the Java platform (Kerridge, et al., 2005). The addition of a small number of helper classes has made
the underlying parallel design concepts far more easily accessible as the amount of code that has to be
written to create a working application is dramatically reduced. It is assumed that the reader of this book
has some familiarity with Java and Java-like languages and sufficient understanding of object-oriented
principles to cope with data encapsulation and the concept of get() and set() methods. An awareness of
the java.awt package will be of benefit when user interfaces are discussed.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

15

Preface

Eclipse is a commonly used Integrated Software Development Environments and as such has the
appropriate plug-ins for Java and Groovy which have been extended to include the Groovy Parallel
helper classes.

Example Presentation

The description contained in the text contains code snippets taken from the complete source of all the
examples used in the book. In particular, the associated Eclipse project contains all the sources for the
Examples and Exercises. Each example is presented as a listing that contains line numbers. These line
numbers are the same as if the listing were opened in Eclipse. Package name and library import statements
have been removed from the examples presented in the book, which is why most listings do not start at
1 but at the first line that contains pertinent content to explain the example. The notation {n} refers to
line n in the cited Listing and {n-m} refers to lines n to m.

Organisation of the Book

The material is divided into two books. In this first book the basic concepts are presented and naturally fall
into two parts. Part 1 introduces the basic concepts of the environment used in the book and comprises
chapters 1 to 8. Part 2 demonstrates how these concepts are used to build reliable systems that run on
a single processor and comprises Chapters 9 to 14.

The second book, available from the same web site, comprises the rest of the material and explains
how systems can be constructed that run on multiple processing nodes. Chapter 15 provides the basic
introduction to multiprocessor systems by taking some of the examples developed in this book and
running them on a multi-processor system. Thereafter more complex examples are created that solve a
variety of parallel programming problems.

Supporting Materials

The necessary libraries for the packages used are available from the same web site as the book’s text.
This comprises jar files for the JCSP and Groovy Parallel packages. Documentation for these packages
is also provided. A readme text file that describes the library folder structure required is also provided
so readers can create the required learning environment quickly and easily.

The source of all the examples is provided in the form of an archived Eclipse project, which can be
imported directly into Eclipse, once the required Eclipse environment has been constructed as described
in the readme file.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

16

Preface

The source code comprises two projects; one called ChapterExamples that contains the source of all the
examples used throughout the text. The other, ChapterExercises, contains supporting material for the
Exercises given at the end of some of the Chapters. In these classes there are comments placed where
the reader is asked to supply the required coding.

The source of the supporting material is also available in a zip file for non-Eclipse users.

Acknowledgements

This book started as a result of discussions I had with my colleagues Ken Barclay and John Savage (Barclay
& Savage, 2006). It was they who introduced me to the delights of Groovy and helped me with the design
of the Groovy Helper classes that are the basis of the programming structures used throughout the book.
Kevin Chalmers, was originally my doctoral student who has now become a much valued colleague.
We spent many happy hours discussing the net2 architecture that was the topic of his doctoral thesis
(Chalmers, 2009). Kevin also undertook the review of the complete book, for which I am very grateful.

The group at the University of Kent, primarily, Peter Welch and Fred Barnes, has been the source of
much stimulation and excellent ideas. It is their library, JCSP, which provides the language support that
underpins this book. Another source of inspiration is the series of Conferences entitled Communicating
Process Architectures that has been active since the mid-1980s and for which a large and extensive
database of papers exists (http://wotug.org/).

Finally, to the students both undergraduate and postgraduate who have, by commenting on earlier
versions of the content helped me to achieve the current state. Without the motivation they provide and
the excitement they engender as they discover that parallel programming is not hard and in fact in many
ways is easier than sequential programming. Also the many project students who have taken the earlier
versions of the text, taught themselves the principles and then used them in a variety of interesting ways
to solve challenging problems.

My thanks to the many people who have suggested corrections and other alterations to the text. In
particular Joe Bowbeer, who has read both parts in detail and suggested many very helpful corrections.

Download free eBooks at bookboon.com

http://wotug.org/

Using Concurrency and
Parallelism Effectively – I

17

A Challenge – Thinking Parallel

1	 A Challenge – Thinking Parallel
This chapter introduces the subject by

•	 defining concurrency and parallelism
•	 discussing a motivating example based on a multi-player on-line game
•	 introducing the main concepts of processes, channels, alternatives and timers

Designing and building concurrent and parallel systems is easy, provided the appropriate language
structures and methods are used. In fact it can be argued that designing concurrent systems is easier
than designing sequential systems because they more closely follow the initial thought processes when
a problem is posed. However, there is a widely held opinion in the wider computing community that
concurrent programming is hard and should be avoided at all costs. This is undoubtedly true if you use
any of the existing thread models to build concurrent systems. That is like using assembler to create a
complex user interface accessing a database system. We need a higher level abstraction that allows the
programmer to think concurrently and avoid the nitty-gritty of thread based programming. It is very
hard to convert ideas into artefacts if you do not have the appropriate language capability. For too long
programmers have been trying to design and build concurrent and parallel systems with inappropriate
and dangerous language structures. The aim of this book is to demonstrate that a few simple language
structures and one design pattern are all that is required to build parallel systems that are correct and
about which we can reason. The language structures and design pattern are supported by a wealth of
formal verification that allows the engineer to have confidence in their designs, without having to fully
understand all the formal underpinning.

1.1	 Concurrency and Parallelism

Concurrent means a system built from a set of components that execute on a single processor. The
components interact with each other in some managed and controlled way to ensure that these
interactions do not have unwanted side effects. These components or processes are said to be interleaved
on the processor because only one process can execute at one time and the available processing resource
is shared among the processes. At any one time more than one of the processes could be executed and
the system designer should not make any assumptions as to which process will be allocated the processor.
Parallel means that more than one processor is used to execute the processes and these communicate
over some form of communication infrastructure. This could be a multi-core processor using memory
or a distributed system running a TCP/IP network. Within a parallel system it is likely that some of the
processors will run some processes concurrently.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

18

A Challenge – Thinking Parallel

1.2	 Why Parallel?

There are two reasons for wanting to think parallel. The obvious one enables the programmer to take
advantage of modern multi-core processors and networks of workstations. This is generally aimed at
obtaining better performance in solving a problem.

The less obvious reason is that, surprisingly, in many cases, it is easier to design a concurrent solution to
a problem. The design process seems more natural as it involves just processing elements and the flow
of data between these processing elements. The design process is essentially one of creating data flow
diagrams. We shall discover that there is just one fundamental parallel design pattern used in the creation
of these data flow diagrams or process network diagrams. A further advantage of this design process is
that all the processing of data is contained within a processing element and thus the behaviour of it can
be observed simply by looking at the definition of the processing element itself. Once the behaviour of
a processing element is known it then becomes much easier to connect many of these together with a
compositional style of network construction because data processing only takes place within a processing
element. This then has the concomitant benefit on the design of data structures, because they become
much simpler. They can be defined in a single class, with the required access and manipulation methods
and treated as an abstract data type. There is no need to construct data objects that are ‘thread safe’
because any instance of a data object can only be accessed by a single processing element at any one time.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

��������	
�����
������
��������
���������
�����������
��������
�����
��
���������������������������

������
������

������������������������������ �����	�����
	�
�����	������!���"�
	������������

�
	�

�����#$%����&'())%�*+������
	�
���,���������
�-

.�
��������������������
������������
��

��������	
��
����

��	��������	
��
����

���������
���

����������

����������
�����
��

���������

 The Wake
the only emission we want to leave behind

http://www.mandieselturbo.com

Using Concurrency and
Parallelism Effectively – I

19

A Challenge – Thinking Parallel

A further advantage of the approach is that the definition of the processing elements is independent of
whether it will be executed concurrently, in a single core of a multi-core processor or in a distributed
system. The way in which a processing element is invoked will change but not the definition.

This book focusses on the design of concurrent and parallel systems rather than the performance of
the resulting solutions. Without good design and the ability to think parallel it is difficult to exploit the
performance advantage that multiple processing elements give.

1.3	 A Multi-player Game Scenario

The Pairs Game is a simple game played by families to improve children’s spatial awareness and memory.
A pack of cards is spread out face down in a regular pattern. A player turns over one card, and then a
second. If the cards match in number and colour then the player retains that pair of cards. If the cards
do not match then the player replaces the cards face down and another player can choose a pair of cards.
Obviously as more cards are turned over the players ‘learn’ where pairs are located so they can increase
the number of pairs they retain. The winner is the player with the most pairs.

For this implementation we shall assume that each player has their own workstation, connected to a
network, through which they can interact with the game. In addition there is another workstation that
has the ability to create new games and also to manage the interactions between the players. One aspect
of the children’s version is that it also teaches them to take turns and the patience to wait without giving
away the location of a pair. An initial representation of the game architecture is given in Figure 1-1,
with three players.

Game

Controller

Player 1 Player 2 Player 3

Figure 1-1 Initial Game Architecture

We assume that messages, or data, are going to be passed between each of the Players and the Game
Controller but there is no direct interaction between the players. The design process then becomes one
of specifying the data and messages that are passed between the processing elements, after which they
can be specified and implemented. Each processing element can be tested in isolation once we known
the data and messages it is to receive, send and manipulate.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

20

A Challenge – Thinking Parallel

1.3.1	 Game Design

The fundamental design underpinning the architecture can be summarised as follows:

Each Player has to enrol with the Game Controller, at which point the Game Controller will send the
Player the state of the current game, in which they can now participate.

In this version Players can only see the cards they have turned over. They cannot observe the cards
turned over by other Players. That challenge is left to the final chapter of the book.

A Player is presented with a graphical representation of the game showing the cards that have yet to
be claimed and also the names of the other Players and the number of pairs they have claimed since
joining the game.

A Player chooses two cards by pressing the mouse over each of the two cards they wants to reveal. Players
can reveal cards in their own time independently of the other players.

If the cards match, the Player implicitly makes a Claim for that pair, otherwise an interface button is
enabled to allow the player to replace the cards and then select another pair of cards.

The Claim may not be successful even if it were a pair because another Player may have claimed that pair
previously. After each Claim, successful or not, the state of the game the player can see is updated to the
current state. The game state includes both the cards that are yet to be matched and also the number of
pairs each player has successfully claimed.

When all the cards in the current game have been claimed, the Game Controller will create a new game,
and send it to each of the enrolled Players.

A Player can withdraw from the game at any time.

The main area of contention in this design occurs when more than one Player claims the same pair.
The Game Controller has to be able to deal with this situation, informing the Players which of them
were successful.

1.3.2	 Player Interface

The Player Interface is shown in Figure 1-2. It is shown in a state where a Player named Jon has enrolled
in the game. The player has revealed two cards, which do not match and thus the ‘SELECT NEXT PAIR’
button has been enabled. Once that button is pressed the revealed cards will revert to the ‘greyed out’
state and the player will be able to reveal more cards.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

21

A Challenge – Thinking Parallel

Figure 1-2 The Player Interface

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/gee_change

Using Concurrency and
Parallelism Effectively – I

22

A Challenge – Thinking Parallel

1.3.3	 Messages

Messages can be sent in both directions, from the Player to the Game Controller and vice-versa.

1.3.3.1	 From Player to Game Controller

Enrol Player – sends enrolment data, once the player has input required data

Withdraw Player – sends a request to withdraw the player from the game

Get Game Details – a request for the controller to send the current Game Details

Claim Pair – contains details of a matched pair of cards that the Player is claiming

1.3.3.2	 From Controller to Player

Enrol Details – details to update the names of the players

Game Details – the current state of the game including available cards and player scores

1.3.4	 Player Internal Structure

The Player contains a user interface that comprises two parts. The first, concerns the creation of the
graphical output and the second deals with events such as button and mouse presses and textual input.
The design process means we can deal with these separately because, as we shall see in Chapter 11, each
element of a user interface has its own process based architecture which means that such components can
be integrated more easily into a parallel system design. Thus when a button is pressed it communicates
a message that contains the current text associated with the button. The text in a button can be changed
by sending a text string to the button process. Mouse events are dealt with in a similar manner in that
a mouse event process communicates the mouse events so they can be processed by another process.

A first design for the Player might look something like that shown in Figure 1-3.

Figure 1-3 A First Player Design

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

23

A Challenge – Thinking Parallel

In this design we recognise the fact that there are two primary Player components the Player Manager
and a User interface and that we send messages between these components.

The Player Manager deals with interactions between the Player and the Game Controller, while at the
same time dealing with interactions from the User Interface. This is a reasonable design until we consider
the effect of Mouse Events on the Player Manager. Mouse Events happen in bursts as the mouse is moved
or pressed and further the number of events generated is large, most of which are not significant to the
operation of the system. We are only interested in mouse presses that occur in a greyed out square. This
in the next stage in the design; mouse events are separated from the other interactions with the User
Interface, such as Label and Button processing and the update of the paintable Canvas that holds the
representation of the cards.

Figure 1-4 shows the next design, where a Mouse Event Buffer has been introduced. This is sent all
mouse events but then filters these so that only mouse presses from the card canvas are retained and
then passed to the Player Manager.

This is an improvement but still does not provide a completely satisfactory solution. The Player Manager
really only wants to deal with mouse presses that are contained within a square that is currently greyed
out. This processing can be placed in a separate process. The Player Manager then simply has to determine
whether a pair of cards matches, deal with update of the interface and possibly claiming a matched pair
of cards.

Figure 1-4 Separation of Mouse Events

The revised design is shown in Figure 1-5. The Matcher simply determines whether the mouse press is
within a square that is currently greyed out.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

24

A Challenge – Thinking Parallel

Player Manager

User Interface

Game

Controller

Mouse Buffer

Mouse Events

Matcher

Figure 1-5 Inclusion of Matcher Processing

A further refinement has also been introduced as indicated by the bi-directional connection between
the Player Manager and the Matcher and the Matcher and the Mouse Buffer. The Player Manager will
know when it needs another point either to be the first or second in a pair. Thus it can ask the Matcher
for a valid point, which it then can input and process. Similarly the Matcher can only deal with a press
at specific points in the algorithm so it requests a mouse press event from the Mouse Buffer which it
then inputs and processes. This refinement, may at first sight appear to complicate the design, however,
as we shall see in Chapter 8, this implements a specific design pattern that we shall use throughout the
remainder of the book. This so-called client-server design is fundamental to the design of parallel systems
that are deadlock and livelock free.

1.3.5	 Player Manager Communications

Initially, the only action the User Interface permits is to enable the user to input their name and also to
type in the IP-address of the Game Controller. The latter enables the dynamic connection of the Player
to the Game Controller and the former enables the Player to enrol in the game. The Game Controller
responds with the list of players currently enrolled in the game with the new player’s name added to the
list and the number of claimed pairs set to zero.

Once enrolled, the Player can withdraw from the game at any time. The problem is the time when this
withdrawal occurs is not known. Thus the Player Manager has to be able to deal with it at any time.
This is referred to as non-deterministic behaviour in that it is known when an event can occur but not
when it will occur. The language architecture includes a specific language structure that captures this
type of behaviour and is known as a non-deterministic choice. It is fundamental to the design of parallel
systems and will be described further in Chapter 3.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

25

A Challenge – Thinking Parallel

The rest of the behaviour is relatively straightforward, once we are aware of the possibility of a withdraw
event is non-deterministic and can build that into the design. The Player Manager can request the co-
ordinates of a card from the Matcher. The Matcher will respond as and when it has a valid card. Once
the Player Manager has two valid cards it can check to see if they correspond. If they do it can send a
Claim message to the Game Controller, which will respond with the updated game state including the
number of pairs each player has achieved.

If the pair of cards does not correspond, then the Player Manager can enable the ‘SELECT NEXT PAIR’
button on the User Interface. Only when that button is pressed by the player will the cards return to the
greyed out state and the player will be able to select another pair of cards.

1.3.6	 Summary

The above description has glossed over a number of important ideas, which will be explored in more
detail later on in the book. It has, however, introduced the basic fundamentals that concern the design
and implementation of parallel systems. This is that we pass messages between processing elements hence
the concept of Communicating Process Architectures. The designer has to manage these interactions
and that we have a very small number of design principles that need to be followed to build functional,
correct and maintainable parallel systems.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Corporate eLibrary
See our Business Solutions for employee learning

Click here

Management

CoachingMotivationGoal setting

Problem solving

Time Management

Project Management

http://s.bookboon.com/bbg-elibrary-2015

Using Concurrency and
Parallelism Effectively – I

26

A Challenge – Thinking Parallel

1.4	 The Basic Concepts

The fundamental concepts that we shall be dealing with, when designing and thinking parallel are:

Process,
Channel,
Timer,
Alternative.

In comparison to other concurrent and parallel based approaches, the list is very small but that is because
we are dealing with higher-level concepts and abstractions. Therefore it is much easier for the programmer
to both build concurrent and parallel systems and also to reason about their behaviour. One of the key
aspects of this style of parallel system design is that processes can be composed into larger networks of
processes with a predictable overall behaviour.

1.4.1	 Process

A process, in its simplest form, defines a sequence of instructions that are to be carried out. Typically,
a process will communicate with one or more processes using a channel to transfer data from one to
the other. In this way a network of processes collectively provide a solution to some problem. Processes
have only one method, run(), which is used to invoke the process. A list of process instances is passed
to an instance of a PAR object which, when run, causes the parallel execution of all the processes in
the list (Kerridge, et al., 2005). A PAR object only terminates when all the processes in the list have
themselves terminated.

A process encapsulates the data upon which it operates. Such data can only be communicated to or from
another process and hence all data is private to a process. Although a process definition is contained
within a Class definition, there are no explicit methods by which any property or attribute of the
process can be accessed.

A network of processes can be invoked concurrently on the same processor, in which case the processor
is said to interleave the operations of the processes. The processor can actually only execute one process
at a time and thus the processor resource is shared amongst the concurrent processes.

A network of processes can be created that runs on many processors connected by some form of
communication mechanism, such as a TCP/IP based network. In this case the processes on the different
processors can genuinely execute at the same time and thus are said to run in parallel. In this case some of
the processors may invoke more than one process and so an individual processor may have some processes
running concurrently but the complete system is running in parallel. The definition of a process remains
the same regardless of whether it is executed concurrently or in parallel. Furthermore the designer does
not have to be aware, when the process is defined, whether it will execute concurrently or in parallel.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

27

A Challenge – Thinking Parallel

A network of processes can be run in parallel on a multi-core processor in such a way that the processes
are executed on different cores. We can thus exploit multi-core processors directly by the use of a process
based programming environment. The exploitation of multi-core processors will result in those processes
running on the same core executing concurrently and those on different cores in parallel.

Throughout the rest of this book we shall refer to a network of parallel processes without specifically
stating whether the system is running concurrently or in parallel. Only when absolutely necessary will
this be differentiated.

1.4.2	 Channel

A channel is the means by which a process communicates with another process. A channel is a one-way,
point-to-point, unbuffered connection between two processes. One process writes to the channel and the
other reads from the channel. Channels are used to transfer data from the outputting (writing) process
to the inputting (reading) process. If we need to pass data between two processes in both directions
then we have to supply two channels, one in each direction. Channels synchronise the processes to
pass data from one to the other. Whichever process attempts to communicate first waits, idle, using
no processor resource until the other process is ready to communicate. The second process attempting
to communicate will discover this situation, undertake the data transfer and then both processes will
continue in parallel, or concurrently if they were both executed on the same processor. It does not matter
whether the inputting or outputting process attempts to communicate first: the behaviour is symmetrical.
At no point in a channel communication interaction does one process cycle round a loop determining
whether the other process is ready to communicate. The implementation uses neither polling nor busy-
wait-loops and thus does not incur any processor overhead.

This describes the fundamental channel communication mechanism; however, within the parallel
environment it is possible to create channels that have many reader and / or writer processes connected
to them. In this case the semantics are a little more complex but in the final analysis the communication
behaves as if it were a one-to-one communication.

When passing data between processes over a channel some care is needed because, in the Java and
Groovy environment, this will be achieved by passing an object reference if both processes are executing
concurrently on the same processor. In order that neither of the processes can interfere with the behaviour
of each other we have to ensure that a process does not modify an object once it has been communicated.
This can be most easily achieved by always defining a new instance of the object which the receiving
process can safely modify.

If the communication is between processes on different processors this requirement is relaxed because the
underlying system has to make a copy of the data object in any case. An object reference has no validity
when sent to another processor. Such a data object has to implement the Serializable interface.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

28

A Challenge – Thinking Parallel

If the processes are running on a multi-core processor then they should be treated as processes running
concurrently on the same processor because such processes can share the same caches and thus processes
will be able to access the same object reference.

1.4.3	 Timers

A key aspect of the real world is that many systems rely on some aspect of time, either absolute or
relative. Timers are a fundamental component of a parallel programming environment together with
a set of operations. Time is derived from the processor’s system clock and has millisecond accuracy.
Operations permit the time to be read as an absolute value. For example, processes can be made to go idle
for some defined sleep period. Alarms can be set, for some future time, and detected so that actions can
be scheduled. A process that calls the sleep() method or is waiting for an alarm is idle and consumes
no processor resource until it resumes execution.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://thecvagency.co.uk

Using Concurrency and
Parallelism Effectively – I

29

A Challenge – Thinking Parallel

1.4.4	 Alternatives

The real world in which we interact is non-deterministic, which means that the specific ordering of
external events and communications cannot be predefined in all cases. The programming environment
therefore has to reflect this situation and permit the programmer to capture such behaviour. The
alternative captures this behaviour and permits selection between one or more input communications,
timer alarms and other synchronisation capabilities. The events over which the alternative makes its
selection are referred to as guards. If one of the guards is ready then that one is chosen and its associated
process carried out. If none of the guards are ready then the alternative waits, doing nothing, consuming
no processor resource until one is ready. If more than one is ready, it chooses one of the ready guards
according to some selection criterion. The ability to select a ready guard is a crucial requirement of any
parallel programming environment that is going to model the non-deterministic real world.

1.5	 Summary

This brief chapter has defined the terms we are going to use during the rest of the book. From these basic
concepts we are going to build many example concurrent and parallel systems simply by constructing
networks of processes, connected by channels, each contributing, in part, to the solution of a problem.
Whether the network of processes is run in parallel over a network, in a multi-core processor, or
concurrently on a single processor has no bearing upon the design of the system. In some systems, the
use of multiple processors may be determined by the nature of the external system and environment to
which the computer system is connected.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

30

Producer Consumer: A Fundamental Design Pattern

2	� Producer Consumer: A
Fundamental Design Pattern

This chapter provides an introduction to

•	 a simple producer – consumer design pattern
•	 shows how a set of processes can be invoked using the PAR helper class
•	 shows how processes and channels interact with one another
•	 demonstrates the ease with which processes can be reused

For many people, the first program they write in a new language is to print “Hello World”, followed by
the inputting of a person’s name so the program can be extended to print “Hello name”. In the parallel
world this is modified to a program that captures one of the fundamental design patterns of parallel
systems, namely a Producer – Consumer system.

A Producer process is one that outputs a sequence of distinct data values. A Consumer process is one
that inputs a stream of such data values and then processes them in some way. The composition of a
Producer and Consumer together immediately generate some interesting possibilities for things to go
wrong. What happens if?

the Producer process is ready to output some data before the Consumer is ready or

the Consumer process is ready to input but no data is available from the Producer

In many situations, the programmer would resort to introducing some form of buffer between the
Producer and Consumer to take account of any variation in the execution rate of the processes. This
then introduces further difficulties in our ability to reason about the operation of the combined system;
such as the buffer becomes full so the Producer has to stop outputting, or conversely it becomes empty
and the Consumer cannot input any data. We have just put off the decision. In fact, we have made it
much harder to both program the system and to reason about it. In addition, we now have to consider
the situation when the buffer fails for some reason. Fortunately, the definitions of process and channel
given in Chapter 1 come to our rescue.

If the Producer process is connected to the Consumer process by a channel then we know that the
processes synchronise with each other when they transfer data over the channel. Thus if the Producer
tries to output or write data before the Consumer is ready to input or read data then the Producer waits
until the Consumer is ready and vice-versa. It is therefore impossible for any data to be lost or spurious
values created during the data communication.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

31

Producer Consumer: A Fundamental Design Pattern

2.1	 A Parallel Hello World

2.1.1	 Hello World Producer

The producer process for Hello-World is shown in Listing 2-1. Line {10–20} defines the class ProduceHW
that implements the interface CSProcess, which defines a single method run() that is used to invoke
the process. The interface CSProcess is contained in the package org.jcsp.lang, which has to be
imported (not shown).

10	class ProduceHW implements CSProcess {
11	
12	 def ChannelOutput outChannel
13	
14	 void run() {
15	 def hi = "Hello"
16	 def thing = "World"
17	 outChannel.write (hi)
18	 outChannel.write (thing)
19	 }
20	}

Listing 2-1 Hello World Producer Process

The only class property, outChannel {12}, of type ChannelOutput, is the channel upon which the
process will output using a write() method. Strictly, Groovy does not require the typing of properties,
or any other defined variable, however, for documentation purposes we adopt the convention of giving
the type of all properties. This also has the advantage of allowing the compiler to check type rules and
provides additional safety when processes are formed into process networks. Each process has only one
method, the run() method as shown starting at line {14}. Two variables are defined {15, 16}, hi and
thing, that hold the strings “Hello” and “World” respectively. These are then written in sequence to
outChannel {17, 18}.

2.1.2	 Hello World Consumer

The ConsumeHello process, Listing 2-2, has a property inChannel {12} of type ChannelInput. Such
channels can only input objects from the channel using a read() method. Its run() method firstly,
reads in two variables, first and second, from its inChannel {15, 16}, which are then printed {17}
to the console window with preceding and following new lines (\n). The notation $v indicates that the
variable v should be evaluated to its String representation

10	class ConsumeHello implements CSProcess {
11	
12	 def ChannelInput inChannel
13	
14	 void run() {

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

32

Producer Consumer: A Fundamental Design Pattern

15	 def first = inChannel.read()
16	 def second = inChannel.read()
17	 println "\n$first $second!\n"
18	 }
19	}

Listing 2-2 Hello World Consumer Process

2.1.3	 Hello World Script

Figure 2-1 shows the process network diagram for this simple system comprising two processes
ProduceHW and ConsumeHello that communicate over a channel named connect.

Figure 2-1 Producer Consumer Process Network

The script, called RunHelloWorld for executing the processes ProduceHW and ConsumeHW is shown
in Listing 2-3. It is this script that is invoked to execute the process network.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/elearningforkids

Using Concurrency and
Parallelism Effectively – I

33

Producer Consumer: A Fundamental Design Pattern

10	def connect = Channel.one2one()
11
12	def processList = [
13					 new ProduceHW (outChannel: connect.out()),
14					 new ConsumeHello (inChannel: connect.in())
15]
16	new PAR (processList).run()

Listing 2-3 Hello World Script

An imported package org.jcsp.lang contains the classes required for the JCSP library. Another
package org.jcsp.groovy contains the definitions of the Groovy parallel helper classes. The referenced
libraries and documentation contain a more complete specification and description of their use. The PAR
class {16} causes the parallel invocation of a list of processes. This is achieved by calling the run() method
of PAR, which in turn causes the execution of the run() method of each of the processes in the list.

The channel connect is of type Channel.one2one {10}. The channel is created by means of a
static method one2one in the class Channel contained within the package org.jcsp.lang. The
processList {12} comprises an instance of ProducerHW with its outChannel property set to the
out end of connect, and the processes ConsumerHW with its inChannel property set to the in end
of connect {13, 14}.

The underlying JCSP library attempts, as far as possible, to ensure networks of processes are connected in
a manner that can be easily checked. The channel connect {10} is defined to have a one2one interface
and therefore it has one output end and one input end. These are defined by the methods out() {13}
and in() {14} respectively. A class that contains a property of type ChannelOutput must be passed
an actual parameter that has been defined with a call to out() and within that process only write()
method calls are permitted on the channel property. The converse is true for input channels. In all process
network diagrams the arrow head associated with a channel will refer to the input end of the channel.

The output from executing this script is shown in Output 2-1.

Hello World!

Output 2-1 Output from Hello World Script

2.2	 Hello Name

The Hello Name system is a simple extension of the Hello World system. The only change is that the
ProducerHN {10} process asks the user for their name and then sends this to the Consumer process as
the thing variable {16, 18} in Listing 2-4.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

34

Producer Consumer: A Fundamental Design Pattern

10	class ProduceHN implements CSProcess {
11	
12	 def ChannelOutput outChannel
13	
14	 void run() {
15	 def hi = "Hello"
16	 def thing = Ask.string ("\nName ? ")
17	 outChannel.write (hi)
18	 outChannel.write (thing)
19	 }
20	}

Listing 2-4 The ProduceHN Process

An imported package phw.util contains some simple console interaction methods that can be used
to obtain input from the user from the console window. The Ask.string method outputs the prompt
“Name ?” after a new line and the user response is then placed into the variable thing {16}.

The Consumer process remains unaltered from the version shown in Listing 2-2. Similarly, the script
to run the processes is the same as Listing 2-3 except that the name of the producer process has been
changed to ProduceHN. A typical output from the execution of the script is shown in Output 2-2, where
user typed input is shown in italics. This also shows how easy it is to reuse a process in another network.

Name ? Jon

Hello Jon!

Output 2-2 Output from Hello Name Network

2.3	 Processing Simple Streams of Data

The final example in this chapter requires the user to type in a stream of integers into a producer process
that writes them to a consumer process, which then prints them. The specification of the Producer
process is given in Listing 2-5.

10	class Producer implements CSProcess {
11	
12	 def ChannelOutput outChannel
13	
14	 void run() {
15	 def i = 1000
16	 while (i > 0) {
17	 i = Ask.Int ("next: ", -100, 100)
18	 outChannel.write (i)
19	 }
20	 }
21	}

Listing 2-5 The Producer Process

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

35

Producer Consumer: A Fundamental Design Pattern

The run() {14} method is formulated as a while loop {16–19}, which is terminated as soon as the
user inputs zero or negative number. The input integer value is obtained using the Ask.Int (from phw.
util) method that will ensure that any input lies between -100 to 100 {17}. The while loop has been
structured to ensure the final zero is also output to the Consumer process.

10	class Consumer implements CSProcess {
11	
12	 def ChannelInput inChannel
13	
14	 void run() {
15	 def i = 1000
16	 while (i > 0) {
17	 i = inChannel.read()
18	 println "the input was : $i"
19	 }
20	 println "Finished"
21	 }
22	}

Listing 2-6 The Consumer Process

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/academictransfer

Using Concurrency and
Parallelism Effectively – I

36

Producer Consumer: A Fundamental Design Pattern

The Consumer process is shown in Listing 2-6. The Consumer {10} process reads data {17} from its
input channel, inChannel {12}, which is then printed {18}. Once a zero is read the while loop {16–19}
terminates resulting in the printing of the “Finished” message {20}.

The script, called RunProducerConsumer that causes the execution of the network of processes is
shown in Listing 2-7 which is very similar to the previous script shown in Listing 2-3, the only change
being, the names of the processes that make up the list of processes {12, 13}.

10	 def connect = Channel.one2one()
11	
12	 def processList = [new Producer (outChannel: connect.out()),
13					 new Consumer (inChannel: connect.in())
14]
15	 new PAR (processList).run()

Listing 2-7 The Producer Consumer System Script

Output from a typical execution of the processes is given in Output 2-3.

next: 1

next: the input was : 1

2

the input was : 2

next: 3

the input was : 3

next: 0

the input was : 0

Finished

Output 2-3 Typical Results from Producer Consumer System

The output, especially when executed from within Eclipse, can be seen to be correct but the output is
somewhat confused as we have two processes writing concurrently to a single console at the same time;
both processes use println statements. We therefore have no control of the order in which outputs
appear and these often become interleaved. A process called GConsole is available in the package org.
jcsp.groovy.plugAndPlay that creates a console window with both an input and output area. This
process can be used to provide a specific console facility for a given process. Many such GConsole
processes can be executed in a network of processes as required. Its use will be demonstrated in
later chapters.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

37

Producer Consumer: A Fundamental Design Pattern

2.4	 Summary

This chapter has introduced the basic use of many simple JCSP concepts. A set of simple Producer –
Consumer based systems have been implemented and output from these systems has also been given.
These basic building blocks of processes and channels, with their simple semantics are the basis for all
the concurrent and parallel systems we shall be building throughout the rest of this book.

2.5	 Exercises

Exercise 2-1

Using Listing 2-7 as a basic design implement and test a new process called Multiply that
is inserted into the network between the Producer and Consumer processes which takes an
input value from the Producer process and multiplies it by some constant factor before
outputting it to the Consumer process. The multiplication factor should be one of the
properties of the Multiply process. To make the output more meaningful you may want to
change the output text in the Consumer process. You should reuse the Producer process
from the ChapterExamples project in src package c2.

Exercise 2-2

A system inputs data objects that contain three integers; it is required to output the data in
objects that contain eight integers. Write and test a system that undertakes this operation.
The process ChapterExercises/src/c2.GenerateSetsOfThree outputs a sequence of
Lists, each of which contains three positive integers. The sequence is to be terminated by a
List comprising [-1, -1, -1].

What change is required to output objects containing six integers? How could you parameterise
this in the system to output objects that contain any number of integers (e.g. 2, 4, 8, 12)? What
happens if the number of integers required in the output stream is not a factor of the total
number of integers in the input stream (e.g. 5 or 7)?

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

38

Process Networks: Build It Like Lego

3	� Process Networks: Build It
Like Lego

We now progress to more complex networks

•	 using simple and easily understood processes to build larger networks
•	 the reuse of existing processes is demonstrated
•	 a timer is used to improve console readability
•	 introduces the concepts of ChannelInputLists and ChannelOutputLists

One of the main advantages of the CSP based approach we are using is that processes can be combined
using a simple compositional style. It is very much what you see is what you get!

In arithmetic the meaning of the composition 1 + 2 + 3 is immediately obvious and results in the answer 6.
The composition of processes is equally simple and obvious. Thus we can build a set of basic building
block processes, like Lego® bricks, from which we can construct larger systems, the meaning of which
will be obvious given our understanding of the basic processes.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

Using Concurrency and
Parallelism Effectively – I

39

Process Networks: Build It Like Lego

All of the building block processes are to be found in the package org.jcsp.groovy.plugAndPlay.
A more detailed discussion of these processes is to be found in the accompanying documentation.

3.1	 Prefix Process

The process diagram of GPrefix is given in Figure 3-1 and its definition is presented in Listing 3-1.
GPrefix initially outputs the prefixValue on its outChannel {17} and thereafter it writes everything
it reads on its inChannel {13} to its outChannel, using a non-terminating loop {18-19}.

GPrefix - prefixValue inChannel outChannel

Figure 3-1 GPrefix Process Diagram

The GPrefix process has an input channel inChannel and an output channel outChannel, which are
properties of the process {13, 14}. In addition, there is a property called prefixValue that has the initial
value 0 {12}, which can be changed when a process instance is created.

10	class GPrefix implements CSProcess {
11	
12	 def int prefixValue = 0
13	 def ChannelInput inChannel
14	 def ChannelOutput outChannel
15	
16	 void run () {
17	 outChannel.write(prefixValue)
18	 while (true) {
19	 outChannel.write(inChannel.read())
20	 }
21	 }
22	}

Listing 3-1 GPrefix Process Definition

3.2	 Successor Process

The process diagram for GSuccessor is shown in Figure 3-2 and it’s coding in Listing 3-2. The process
simply {17} reads in a value from its inChannel and then writes this value plus 1 to its outChannel.
It does this in a while loop that never terminates {16-17}.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

40

Process Networks: Build It Like Lego

GSuccessor

inChannel outChannel

Figure 3-2 GSuccessor Process Diagram

10	class GSuccessor implements CSProcess {
11	
12	 def ChannelInput inChannel
13	 def ChannelOutput outChannel
14	
15	 void run () {
16	 while (true) {
17	 outChannel.write(inChannel.read() + 1)
18	 }
19	 }
20	}

Listing 3-2 GSuccessor Process Definition

3.3	 Parallel Copy

The process diagram for GPCopy is given in Figure 3-3 and it’s coding in Listing 3-3. The process inputs
a value on its inChannel {12}, which it outputs to outChannel0 {13} and outChannel1 {14} in
parallel. This is repeated forever. By outputting to its output channels in parallel we are assured that it
does not matter the order in which these channels are read by other processes on their corresponding
input channels. We are also guaranteed that a read on its input channel will not take place until both the
outputs have completed because a parallel (PAR) does not terminate until all its constituent processes
have terminated.

outChannel0
GPCopy inChannel

outChannel1

Figure 3-3 Process Diagram of GPCopy

GPCopy utilises the process ProcessWrite from the package org.jcsp.plugNplay, demonstrating
that we can incorporate previously written Java processes into the Groovy environment. Two instances of
ProcessWrite are defined {17, 18} each accessing one of the output channels. A PAR of the two processes
is then defined {19} called parWrite2, which is not run at this time. An instance of ProcessWrite
has a publicly available field called value that is assigned the data to be written.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

41

Process Networks: Build It Like Lego

The non-terminating loop {20–25} firstly reads in a value from the inChannel {21}, the value of which
is assigned to the value fields of the two ProcessWrite instances, write0 {22}and write1 {23}. The
parallel parWrite2 is then run {24}, which causes the writing of the value read in from inChannel to
outChannel0 and outChannel1 in parallel, after which it terminates. ProcessWrite terminates as
soon as it has written a single value to its output channel. Once parWrite2 has terminated, processing
resumes at the start of the while loop {20}.

10	class GPCopy implements CSProcess {
11	
12	 def ChannelInput inChannel
13	 def ChannelOutput outChannel0
14	 def ChannelOutput outChannel1
15	
16	 void run () {
17	 def write0 = new ProcessWrite (outChannel0)
18	 def write1 = new ProcessWrite (outChannel1)
19	 def parWrite2 = new PAR ([write0, write1])
20	 while (true) {
21	 def i = inChannel.read()
22	 write0.value = i
23	 write1.value = i
24	 parWrite2.run()
25	 }
26	 }
27	}

Listing 3-3 GPCopy Process Definition

3.4	 Generating a Sequence of Integers

The three processes, GPrefix, GSuccessor and GPCopy can be combined to form a network that outputs
a sequence of integers on outChannel as shown in Figure 3-4 and Listing 3-4.

Figure 3-4 Process Network Diagram to Generate a Stream of Integers (GNumbers)

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

42

Process Networks: Build It Like Lego

The operation of the network proceeds as follows. Initially, only GPrefix can undertake any processing
which is to output its prefix value, 0. This is then input by GPCopy, which copies the value to both the
outChannel and the input of GSuccessor. GSuccessor then reads the input value, increments it
and then outputs it to GPrefix. GPrefix then copies the new input value to its output channel. Thus the
numbers circulate round the network incrementing by one each time.

The GNumbers process has a single output channel outChannel property {12} upon which the stream
of integers is output. Three internal channels a, b and c are defined {16–18} as one2one channels and
these are used to connect the processes together in a manner that directly reflects the process network
diagram, Figure 3-4. For example, the two output channels of GPCopy are assigned to the property
outChannel and b.out() while its input channel is assigned to a.in().

10	class GNumbers implements CSProcess {
11	
12	 def ChannelOutput outChannel
13	
14	 void run() {
15	
16	 def a = Channel.one2one()
17	 def b = Channel.one2one()
18	 def c = Channel.one2one()
19	

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

Using Concurrency and
Parallelism Effectively – I

43

Process Networks: Build It Like Lego

20	 def numbersList = [new GPrefix (prefixValue: 0,
21								 inChannel: c.in(),
22								 outChannel: a.out()),
23						 new GPCopy (inChannel: a.in(),
24								 outChannel0: outChannel,
25								 outChannel1: b.out()),
26						 new GSuccessor (inChannel: b.in(),
27									 outChannel: c.out())
28]
29	 new PAR (numbersList).run()
30	 }
31	}

Listing 3-4 Definition of the GNumbers Process

The design process becomes one of creating a process network diagram and then using that to define
the required channels which are then used to connect the processes together. The system is able to
check, using the interface specifications, that an input end of a channel specified by the in() method is
connected to a ChannelInput. Similarly a ChannelOutput must be connected to a channel output
end specified by the out() method because we have specified the types of the channels in the properties
of the process class definitions.

3.5	 Testing GNumbers

Figure 3-5 shows the process network that can be used to test the operation of the process GNumbers.
It is apparent that the easiest way of testing the process GNumbers is to print the stream of numbers to
the console window. For this purpose a GPrint process is provided. GPrint has a ChannelInput for
reading a stream of numbers from its inChannel property. It also has a property, heading, that is a
String, which contains a title for the printed stream. The corresponding script for the network shown
in Figure 3-5 is given in Listing 3-5.

Figure 3-5 Network to Test GNumbers

10	def N2P = Channel.one2one()

11
12	def testList = [new GNumbers (outChannel: N2P.out()),
13				 new GPrint (inChannel: N2P.in(),
14						 heading : "Numbers")
15]
16	new PAR (testList).run()

Listing 3-5 The Script to Test GNumbers

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

44

Process Networks: Build It Like Lego

A single channel is created {10} called N2P that is used to connect GNumbers to GPrint. The list of
processes is created {12–15} with the properties assigned to the input and output ends of N2P and the
heading property of GPrint is set to “Numbers”. A typical output is shown in Output 3-1. It is noted
that the user has to terminate the system by interrupting the console stream. The processes have been
constructed using never ending while-loops and thus run forever, unless otherwise terminated. In Eclipse
this is achieved by clicking the ‘Terminate’ button in the Console view.

Numbers

0

1

2

3

4

5

6

7

8

9

10

11

Output 3-1 Output from the Script Test GNumbers

3.6	 Creating a Running Sum

We will now use the output from GNumbers as input to a process called GIntegrate that reads a stream
of integers and outputs the running sum of the numbers read so far, as another stream of numbers. In
order to do this we shall need a process that undertakes addition of numbers arriving in a stream of
such numbers. The GPlus process does this and its coding is shown in Listing 3-6.

10	class GPlus implements CSProcess {
11	
12	 def ChannelOutput outChannel
13	 def ChannelInput inChannel0
14	 def ChannelInput inChannel1
15	
16	 void run () {
17
18	 ProcessRead read0 = new ProcessRead (inChannel0)
19	 ProcessRead read1 = new ProcessRead (inChannel1)
20	 def parRead2 = new PAR ([read0, read1])
21
22	 while (true) {

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

45

Process Networks: Build It Like Lego

23	 parRead2.run()
24	 outChannel.write(read0.value + read1.value)
25	 }
26	 }
27	}

Listing 3-6 GPlus process coding

The GPlus process uses techniques similar to that used in GPCopy, except that we read from two input
channels in parallel using the process ProcessRead, which reads a single value from a channel and
then terminates. GPlus has two input channels, inChannel0 and inChannel1 {13, 14} and one output
channel, outChannel {12} upon which the sum of the two inputs are written. Two ProcessRead
processes are constructed called read0 {18} and read1 {19} and these are used to construct a PAR called
parRead2 {20}. It should be noted that {20} only defines the parallel parRead2, it does not cause it to
be run. The main loop of the process {22-25} initially invokes the parallel parRead2 {23}. This parallel
only terminates when both read0 and read1 have read a value and terminated. The values read are
obtained from a publicly available field, value, of a ProcessRead. The two values that have been read
are added together and then written to the output channel {24}.

Listing 3-7 gives the coding for the process GIntegrate and its associated process network diagram
is given in Figure 3-6. The coding can be seen to be a representation of the diagram in the same way as
previous transformations of diagrams into process network scripts.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/Subscrybe

Using Concurrency and
Parallelism Effectively – I

46

Process Networks: Build It Like Lego

The operation of GIntegrate proceeds as follows. The process GPrefix can output its initial value, 0,
which forms one of the inputs to GPlus, using channel c. The other input from GPlus is read from
GIntegrate’s inChannel. The GPlus process and hence the GIntegrate process will now wait until
there is an input on the inChannel. Once this arrives the addition of the two values will take place
and the result written to the channel a, which forms the input to GPCopy. GCopy can now output the
current sum on the outChannel and also send a copy to GPrefix, using channel b, which immediately
outputs the value unaltered to the channel c. In this way the current running sum is circulated around
the network and is also output to a subsequent process.

Figure 3-6 Process Network Diagram of GIntegrate

10	class GIntegrate implements CSProcess {
11	
12	 def ChannelOutput outChannel
13	 def ChannelInput inChannel
14	
15	 void run() {
16	
17	 def a = Channel.one2one()
18	 def b = Channel.one2one()
19	 def c = Channel.one2one()
20	
21	 def integrateList = [new GPrefix (prefixValue: 0,
22								 outChannel: c.out(),
23								 inChannel: b.in()),
24						 new GPCopy (inChannel: a.in(),
25								 outChannel0: outChannel,
26								 outChannel1: b.out()),
27						 new GPlus (inChannel0: inChannel,
28								 inChannel1: c.in(),
29								 outChannel: a.out())
30]
31	 new PAR (integrateList).run()
32	
33	 }
34	}

Listing 3-7 GIntegrate Process Definition

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

47

Process Networks: Build It Like Lego

A process network to test the operation of GIntegrate, by outputting the current value of the running
sum is presented in Figure 3-7. GNumbers provides the input stream into GIntegrate using the channel
N2I and the output from GIntegrate is written, using the channel I2P, to the GPrint process which
writes the stream of numbers to the console.

The script that invokes this network is shown in Listing 3-8. The script is taken directly from the process
network diagram by connecting the output and input ends of each of the channels, N2I and I2P, to the
appropriate property of the processes.

Figure 3-7 The Process Network to Demonstrate the Operation of GIntegrate

10	def N2I = Channel.one2one()
11	def I2P = Channel.one2one()
12
13	def testList = [new GNumbers (outChannel: N2I.out()),
14				 new GIntegrate (inChannel: N2I.in(),
15							 outChannel: I2P.out()),
16				 new GPrint (inChannel: I2P.in(),
17						 heading: "Integrate")
18]
19
20	new PAR (testList).run()

Listing 3-8 Script that Implements the Network of Figure 3-7

Output 3-2 shows the console window after the network has been allowed to execute for a short period of
time. It can be seen by observation that each output is the sum of the numbers so far from the sequence
0, 1, 2, …. Later, we shall see how we can output all the intermediate values.

Integrate

0

1

3

6

10

15

21

28

36

45

Output 3-2 Running Sum Generated by the Sequence of Positive Integers

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

48

Process Networks: Build It Like Lego

3.7	 Generating the Fibonacci Sequence

The Fibonacci sequence comprises; 0, 1, 1, 2, 3, 5, 8, 13, 21, …fn-2+fn-1, …. The first two numbers in the
sequence f0 and f1 have to be predefined and are typically set to 0 and 1 but could be any value. It can
be seen that we need to create the first two numbers in the sequence and we already have a process,
GPrefix that achieves this. We now need a process that will read two numbers, in sequence and then
output the sum of the pair of numbers. The next iteration will take the second number in the sequence
and pair it to the third number that is input, output their sum and so on.

3.7.1	 Adding Pairs of Numbers

Listing 3-9 gives the definition of a process that inputs a stream of numbers and outputs another stream
which contains the sum of pairs of numbers. The process GStatePairs initially reads in two numbers
from the input stream, inChannel, {17, 18} then, within a loop outputs their sum {20} to outChannel,
assigns the second number to the first {21}and then reads another number n2 from inChannel {22}.

10	class GStatePairs implements CSProcess {
11	
12	 def ChannelOutput outChannel
13	 def ChannelInput inChannel
14	
15	 void run() {

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Losing track of your leads?
Bookboon leads the way
Get help to increase the lead generation on your own website. Ask the experts.

Interested in how we can help you?
email ban@bookboon.com

http://bookboonglobal.com/en/qualities2/content-and-dialogue-marketing-2/

Using Concurrency and
Parallelism Effectively – I

49

Process Networks: Build It Like Lego

16	
17	 def n1 = inChannel.read()
18	 def n2 = inChannel.read()
19	 while (true) {
20	 outChannel.write (n1 + n2)
21	 n1 = n2
22	 n2 = inChannel.read()
23	 }
24	 }
25	}

Listing 3-9 Process GStatePairs

The process network diagram that implements the generation of the Fibonacci sequence is shown in
Figure 3-8 and its associated process definition is shown in Listing 3-10.

Initially, GPrefix-0 is the only process that can run because it is the only one that can undertake an output.
GPCopy is waiting for an input as is GStatePairs. GPrefix-1 is trying to output and will not be able
to, until GPrefix-0 reads from its input channel, which it will do once it has written the 0 to GPCopy.

Figure 3-8 Process Network Diagram to Generate the Fibonacci Sequence

It can be seen, by inspection, that the code given in Listing 3-10, directly implements the process network
diagram given in Figure 3-8. The four channels, a, b, c and d are defined {16–19}. The list of processes
is then created as testList {21–32} comprising four elements, one for each of the required processes.
The list of processes is then invoked using a PAR {33}.

10	class FibonacciV1 implements CSProcess {
11	
12	 def ChannelOutput outChannel
13	
14	 void run () {
15
16	 def a = Channel.one2one()

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

50

Process Networks: Build It Like Lego

17	 def b = Channel.one2one()
18	 def c = Channel.one2one()
19	 def d = Channel.one2one()
20
21	 def testList = [new GPrefix (prefixValue: 0,
22							 inChannel: d.in(),
23							 outChannel: a.out()),
24					 new GPrefix (prefixValue: 1,
25							 inChannel: c.in(),
26							 outChannel: d.out()),
27					 new GPCopy (inChannel: a.in(),
28							 outChannel0: b.out(),
29							 outChannel1: outChannel),
30					 new GStatePairs (inChannel: b.in(),
31							 outChannel: c.out()),
32]
33	 new PAR (testList).run()
34	 }
35	}

Listing 3-10 Fibonacci Process Definition

Listing 3-11 shows the script by which the output from the Fibonacci system can be produced using the
previously defined GPrint process.

10	def F2P = Channel.one2one()
11
12	def testList = [new FibonacciV1 (outChannel: F2P.out()),
13				 new GPrint (inChannel: F2P.in(),
14						 heading: "Fibonacci V1")
15
16]
17	new PAR (testList).run()

Listing 3-11 The Script to Output the Fibonacci Sequence

The output from this script is shown in Output 3-3.

Fibonacci V1

0

1

1

2

3

5

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

51

Process Networks: Build It Like Lego

8

13

21

34

55

89

Output 3-3 Console Output from Script Generating the Fibonacci Sequence

There is, however, a problem with this solution because we now have a process definition for GStatePairs
(Listing 3-9) that contains some state (n1 and n2) that is retained between iterations of the process. All
the other process defined so far, contain no such state. We have also defined a process GStatePairs that
does addition within it and yet we have already defined a process GPlus (Listing 3-6) that undertakes
stateless addition. How can we build another process that enables us to reuse the GPlus process and
which yet can be used to create the effect of GStatePairs? This may seem a somewhat esoteric argument
but processes that contain state are much more difficult to modify should changes be required in future,
especially if it is desired to modfy their behaviour dynamically. This is discussed in the next section.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/EOT

Using Concurrency and
Parallelism Effectively – I

52

Process Networks: Build It Like Lego

3.7.2	 Using GPlus to Create the Sum of Pairs of Numbers

In order to use GPlus we need two input streams comprising the numbers to be added together. We
can use GPCopy to copy the input stream, which would give us two identical streams. We however
require adding the current number to the previous one. Hence we require a process that removes the
first number from one of the streams and then just outputs what it inputs. If this process is inserted
into one of the streams coming from GPCopy then we will create that stream with the current number
and the other will, in fact contain the previous number. This is shown in Figure 3-9, where the process
GTail is introduced.

Figure 3-9 GPairs Process Network that Adds Pairs of Numbers using GPlus

The definition of GTail is shown in Listing 3-12. The first value sent to inChannel is read but not
retained {16}. Thereafter, values are read from inChannel and immediately written to outChannel
{14}. This formulation retains no state between iterations of the loop {17–18}.

10	class GTail implements CSProcess {
11	
12	 def ChannelOutput outChannel
13	 def ChannelInput inChannel
14	
15	 void run () {
16	 inChannel.read()
17	 while (true) {
18	 outChannel.write(inChannel.read())
19	 }
20	 }
21	}

Listing 3-12 Definition of GTail

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

53

Process Networks: Build It Like Lego

The operation of the network given in Figure 3-9 is as follows; the first number, 0, is read by GPCopy
and copied to channels a and b in parallel. GTail reads the 0 on channel b and ignores it! Meanwhile
the output on channel a is read by GPlus. GPCopy now reads the next number, 1, and attempts to copy
this to both channels a and b in parallel. That to channel b will be read by GTail and immediately
output to channel c to be read by GPlus, which can now do the addition and subsequent output of the
sum of 0 and 1. GPCopy is now able to write the copy of 1 to the channel a as GPlus is now ready to
read, in parallel. The system continues in this manner, with none of the processes retaining any state
and simply relying on the fact that processes input from and output to multiple channels in parallel and
that the order in which the communications takes places does not matter. The semantics of channel
communication ensure that no data is lost.

The coding of the stateless version of the process, GPairs, to add pairs of numbers from a stream is
shown in Listing 3-13 and follows the structure shown in Figure 3-9.

10	class GPairs implements CSProcess {
11	
12	 def ChannelOutput outChannel
13	 def ChannelInput inChannel
14	
15	 void run() {
16	
17	 def a = Channel.one2one()
18	 def b = Channel.one2one()
19	 def c = Channel.one2one()
20	
21	 def pairsList = [new GPlus (outChannel: outChannel,
22							 inChannel0: a.in(),
23							 inChannel1: c.in()),
24					 new GPCopy (inChannel: inChannel,
25							 outChannel0: a.out(),
26							 outChannel1: b.out()),
27					 new GTail (inChannel: b.in(),
28							 outChannel: c.out())
29]
30	 new PAR (pairsList).run()
31	 }
32	}

Listing 3-13 The GPairs Process Definition

The definition of the second version of the Fibonnaci process is the same as that given in Listing 3-10
with lines 28–29 replaced with the invocation of the constructor for GPairs instead of GStatePairs.
The execution of the second version is the same as that shown in Listing 3-11 with line 12 creating an
instance of the second version of the Fibonnaci process rather than the first. The output is identical
from both systems.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

54

Process Networks: Build It Like Lego

3.7.3	 Lessons Learned

We should always try to reuse existing processes whenever possible and that often the best way of solving
a problem is to define another process rather than changing or extending an existing one. In other words,
if we try to keep each process as simple as possible and to compose systems from lots of small, easily
understood processes it will be easier to reason about the behaviour of the complete network.

3.8	 Generating Squares of Numbers

In this example, we will reuse the processes we have created so far to create a sequence of squares of
numbers. The process network to achieve this is shown in Figure 3-10 and the corresponding Listing 3-14
gives the process definition. The process simply writes to its outChannel the squares of the numbers
starting with 1 upwards. It can be tested by connecting the outChannel to a GPrint process.

outChannel
GNumbers

I2P
GIntegrate

N2I
GPairs

Figure 3-10 The GSquares Process Network

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

Using Concurrency and
Parallelism Effectively – I

55

Process Networks: Build It Like Lego

By inspection it can be seen that the GSquares process, Listing 3-14, does implement the network given
in Figure 3-10. However, what is not obvious is how this result is achieved. To try to understand this
we need to print the output from each stage of the squares process. For this we require a process that
prints a number of parallel inputs.

10	class GSquares implements CSProcess {
11	
12	 def ChannelOutput outChannel
13	
14	 void run () {
15
16	 def N2I = Channel.one2one()
17	 def I2P = Channel.one2one()
18
19	 def testList = [new GNumbers (outChannel: N2I.out()),
20					 new GIntegrate (inChannel: N2I.in(),
21								 outChannel: I2P.out()),
22					 new GPairs (inChannel: I2P.in(),
23							 outChannel: outChannel),
24]
25	 new PAR (testList).run()
26	 }
27	}

Listing 3-14 GSquares Process Definition

3.9	 Printing in Parallel

There are many occasions in which we wish to print output from a set of parallel processes so that the
output correlates the state of each process at a consistent point in their execution. The GParPrint
process achieves this by reading a number of inputs in parallel and then printing out each in a tabular
manner one set of inputs to a line of text. Its coding is shown in Listing 3-15.

10	class GParPrint implements CSProcess {
11	
12	 def ChannelInputList inChannels
13	 def List<String> headings
14	 def long delay = 200
15	
16	 void run() {
17	 def inSize = inChannels.size()
18	 def readerList = []
19	 (0 ..< inSize).each { i ->
20	 readerList [i] = new ProcessRead (inChannels[i])
21	 }
22	

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

56

Process Networks: Build It Like Lego

23	 def parRead = new PAR (readerList)
24
25	 if (headings == null) {
26	 println "No headings provided"
27	 }
28	 else {
29	 headings.each { print "\t$it" }
30	 println ()
31	 }
32
33	 def timer = new CSTimer()
34	 while (true) {
35	 parRead.run()
36	 readerList.each { pr -> print "\t" + pr.value.toString() }
37	 println ()
38	 if (delay > 0) timer.sleep (delay)
39	 }
40	 }
41	}

Listing 3-15 The GParPrint Process Defintion

The property inChannels {12} is of type ChannelInputList, which comprises a list of input channel
ends. A ChannelInputList is provided as one of the Groovy helper classes in the package org.jcsp.
groovy. It makes for easier processing of collections of channels. There is a similar object for output
channel ends called ChannelOutputList. The property headings {13} is a List of the same size as
inChannels, though this is not checked, of the title to be placed at the top of each column of printed
numbers. The property delay {14} is used to introduce a time delay between each line of printed output
to make it easier to read as the output appears. The delay has a default value of 200 milliseconds and
is of type long because the system clock returns times in that format. The default value will be used if
the property is not assigned a new value when the process is constructed.

The number of inChannels in the ChannelInputList is obtained by applying the size() {17}
method. The variable readerList is defined {18} as an empty list and will be used to build the list of
ProcessRead processes that will be used to read from each of the inChannels in parallel. The closure
{19–21} iterates over each element in the range 0 to inSize-1 and constructs a ProcessRead process
accessing the i’th element of inChannels and allocating the instance to the corresponding element of
readerList {18}. A parallel is then constructed, parRead, using PAR, from readerList {23}. The
collection of processes is not executed at this time.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

57

Process Networks: Build It Like Lego

The heading for each column of output is now created {25–31}. If the value of headings is null {25}
then a message indicating that no headings was provided is output {26}. Otherwise a heading is written,
tab separated (\t) using the elements of the List headings by a closure that iterates {29} over the
elements of headings, using the each iterator method. The name it refers to the value returned by
the iterator. It is assumed but not checked that the number of elements in headings is the same as that
in inChannels.

A timer is now defined {33} of type CSTimer (see Chapter 9) that will be used to create the delay between
each line of output. The main loop of the process can now commence {34–39}. The first requirement is
to read the input values in parallel by executing parRead {35}. Once all the values have been read on all
the input channels, in any order, then we can print the values to the console window. This is achieved by
the use of a closure that iterates over each of the elements in readerList {36}. It is assumed that any
object printed by this process will have the method toString() defined. The variable pr is assigned,
in turn, to each list element from which we extract the value field that can then be printed. If the value
of delay is greater than zero then the sleep method is called on timer, which causes this process to
stop execution, idle, for at least delay milliseconds {38}.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

Using Concurrency and
Parallelism Effectively – I

58

Process Networks: Build It Like Lego

We can now use this process to print out all the intermediate values in the process network shown in
Figure 3-10. This is simply achieved by inserting GPCopy processes into each connecting channel and
sending one output to the next process and the other into the GParPrint process as shown in Figure
3-11. Arrays of channels are used to make naming easier as shown in Listing 3-16. The channels connect
form links between the processes as a long chain or pipeline. The channels outChans provide the
connection between the intermediate GPCopy processes and the final process to the GParPrint process.

The output from GNumbers is sent via connect[0] to the first instance of GPCopy which outputs
the value in parallel to connect[1] and outChans[0]. Channel connect[1] then forms the input
to GIntegrate, the output from which is communicated on connect[2] to the second instance of
GPCopy. Channel connect[3] then sends the data stream to an instance of GPairs, the output of which
is sent via connect[4] to an instance of GPrefix, which then finally sends the stream to outChans[2].
The GPrefix process has been inserted so that the tabular output is formatted correctly with a first line of
zeros. Recall that GPairs consumes the first pair of numbers and only outputs a single number; hence
we need to insert another number, 0, to form the tabular output correctly.

Figure 3-11 The Squares Network with Additional Printing

The arrays of channels are defined using a channel array constructor as shown in {10–11}, Listing 3-16.
The lists of inputs to GParPrint are created by means of the constructor for ChannelInputList,
which takes a parameter of an array of channels and returns a list of channel input ends {13}. The list of
Strings that make the titles of the columns is then defined {15}. The list of processes as shown in
Figure 3-11 is then created connecting all the processes together {17–33}. Finally, the list of processes is
invoked {35} and produces the output shown in Output 3-4.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

59

Process Networks: Build It Like Lego

10	def connect = Channel.one2oneArray(5)
11	def outChans = Channel.one2oneArray(3)
12
13	def printList = new ChannelInputList (outChans)
14
15	def titles = ["n", "int", "sqr"]
16
17	def testList = [new GNumbers (outChannel: connect[0].out()),
18				 new GPCopy (inChannel: connect[0].in(),
19						 outChannel0: connect[1].out(),
20						 outChannel1: outChans[0].out()),
21				 new GIntegrate (inChannel: connect[1].in(),
22							 outChannel: connect[2].out()),
23				 new GPCopy (inChannel: connect[2].in(),
24							 outChannel0: connect[3].out(),
25							 outChannel1: outChans[1].out()),
26				 new GPairs (inChannel: connect[3].in(),
27							 outChannel: connect[4].out()),
28				 new GPrefix (prefixValue: 0,
29							 inChannel: connect[4].in(),
30							 outChannel: outChans[2].out()),
31				 new GParPrint (inChannels: printList,
32							 headings: titles)
33]
34
35	new PAR (testList).run()

Listing 3-16 Script to Invoke the Process Network Shown in Figure 3-11

	 n	 int	 sqr
	 0	 0	 0
	 1	 1	 1
	 2	 3	 4
	 3	 6	 9
	 4	 10	 16
	 5	 15	 25
	 6	 21	 36
	 7	 28	 49
	 8	 36	 64
	 9	 45	 81
	 10	 55	 100
	 11	 66	 121
	 12	 78	 144
	 13	 91	 169
	 14	 105	 196
	 15	 120	 225
	 16	 136	 256

Output 3-4 Table of Numbers Showing Intermediate Stages in the Calculation of Squares

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

60

Process Networks: Build It Like Lego

Consideration of the output shows that the numbers do appear in sequence in the column headed “n”.
The column headed “int” does contain the running sum or integration of the numbers. If we ignore
the zero appearing in the first row of the column of squares headed “sqr”, which was generated by the
GPrefix process, then we see that there is indeed a list of the squares of the numbers in the first column.

3.10	 Summary

We are now able to see why we can assert that this style of parallel processing has a compositional
semantics. We know that each process is correct in its own right. By using them together, in a composition,
we can go from a statement of what is required; generate a 0, generate a 1, then add the sequence up in
pairs to a network that directly implements the requirement. We have also reused previously defined
processes. This reuse and compositional capability means the system designer simply has to understand
the operation of each of the processes in terms of the use of a process’ input and output channels, so they
can be correctly connected to each other. The designer does not have to refer to other object definitions to
understand the behaviour of a process. It is for this reason that the types of channels have been specified
for class properties even though Groovy does not specifically require this to be done. In this simple case
we have not specified the nature of the object that is communicated over the channels, as they are all of
type Integer. In more complex systems the objects to be communicated should be documented as well.

Of more importance, is we have reused a number of processes, in relatively simple networks, to create
a number of interesting results. We have also learnt that it is better to reuse existing processes wherever
possible, rather than writing new processes, even if this means that we have to write another process.
Parallel processing is not just a means of executing systems over a number of processors it also allows
us to design systems more easily by composing existing processes into larger systems.

3.11	 Exercises

Exercise 3-1

Write a process that undoes the effect of GIntegrate. This can be achieved in two ways, first,
by writing a Minus process that subtracts pairs of numbers read in parallel similar to GPlus
or by implementing a Negator process and inserting it before a GPlus process. Implement
both approaches and test them. Which is the more pleasing solution? Why?

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

61

Process Networks: Build It Like Lego

Exercise 3-2

Write a sequential version of GPCopy, called GSCopy that has the same properties as GPCopy.
Make a copy of Listing 3-13 replacing GPCopy by your GSCopy and call it GSPairsA.
Create another version, called GSPairsB in which the output channels outChannel0
and outChannel1 are assigned to the other actual channel, that is a.out() is assigned to
outChannel1 and b.out() is assigned to outChannel1. Take Listing 3-14 as the basis
and replace GPairs by GSPairsA or GSPairsB and determine the effect of the change. Why
does this happen? The accompanying web site contains the basis for this exercise apart from
the body of GSCopy. Hint: read Section 3.7.2 that describes the operation of GTail.

Exercise 3-3

Why was it considered easier to build GParPrint as a new process rather than using multiple
instances of GPrint to output the table of results?

Exercise 3-4

A ChannelInputList has a read() method that inputs from each channel in the channel
list in parallel and returns a list, the same size as the ChannelInputList containing the
object that has been read from each channel in the ChannelInputList. Modify the coding
of Listing 3-15 to make use of this capability.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

How to retain your
top staff

FIND OUT NOW FOR FREE
Get your free trial

Because happy staff get more done

What your staff really want?

The top issues troubling them?

How to make staff assessments
work for you & them, painlessly?

DO YOU WANT TO KNOW:

http://s.bookboon.com/performancereviewpro

Using Concurrency and
Parallelism Effectively – I

62

Parallel Processes: Non Deterministic Input

4	� Parallel Processes: Non
Deterministic Input

The concept of the non-determinism is defined

•	 the behaviour of an alternative is described together with the ALT helper class
•	 a simple example is used, based on processes from the previous chapter
•	 the concepts of guards and guarded commands are explained
•	 processes that enable window based user input and output are used

In many systems there is a requirement to provide feedback from a downstream stage of the process to an
upstream one. The upstream process has no idea when such a piece of feedback information is going to
arrive and thus has to be able to accept it at any time. The behaviour of such a process is said to be non-
deterministic because the arrival of the information cannot be determined when the process is defined.
We know that such feedback can arrive but not when. Similarly, a process network may be subject to
external interventions that change the operation of the system. It is known that these interventions will
occur but not when.

For this purpose Alternative provides the program structuring mechanism. In its simplest form the
Alternative manages a number of input channels. On executing an Alternative the state of all the input
channels is determined.

If none of the channels are ready the Alternative waits until one is ready, reads the input and then obeys
the code body associated with that input.

If one input is ready then that channel is read and its associated code is obeyed.

If more than one channel is ready then one is chosen according to some selection criterion and the
channel is read and its associated code body obeyed. Typically, an Alternative is incorporated into a
looping structure so that the input channels can be repeatedly accessed.

As a first example we shall take the process that generates a sequence of integers, GNumbers, previously
described in Section 3.4. We shall modify it to accept an input which resets the sequence to a number
input by the user at any time chosen by the user.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

63

Parallel Processes: Non Deterministic Input

4.1	 Reset Numbers

The structure of the revised numbers process is shown in Figure 4-1.

Figure 4-1 The Reset Numbers Process Structure

This however does not indicate the changes required to the internal operation of the ResetNumbers
process, which is shown in Figure 4-2.

Figure 4-2 Internal Structure of ResetNumbers Process

Instead of using the GPrefix process of GNumbers (see Figure 3-4) we use a new process ResetPrefix.
Figure 4-2 exposes the fact that the ResetPrefix process contains two input channels over which it
can alternate. The coding of the ResetPrefix process is shown in Listing 4-1.

10	class ResetPrefix implements CSProcess {
11	
12	 def int prefixValue = 0
13	 def ChannelOutput outChannel
14	 def ChannelInput inChannel
15	 def ChannelInput resetChannel
16	
17	 void run () {
18	 def guards = [resetChannel, inChannel]
19	 def alt = new ALT (guards)
20	 outChannel.write(prefixValue)
21	 while (true) {
22	 def index = alt.priSelect()
23	 if (index == 0) { // resetChannel input
24	 def resetValue = resetChannel.read()
25	 inChannel.read()
26	 outChannel.write(resetValue)

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

64

Parallel Processes: Non Deterministic Input

27	 }
28	 else { //inChannel input
29	 outChannel.write(inChannel.read())
30	 }
31	 }
32	 }
33	}

Listing 4-1 ResetPrefix Coding

The properties of the process comprise {12–15}; the initial prefixValue from which the first sequence
will start. The channels it uses to communicate, namely, inChannel, outChannel and resetChannel.
The latter receives the value to which the sequence of integers is to be reset.

An alternative comprises a number of guards and associated guarded commands. The construction of
an alternative is assisted by the ALT helper class. In this case a guard is simply an input channel and the
guarded command is the code body that is associated with that channel input. There are two guards{18},
formed as a List; the resetChannel and inChannel. The latter is used during the normal operation
of the process network. The order in which these guards are specified is important because we wish to
give priority to the resetChannel. The alternative alt is defined {19} by means of the ALT helper
class, which takes a List of guards.

Download free eBooks at bookboon.com

Click on the ad to read more

https://inspiredbusinessmedia.co.uk/conferences/cmo-inspired-oct-2018/

Using Concurrency and
Parallelism Effectively – I

65

Parallel Processes: Non Deterministic Input

The fundamental operation of the process remains the same as GPrefix, in that the value of prefixValue
is output {20} after which the process repeatedly {21–31} inputs a value and then outputs the same value
on its outChannel. In this case the input comes from either the resetChannel or the inChannel.
The method priSelect() applied to alt {22} returns the index of the channel that was selected from
the alternative using the criterion that the channel selected has the lowest List index if more than one
guard is ready. Thus an index value of 0 implies that the resetChannel is ready to be read from and 1
implies that resetChannel was not ready and inChannel was ready. Hence we can construct a simple
if statement {23-30} to discriminate these cases for each of the guards. In more complex alternatives,
with more guards, we would use a switch statement. The first operation of any guarded command
sequence must be to read from the channel that was selected by the alternative.

The guarded command for the resetChannel reads from the channel {24} and assigns its value to
resetValue. The value currently circulating round the network needs to be read from inChannel {25}
and ignored after which resetValue can be written to the outChannel {26}. The guarded command
for input from inChannel is identical to the original version of GPrefix in that a value is read from
inChannel into inputValue {29} and then written to the outChannel {29}.

Listing 4-2 shows the coding of the ResetNumbers process, which can be seen to be a direct
implementation of Figure 4-2.

10	class ResetNumbers implements CSProcess {
11	
12	 def ChannelOutput outChannel
13	 def ChannelInput resetChannel
14	 def int initialValue = 0
15	
16	 void run() {
17	
18	 def a = Channel.one2one ()
19	 def b = Channel.one2one()
20	 def c = Channel.one2one()
21	
22	 def testList = [new ResetPrefix (prefixValue: initialValue,
23								 outChannel: a.out(),
24								 inChannel: c.in(),
25								 resetChannel: resetChannel),
26					 new GPCopy (inChannel: a.in(),
27							 outChannel0: outChannel,
28							 outChannel1: b.out()),
29					 new GSuccessor (inChannel: b.in(),
30								 outChannel: c.out())
31]
32	 new PAR (testList).run()
33	 }
34	}

Listing 4-2 Definition of The ResetNumbers Process

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

66

Parallel Processes: Non Deterministic Input

4.2	 Exercising ResetNumbers

In order to exercise ResetNumbers a process is required that can send values to its resetChannel.
This is most simply achieved by running two processes in parallel, each with their own user interface
so the interaction between the processes can be observed. The structure of this process network is
shown in Figure 4-3. The user interface is implemented using a GConsole process, see accompanying
documentation.

Figure 4-3 Exercising the ResetNumbers Process

The ResetUser process receives inputs from its GConsole user interface process through a
GConsoleStringToInteger process, which coverts an input string typed into the input area of the
user interface into an Integer. The channel RU2GC is used to output messages to the user interface’s
output area. The channel RU2GCClear is used to clear the user interface’s input area between inputs. On
receiving an input, the ResetUser process outputs this value to the ResetNumbers process using the
channel RU2RN. This value is input on the ResetNumber’s resetChannel (see Figure 4-2 and Listing
4-2), which is then communicated to the resetChannel of the resetPrefix process (see Listing 4-1
{15, 24}) contained within the ResetNumbers process.

The process ResetNumbers outputs a sequence of numbers, the content of which changes as reset
values are read, to its RN2Conv channel. The process GConsoleObjectToString process converts any
object to a String using the object’s toString() method. The String representation of the values
passes through a process called GFixedDelay which introduces a delay into the output stream sent to
the GConsole process so that it is easier to read from the user interface’s output area.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

67

Parallel Processes: Non Deterministic Input

Listing 4-3 presents the coding of the ResetUser process. An initial message is written to the user
interface {18} after which values are repeatedly {19–23} read from the GConsoleStringToInteger
process as an Integer value v {20}, after which the input area of the user interface is cleared {21}. The
value to be sent to the reset channel is then written to the channel resetValue {22}.

10	class ResetUser implements CSProcess {
11		
12	 def ChannelOutput resetValue
13	 def ChannelOutput toConsole
14	 def ChannelInput fromConverter
15	 def ChannelOutput toClearOutput
16		
17	 void run() {
18		 toConsole.write("Please input reset values\n")
19		 while (true) {
20		 def v = fromConverter.read()
21		 toClearOutput.write("\n")
22		 resetValue.write(v)
23		 }
24	 }
25	}

Listing 4-3 The ResetUser Process

Download free eBooks at bookboon.com

Click on the ad to read more

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

Using Concurrency and
Parallelism Effectively – I

68

Parallel Processes: Non Deterministic Input

Listing 4-4 shows the implementation of the process network shown in Figure 4-3.

10	def RU2RN = Channel.one2one()
11
12	def RN2Conv = Channel.one2one()
13	def Conv2FD = Channel.one2one()
14	def FD2GC = Channel.one2one()
15
16	def RNprocList = [new ResetNumbers (resetChannel: RU2RN.in(),
17					 			 initialValue: 1000,
18					 			 outChannel: RN2Conv.out()),
19			 	 new GObjectToConsoleString (inChannel: RN2Conv.in(),
20				 					 �outChannel:Conv2FD.out()),
21			 	 new GFixedDelay (delay: 200,
22				 			 inChannel: Conv2FD.in(),
23				 			 outChannel: FD2GC.out()),
24			 	 new GConsole (toConsole: FD2GC.in(),
25					 		 frameLabel: "Reset Numbers Console")
26]	
27
28	def RU2GC = Channel.one2one()
29	def GC2Conv = Channel.one2one()
30	def Conv2RU = Channel.one2one()
31	def RU2GCClear= Channel.one2one()
32
33	def RUprocList = [new ResetUser (resetValue: RU2RN.out(),
34							 toConsole: RU2GC.out(),
35							 fromConverter: Conv2RU.in(),
36							 toClearOutput: RU2GCClear.out()),
37					� new GConsoleStringToInteger (inChannel: GC2Conv.in(),
38					 		 outChannel: Conv2RU.out()),
39					 new GConsole (toConsole: RU2GC.in(),
40					 		 fromConsole: GC2Conv.out(),
41					 		 clearInputArea: RU2GCClear.in(),
42					 		 frameLabel: "Reset Value Generator")
43]
44	new PAR (RNprocList + RUprocList).run()

Listing 4-4 The Script That Exercises the ResetNumbers Process

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

69

Parallel Processes: Non Deterministic Input

Initially, the channel RU2RN is defined {10}. After which the two parts of the network are defined separately.
First, the ResetNumbers network is defined {12–26}. The channels RN2Conv, Conv2FD and FD2GC
are defined {12–14}. The list RNprocList contains instances of each of the processes shown in Figure
4-3 used to implement the ResetNumbers process and its interface components. By inspection, it can
be seen the connections shown in Figure 4-3 are implemented by the properties passed to each of the
processes in the list {16–26}. The processes GObjectToConsoleString, GFixedDelay and GConsole
are described in more detail in the accompanying documentation. The timing of the stream of output
numbers is governed by the delay property of the GFixedDelay process {21–23}.

The second part of Listing 4-4 {28–43} shows the network used to implement the RUprocList that
implement the ResetUser part of the system and its interface components. The channels RU2GC,
GC2Conv, Conv2RU and RU2GCClear implement the channels shown in Figure 4-3 {28–31}. Finally,
the two process lists RNprocList and RUprocList are concatenated using the overloaded + operator
{44} and the network is executed. Each of the parts of the network has their own GConsole process.
The frameLabel property of this process is used to write a title on each of the user interface windows
{25, 42} respectively.

When the processes are invoked it can be observed that as reset values are typed into the Reset Value
Generator console, the values in the Reset Numbers Console continue for a short time with the
original sequence and then produce a sequence starting with the recently typed reset value.

4.3	 Summary

This chapter has introduced the concept of the alternative and shown how it can be used to choose
amongst a number of input channels. In the next chapter we shall show how the guards can be extended
to include timer alarms in a more realistic example derived from machine tool control.

4.4	 Exercises

Exercise 4-1

What happens if line {25} of ResetPrefix Listing 4-1 is commented out? Why?

Explore what happens if you try to send several reset values hence, explain what happens and
provide a reason for this.

Exercise 4-2

Construct a different formulation of ResetNumbers that connects the reset channel to the
GSuccessor process instead of GPrefix. You will have to write a ResetSuccessor process.
Does it overcome the problem identified in Exercise 1? If not, why not?

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

70

�Extending the Alternative: A Scaling Device and Queues

5	� Extending the Alternative:
A Scaling Device and Queues

This chapter demonstrates further capabilities of the alternative by:

•	 setting timer alarms and using them as alternative guards
•	 showing that alternatives can be nested
•	 incorporating pre-conditions into alternatives

Many machines used in automated processes have some means of monitoring their operation, for
example, by calculating running averages of specific values and ensuring they stay within a specified
range. If they go out of range then the machine recalibrates itself. In this chapter we shall build a model
of such a device, but without having to interface to a real machine! This happens for example in medical
laboratory equipment where a running check is kept of the range of values for each test that has been
produced. Over a given period it is known that the mean value will lie within known bounds. If the
machine is out with those bounds then it enters an automatic recalibration process.

Download free eBooks at bookboon.com

Click on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

Using Concurrency and
Parallelism Effectively – I

71

�Extending the Alternative: A Scaling Device and Queues

5.1	 The Scaling Device Definition

The scaling device reads (Belapurkar, 2013) incoming integers that arrive every second. The device then
multiplies the incoming value by its current scaling factor, which it then outputs, together with the
original value. The scaling factor is doubled at a regular interval, of say, 5 seconds. In addition, there
is a controlling function that suspends the operation of the scaling device again at regular intervals, of
say, 11 seconds to simulate the testing of its operation. When it is suspended the scaling device outputs
its current scaling factor to the controller. At some time later, the controller, having computed another
scaling factor, will inject the new scaling factor into the controller, which resumes its normal mode of
operation. While the scaling device is suspended by the controller it outputs all input values unscaled.

The structure of the system, showing the channels that will be used for the communications specified
above is shown in Figure 5-1.

Figure 5-1 Structure of the Scaling Device

The processes GNumbers, GFixedDelay and GPrint are available in the package groovyPlugAndPlay.
Thus the discussion revolves around the structure of the remaining two processes.

5.1.1	 The Controller Process

The code that implements the Controller process is shown in Listing 5-1.

10	class Controller implements CSProcess {
11		
12	 def long testInterval = 11000
13	 def long computeInterval = 2000
14	 def int addition = 1
15	
16	 def ChannelInput factor
17	 def ChannelOutput suspend
18	 def ChannelOutput injector
19	

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

72

�Extending the Alternative: A Scaling Device and Queues

20	 void run() {
21	 def currentFactor = 0
22	 def timer = new CSTimer()
23	 def timeout = timer.read()
24		
25	 while (true) {
26	 timeout = timeout + testInterval
27	 timer.after (timeout)
28	 suspend.write (0)
29	 currentFactor = factor.read()
30	 currentFactor = currentFactor + addition
31	 timer.sleep(computeInterval)
32	 injector.write (currentFactor)
33	 }
34	 }
35	}

Listing 5-1 Code of the Controller Process

From Figure 5-1 we can see that Controller has three channel properties {16–18}. In addition, it has
two timeout values, one testInterval {12} determines the period between successive tests of the
scaling device, which has a default value of 11 seconds. The other, computeInterval {13} is used to
simulate the time it takes to compute the revised scaling factor, which has a default value of 2 seconds.
All times are expressed in milliseconds.

The JCSP class CSTimer provides a means of manipulating time in a consistent and coherent manner.
An instance of CSTimer, called timer is defined {22}. The timer can be read at any instant and the
current long value of the system clock in milliseconds is returned, which also justifies the type long
for the interval properties defined previously. The value of timeout is set to the current time {23}. The
device operates as a never ending loop {25–33}, which for most automated tools is reasonable.

Within the loop the timeout is incremented by the testInterval {26}, which must be some time
in the future. The after operation on timer causes the process to be suspended until the value of
the current time is after the indicated alarm time. While a process is suspended in this manner it will
consume no processing resource. Once the testInterval has elapsed, the Controller writes a signal
to the Scale process to suspend its operation {28}. The value communicated does not matter, so the
value 0 is perfectly adequate. The Controller then reads the current scaling factor from the Scale
process into currentFactor using the channel factor {29}. The value of currentFactor is then
modified {30} by the value contained in the property addition {14} (default value 1), to simulate a
change in the scaling factor. The time to undertake this recalculation is then simulated by suspending
the process for the computeInterval by calling the sleep method on the timer {31}. The sleep
method deschedules the process for the specified sleeping time.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

73

�Extending the Alternative: A Scaling Device and Queues

The process consumes no processor resource while it is sleeping. In this case the effect of after and
sleep are the same, achieved in a different manner. In some situations, the after method will be the
more appropriate because it provides relative time. The sleep method provides an absolute value. Once
the process has been rescheduled, it writes {32} the newly computed currentFactor on the injector
channel to the Scale process.

5.1.2	 The Scale Process

The structure of the Scale process is shown in Listings 5-2 and 5-3. The operation of the Scale
process can be partitioned into two distinct parts; when it is operating in the normal mode and when
it is suspended. In the normal mode it accepts inputs from the channels timedData and suspend, see
Figure 5-1. It will also respond to timer alarms indicating that the scaling factor should be doubled. In
the suspended mode it will only respond to inputs from the channels timedData and injector. To
reflect these situations a set of guards will be needed for each mode. Furthermore, the suspended set
will only be considered when the process has moved from the normal mode into the suspended mode.

10	class Scale implements CSProcess {
11		
12	 def int scaling = 2
13	 def int multiplier = 2
14	
15	 def ChannelOutput outChannel
16	 def ChannelOutput factor
17	 def ChannelInput inChannel
18	 def ChannelInput suspend
19	 def ChannelInput injector
20	
21	 void run () {
22	 def SECOND = 1000
23	 def DOUBLE_INTERVAL	= 5 * SECOND
24	 def NORMAL_SUSPEND	 = 0
25	 def NORMAL_TIMER	 = 1
26	 def NORMAL_IN	 = 2
27	 def SUSPENDED_INJECT	= 0
28	 def SUSPENDED_IN	 = 1
29	 def timer = new CSTimer()
30	 def normalAlt = new ALT ([suspend, timer, inChannel])
31	 def suspendedAlt = new ALT ([injector, inChannel])
32	 def timeout = timer.read() + DOUBLE_INTERVAL
33	 timer.setAlarm (timeout)

Listing 5-2 The Properties and Initialisation of the Scale Process

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

74

�Extending the Alternative: A Scaling Device and Queues

The channel properties are defined {15–19}, together with the initial scaling value {12} and the
multiplier that will be applied to the scaling factor {13}. The inChannel property {17} is connected to
timedData of Figure 5-1 and outChannel to scaledData {15}. Within the run() method a number
of constants are defined; DOUBLE_INTERVAL {23} specifies the number of milliseconds between the
doubling of the scaling factor. The remainder are constants {24–28} used to identify which case is to
be considered when the switch statements associated with the alternatives are processed. A timer is
defined {29}, followed by the two different alternatives {30, 31}. Both of the alternatives will be accessed
using a priSelect method and thus the ordering of the guards in the alternatives is important and
should always start with the highest priority going to the first in sequence. The alternative normalAlt
applies when the device is not in a suspended state. The highest priority guard is that associated with
the suspend channel. The next highest will result from a timer alarm and the lowest is the input of
some data on the inChannel. In the suspended state the suspendedAlt will apply and this is just
an alternation over the injector and inChannel channels because timer alarms are ignored. At {32}
the timeout for the first doubling of the scaling factor is defined by reading the timer and adding
the doubling interval. An alarm on the timer is made by calling the method setAlarm {33} with the
required time, which must be some time in the future. This means that normalAlt {30} will be enabled
on the timer alternative once the value of the timer has increased beyond timeout. A timer contained
within an alternative guard that is disabled, consumes no processor resource, until the alarm is enabled.

Download free eBooks at bookboon.com

Click on the ad to read more

TMP PRODUCTION NY026057B

PSTANKIE

gl/rv/rv/baf

ACCCTR0005

Bookboon Ad Creative

4

6 x 4

12/13/2013

Bring your talent and passion to a
global organization at the forefront of
business, technology and innovation.
Discover how great you can be.

Visit accenture.com/bookboon

©
2013 Accenture.

All rights reserved.

http://s.bookboon.com/accentureCZintl

Using Concurrency and
Parallelism Effectively – I

75

�Extending the Alternative: A Scaling Device and Queues

34	 while (true) {
35	 switch (normalAlt.priSelect()) {
36			
37	 case NORMAL_SUSPEND :
38	 suspend.read()
39	 factor.write(scaling)
40	 def suspended = true
41	 println "Suspended"
42	 while (suspended) {
43				
44		 switch (suspendedAlt.priSelect()) {
45					
46			 case SUSPENDED_INJECT:
47				 scaling = injector.read()
48				 println "Injected scaling is $scaling"
49				 suspended = false
50				 timeout = timer.read() + DOUBLE_INTERVAL
51				 timer.setAlarm (timeout)
52				 break
53					
54			 case SUSPENDED_IN:
55				 def inValue = inChannel.read()
56				 def result = new ScaledData()
57				 result.original = inValue
58				 result.scaled = inValue
59				 outChannel.write (result)
60				 break
61		 } // end-switch
62	 } //end-while
63	 break
64			
65	 case NORMAL_TIMER:
66	 timeout = timer.read() + DOUBLE_INTERVAL
67	 timer.setAlarm (timeout)
68	 scaling = scaling * multiplier
69	 println "Normal Timer: new scaling is $scaling"
70	 break
71			
72	 case NORMAL_IN:
73	 def inValue = inChannel.read()
74	 def result = new ScaledData()
75	 result.original = inValue
76	 result.scaled = inValue * scaling
77	 outChannel.write (result)
78	 break
79			

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

76

�Extending the Alternative: A Scaling Device and Queues

80	 } //end-switch
81	 } //end-while
82	 } //end-run
83	} // end Scale

Listing 5-3 The Scale Process Main Loop

The main loop of the scaling device, Listing 5-3, comprises {34–81} and is created by means of a never
ending while loop {34}. At the start of the main loop the device is presumed to be in the normal state
and thus we switch on the normalAlt {35}. If none of the guards is ready the process waits until one
becomes enabled. Each time an alternative is executed the guards are evaluated to determine which are
enabled and then a selection is made from the ready ones according to the type of select operation
undertaken. In this case a priSelect() is deemed more appropriate.

If the enabled alternative results from an input on the suspend channel then the case NORMAL_SUSPEND
will be obeyed {37}. First, the channel suspend must be read {38}, the value of which can be ignored
because this is just a signal to enter the suspended state. Recall that the Controller process wrote
a nominal value of 0 (Listing 5-1 {28}). The Scale process then writes its current scaling factor to
the factor channel {39}. The property suspended is defined and set true {40}. A message is printed
{41} and then the loop associated with the suspended state is entered {42}. In this state the process
switches on suspendedAlt {31}, which has two alternatives.

If the enabled alternative is an input on the injector channel the case SUSPENDED_INJECT is obeyed
{46}. The new value of scaling is read from the injector channel {47} and a message displaying
the new factor printed {48}. The value of suspended is now reset {49} to false, which will cause the
controlling while loop {42} to terminate. Because the injector input is also taken as an indication that
normal operation can resume, the timer alarm can be reset {50–51}.

In the suspended state, the only other alternative that can occur, results from input on the inChannel,
this causes the SUSPENED_IN case to be obeyed {54}. The channel inChannel is read into inValue {55}.
A variable result of type ScaledData is defined {56}, see Listing 5-4. The device in the suspended
state does not apply the scaling to any incoming data and so both the original and scaled values
of result are set to inValue {57–58}. The result object is then written to outChannel {59}.

The remaining cases relate to the operation of the device in the normal state. If a timer alarm occurs
the code associated with the NORMAL_TIMER case is obeyed {65}. The timer’s timeout alarm is reset
for the next doubling period {66–67}. The scaling is multiplied by multiplier, which is 2 for doubling
{68} as required by the device specification and an appropriate message printed {69}. The final case deals
with inputs from inChannel {72}. The value is read from inChannel into inValue {73} and placed
in the original property {75} of a new result object {74}. A scaled value is placed in the scaled
property of a new result object {76}, which is then written to outChannel {77}.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

77

�Extending the Alternative: A Scaling Device and Queues

5.1.3	 The ScaledData Object

The ScaledData object is used to pass a pair of values from the Scale process to the GPrint process
see Figure 5-1. Its structure is shown in Listing 6-3.

10	class ScaledData implements Serializable {
11		
12	 def int original
13	 def int scaled
14	
15	 def String toString () {
16	 def s = " " + original + "\t\t" + scaled
17	 return s
18	 }	
19	}

Listing 5-4 The ScaledData Object

The properties of the object; original and scaled are defined {12, 13} and then a toString() method
is defined {15–18} that is used when the object is printed.

Download free eBooks at bookboon.com

Click on the ad to read more

 .

http://s.bookboon.com/AlcatelLucent

Using Concurrency and
Parallelism Effectively – I

78

�Extending the Alternative: A Scaling Device and Queues

More importantly, this is the first instance of user defined objects being communicated between processes.
The first aspect to notice is there are no public data manipulation methods, other than implicit getters
and setters that are created by the Groovy environment automatically, because in the parallel environment
we encapsulate the data so that it is processed only within processes. It is not possible for one process to
access another process object’s properties to modify its state by calling public methods.

Concurrent processes pass object references over channels and thus a sending process has to guarantee
that once it has written an object to a channel it does not modify that object in any way. This is most
easily achieved by defining a new object instance for each write operation, see Listing 5-3 {56, 74}. In
some cases it may be necessary for memory management reasons to reuse an object; and to ensure
that a written object is not overwritten, a deep copy is taken. An interface JCSPCopy which contains
a single method copy() is provided in the org.jcsp.groovy package to facilitate this requirement.
The programmer has to write the code to achieve the deep copy of the object. This can then be applied
recursively to any nested objects.

If an object is to be passed between networked processes then a copy of the object is passed between the
processes and so the object must implement the interface serializable. In this case it is not necessary
to undertake the method copy because a new object instance is created every time. The object implements
the Serializable interface {10} so that were the object to be communicated over a network, then we
know that it will be correctly serialized.

5.1.4	 Exercising the Scale Device Network

Listing 5-5 gives the script that implements the process network shown in Figure 5-1.

10	def data = Channel.one2one()
11	def timedData = Channel.one2one()
12	def scaledData = Channel.one2one()
13	def oldScale = Channel.one2one()
14	def newScale = Channel.one2one()
15	def pause = Channel.one2one()
16
17	def network = [new GNumbers (outChannel: data.out()),
18			 new GFixedDelay (delay: 1000,
19					 		 inChannel: data.in(),
20					 		 outChannel: timedData.out()),
21
22			 new Scale (inChannel: timedData.in(),
23							 outChannel: scaledData.out(),
24							 factor: oldScale.out(),
25							 suspend: pause.in(),
26							 injector: newScale.in(),
27							 multiplier: 2,
28							 scaling: 2),
29							

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

79

�Extending the Alternative: A Scaling Device and Queues

30			 new Controller (testInterval: 11000,
31					 		 computeInterval: 3000,
32					 		 addition: -1,
33							 factor: oldScale.in(),
34							 suspend: pause.out(),
35							 injector: newScale.out()),
36
37			 new GPrint (inChannel: scaledData.in(),
38					 		 heading: "Original Scaled",
39					 		 delay: 0)
40]
41
42	new PAR (network).run()

Listing 5-5 Script to Exercise the Scale Device

All the output appears in the Eclipse console window with the messages from the Scale process
intermingled with those from the output of the original and scaled data which appear in GPrint. The
delay property {39} of GPrint is set to 0 so that any output is produced immediately. There is sufficient
delay, 1 second, within the system caused by the GFixedDelay process {18} to observe the process
interactions. In this execution of the script some of the default values in the Controller process have
been replaced by other values {30-35}.

5.2	 Managing A Circular Queue Using Alternative Pre-conditions

A queue is a common data structure used in many applications. A number of cases have to be considered
as follows.

•	 data can only be put into the queue if there is space in the queue
•	 data can only be taken from the queue if the queue is not empty

In a sequential implementation these states have to be tested before the queue can be manipulated and
dealing with the situations where either a put or get to or from the queue cannot be undertaken can
be problematic. A parallel implementation is much easier to design and specify because we can use an
alternative with pre-conditions to ensure that operations only take place when it is safe. Figure 5-2 shows
the basic structure that will be used to explain the operation of a queue.

The QProducer process puts a sequence of integers into the Queue process, where they are stored in a
wrap-around List implementing a circular queue. The QConsumer process attempts to get data from
the Queue, which, if there is data available, is received by the process.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

80

�Extending the Alternative: A Scaling Device and Queues

QProducer Queue QConsumer
put

get

receive

Figure 5-2 The Queue Process Network

5.2.1	 QProducer and QConsumer Processes

The source of the QProducer process is given in Listing 5-6.

10	class QProducer implements CSProcess {
11		
12	 def ChannelOutput put
13	 def int iterations = 100
14	 def delay = 0
15	
16	 void run () {
17	 def timer = new CSTimer()
18	 println "QProducer has started"
19		
20	 for (i in 1 .. iterations) {

Download free eBooks at bookboon.com

Click on the ad to read more

��������	
�����
������
��������
���������
�����������
��������
�����
��
���������������������������

������
������

������������������������������ �����	�����
	�
�����	������!���"�
	������������

�
	�

�����#$%����&'())%�*+������
	�
���,���������
�-

.�
��������������������
������������
��

��������	
��
����

��	��������	
��
����

���������
���

����������

����������
�����
��

���������

 The Wake
the only emission we want to leave behind

http://www.mandieselturbo.com

Using Concurrency and
Parallelism Effectively – I

81

�Extending the Alternative: A Scaling Device and Queues

21	 put.write(i)
22	 timer.sleep (delay)
23	 }
24	 put.write(null)
25	 }
26	}

Listing 5-6 The QProducer Process script

The timer {17} is used to create a delay {14} between each write {21} to the put channel. A sequence
of integers from 1 up to iterations {13} is output on the put channel. It should be noted that the
write on the put channel may be delayed {21} if the queue has no available space. Once all the values
have been written to the put channel a null value is also written {24} to indicate that processing has
finished. This will be used to terminate the subsequent Queue and QConsumer processes.

The QConsumer process is specified in Listing 5-7. The use of the timer and associated delay {17, 14}
is the same as in QProducer. A Boolean running is defined {19} and is used to control the main loop of
the process. The main loop of the process {21–28} initially writes a signal value of 1 on the get channel.
The writing of this signal {22} may be delayed if the queue contains no available data. A value is read from
the receive channel {23} into the object v. This read operation will take place immediately. The value
that has been read is printed {24} after which the process is delayed {25}. If the value read is null {26}
then running is set to false and the process will terminate at the next iteration of the while loop {21}.

10	class QConsumer implements CSProcess {
11		
12	 def ChannelOutput get
13	 def ChannelInput receive
14	 def long delay = 0
15	
16	 void run () {
17	 def timer = new CSTimer()
18	 println "QConsumer has started"
19	 def running = true
20		
21	 while (running) {
22	 get.write(1)
23	 def v = receive.read()
24	 println "QConsumer has read $v"
25	 timer.sleep (delay)
26	 if (v == null) running = false
27	 }
28	 }
29	}

Listing 5-7 The QConsumer Process

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

82

�Extending the Alternative: A Scaling Device and Queues

5.2.2	 The Queue Process

The source for the Queue process is shown in Listing 5-8.

The channel properties are defined {12–14} corresponding to Figure 5-2 and the size of the queue is
specified in the property elements and defaults to 5 {15}. The alternative associated with the Queue
process is defined as qAlt, which has guards comprising the put and get channels {18}. A Boolean
array, preCon, which has the same number of elements as there are guards in qAlt, is defined {19}.
Two constants PUT and GET are defined {20–21} that are used to index the preCon array and also to
identify the cases in the switch statement associated with identifying the selected guard in the alternative.

The array preCon is used to record whether or not a new element can be put into the queue storage and
similarly whether an element is available. Initially, therefore preCon[PUT] is set true {22} because there
is bound to be space for a new element in the queue data structure because it must be empty. Similarly,
preCon[GET] is set false {23} because there is no data available in the queue. The List data {24}
provides the storage for the circular queue structure. The variables count, front and rear {25–27}
record the state of the queue storage in terms of the number of data values in the queue, the location
into which data can be added and removed from the queue respectively. The process is implemented as
a loop {30-48}, which is controlled by a Boolean running {28} that is set false when a null value
is communicated to the QConsumer process {41}.

The variable index {31} indicates the alternative guard that has been selected. In order to be selected a
guard must have its associated preCon element set to true and its channel must be enabled to read an
input. Note how the pre-condition array is passed as a parameter to the alternative priSelect method
{31}. A choice is then made depending upon which guard has been selected. Priority is given to inputs
from QProducer rather than QConsumer {18}. It could have been replaced by a call to Select()
which would have allocated no relative priority between get and put operations.

In the case of PUT the value read from put is placed in data[front] {34} and then the values of count
and front are updated appropriately {35–36}. When GET is selected, the signal communication on the
get channel is read and ignored {39}. The value in data[rear] is then written to channel receive
{40}. The value in data[rear] is then tested to determine whether the Queue process should terminate
{41}. The operations have been ordered so that the terminating null value is sent to the QConsumer
process before the Queue process terminates. After which, the values of count and rear are updated
{42–43}. At the end of each loop of the queue process, the values stored in the elements of the preCon
array are updated based upon the relative values of count and elements {46, 47}.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

83

�Extending the Alternative: A Scaling Device and Queues

10	class Queue implements CSProcess {
11		
12	 def ChannelInput put
13	 def ChannelInput get
14	 def ChannelOutput receive
15	 def int elements = 5
16	
17	 void run() {
18	 def qAlt = new ALT ([put, get])
19	 def preCon = new boolean[2]
20	 def PUT = 0
21	 def GET = 1
22	 preCon[PUT] = true
23	 preCon[GET] = false
24	 def data = []
25	 def counter = 0
26	 def front = 0
27	 def rear = 0
28	 def running = true
29		
30	 while (running) {
31	 def index = qAlt.priSelect(preCon)
32	 switch (index) {
33	 case PUT:
34	 data[front] = put.read()
35	 front = (front + 1) % elements
36	 counter = counter + 1
37	 break
38	 case GET:
39	 get.read()
40	 receive.write(data[rear])
41	 if (data[rear] == null) running = false
42	 rear = (rear + 1) % elements
43	 counter = counter – 1
44	 break
45	 }
46	 preCon[PUT] = (counter < elements)
47	 preCon[GET] = (counter > 0)
48	 }
49	 println "Q finished"
50	 }
51	}

Listing 5-8 The Queue Process Definition

The benefit of this alternative based formulation is that the pre-condition array modifies the behaviour
of its underlying mechanism. Thus if the queue is full then preCon[PUT] is false and even if there
is a communication on the put channel it will not be permitted. Similarly, if preCon[GET] is false
then no signal on the get channel can be read, even if QConsumer has tried to write to it, meaning
that a get cannot be executed on an empty queue..

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

84

�Extending the Alternative: A Scaling Device and Queues

5.3	 Summary

This chapter has explored the alternative mechanism together with its associated pre-condition Boolean
array. It has shown by means of an example based upon a realistic system and one found in many program
development applications that alternative has the ability to capture many aspects of real world systems
and to provide a flexible means of modelling such systems.

5.4	 Exercises

Exercise 51

The accompanying projects contain a script, called RunQueue, in package ChapterExercises/
src/c5 to run the queue network. The delays associated with QProducer and QConsumer
can be modified. By varying the delay times demonstrate that the system works in the manner
expected. Correct operation can be determined by the QConsumer process outputting the
messages "QConsumer has read 1" to "QConsumer has read 50" in sequence.
What do you conclude from these experiments?

Exercise 52

Reformulate the scaling device so that it uses pre-conditions rather than nested alternatives.
Which is the more elegant formulation? Why?

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/gee_change

Using Concurrency and
Parallelism Effectively – I

85

Testing Parallel Systems: First Steps

6	� Testing Parallel Systems:
First Steps

Testing of systems is crucial and this chapter shows how GroovyTestCase can be used to test processes by

•	 identifying the process that is to be tested which must terminate
•	 creating support processes that terminate
•	 constructing the assertions that can be tested, using properties from the support processes

JUnit (JUnit, 2013) testing has become a widely accepted way of testing Java classes and there is a great
deal of software support for this approach. In previous chapters, examples and exercises were introduced
whereby the user had to ascertain for themself that the systems worked in the expected manner. This was
achieved by looking at displayed output. This may be a satisfactory approach for small example systems
but is not appropriate for systems that are to be used in an everyday context.

In this chapter the use of JUnit testing is introduced by using examples taken from earlier chapters.
This will demonstrate that it is possible to use this approach and give a general architecture for testing
parallel systems. The key to JUnit testing is that we test one or more assertions concerning the underlying
implementation. In the parallel situation we have to identify a source of inputs that can be compared to
the subsequent outputs for the assertion testing.

6.1	 Testing Hello World

The testing of the ProduceHW and ConsumeHello processes (see Chapter 2) demonstrate that from
the outset testing has to be considered at the time processes are designed and cannot be retrospectively
added. To this end, properties are required that can be accessed once a process has terminated. These
properties can then become components in any assertion. In this very simple case the ProduceHW
process needs no alteration.

6.1.1	 Revised ConsumeHelloForTest Process

The revised version of ConsumeHelloForTest, see Listing 6-1 requires the addition of a property
message {13}, which is assigned {18} the values that have been read in from inChannel {16, 17}.

10	class ConsumeHelloForTest implements CSProcess {
11		
12	 def ChannelInput inChannel
13	 def message
14	

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

86

Testing Parallel Systems: First Steps

15	 void run() {
16	 def first = inChannel.read()
17	 def second = inChannel.read()
18	 message = "${first} ${second}!!!"
19	 println message
20	 }
21	}

Listing 6-1 The Revised Version of ConsumeHW

6.1.2	 The HelloWorldTest Script

Listing 6-2 gives the script used to test ProduceHW and ConsumerHW.

The ProduceHW process from Chapter 2 is imported {10} into the testcase and thus provides a means of
testing that process. The remainder of the coding is that required to build an instance of GroovyTestCase.
This is the Groovy way of building JUnit tests. This requires the definition of a void method {14}, the
name of which is prefixed with the word test that contains the script necessary to run the processes
being tested. The primary requirement is that each of the processes must terminate. In many systems
this is not feasible as the processes run in a loop that does not terminate. In Chapter 17 we shall see
how to test such non-terminating process networks.

Download free eBooks at bookboon.com

Click on the ad to read more

Corporate eLibrary
See our Business Solutions for employee learning

Click here

Management

CoachingMotivationGoal setting

Problem solving

Time Management

Project Management

http://s.bookboon.com/bbg-elibrary-2015

Using Concurrency and
Parallelism Effectively – I

87

Testing Parallel Systems: First Steps

10	import c02.ProduceHW
11
12	class HelloWorldTest extends GroovyTestCase {
13			
14		 void testMessage() {
15			 def connect = Channel.one2one()
16			 def producer = new ProduceHW (outChannel: connect.out()
)
17			� def consumer = new ConsumeHelloForTest (inChannel:

connect.in())
18			
19			 def processList = [producer, consumer]
20			 new PAR (processList).run() 		
21			 def expected = "Hello World!!!"			
22			 def actual = consumer.message		
23			 assertTrue(expected == actual)
24		 }
25	}

Listing 6-2 The HelloWorldTest Script

The crucial elements are that we define each process as an instance {16, 17}. This is required so that
we can access the message property of ConsumeHelloForTest when the system terminates. The
processes are then run in parallel {19, 20}. The property expected is set to the String that should be
output {21}. The actual value is obtained from the message property of ConsumeHelloForTest
{22}. These are then compared {23} using the assertTrue method which produces an indication of
whether the test passed.

6.2	 Testing the Queue Process

The Queue Process discussed in Chapter 5.2 can be tested by sending a known number of test values
into the Queue from the QProducer process and then ensuring that the same values are received
by the QConsumer process. Listing 6-3 shows the modified QProducerFortest process. The only
modifications required occur on {15}, where a new List property is added called sequence, which holds
the sequence of produced values and on {23} where each produced value is appended (<<) to sequence.
The printing of the produced values also has been removed. The sequence property is required to
ensure we have a value that can be tested once the network of processes being tested has terminated.

10	class QProducerForTest implements CSProcess {
11		
12	 def ChannelOutput put
13	 def int iterations = 100
14	 def delay = 0
15	 def sequence = []
16	

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

88

Testing Parallel Systems: First Steps

17	 void run () {
18	 def timer = new CSTimer()
19		
20	 for (i in 1 .. iterations) {
21	 put.write(i)
22	 timer.sleep (delay)
23	 sequence = sequence << i
24	 }
25	 put.write(null)
26	 }
27	}

Listing 6-3 The Testable Version of QProducer Called QProducerForTest

Listing 6-4 shows the modified QConsumerForTest process, which as in the QProducerFortest
defines a property that can be externally accessed, called outSequence {15}. The processing of
the terminating null value has been modified {25} so that all the received values are appended to
outSequence unless it is the null value, in which case the value of running is set false, causing
the process to terminate.

10	class QConsumerForTest implements CSProcess {
11		
12	 def ChannelOutput get
13	 def ChannelInput receive
14	 def long delay = 0
15	 def outSequence = []
16	
17	 void run () {
18	 def timer = new CSTimer()
19	 def running = true
20		
21	 while (running) {
22	 get.write(1)
23	 def v = receive.read()
24	 timer.sleep (delay)
25	 if (v != null) outSequence = outSequence << v
26	 else running = false
27	 }
28	 }
29	}

Listing 6-4 The Modified QConsumerForTest Process

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

89

Testing Parallel Systems: First Steps

6.3	 The Queue Test Script

Listing 6-5 gives the GroovyTestcase class that causes Queue process testing. It takes the same basic
structure as that used in the test of the Hello World system. It is important to note that the aim is to test the
Queue process given in Chapter 5 and not the QProducer and QConsumer processes. The Queue process
is imported {10}. The channels required to implement the network defined in Figure 5-2 are specified
{14–16}. Instances of each of the processes are then defined {18–22}, so that we can subsequently test
the values of the properties sequence and outSequence of QProducer and QConsumer respectively.
The list of processes is then defined and executed in a PAR {23–24}, which must terminate if we are to
be able to test the process properties in an assertion {28}.

Download free eBooks at bookboon.com

Click on the ad to read more

http://thecvagency.co.uk

Using Concurrency and
Parallelism Effectively – I

90

Testing Parallel Systems: First Steps

10	import c05.Queue
11	class QueueTest extends GroovyTestCase {
12	
13	 void testQueue() {
14	 def QP2Q = Channel.one2one()
15	 def Q2QC = Channel.one2one()
16	 def QC2Q = Channel.one2one()
17					
18	 �def qProducer = new QProducerForTest (put: QP2Q.out(), iterations: 50)
19	 def queue = new Queue (put: QP2Q.in(), get: QC2Q.in(),
20	 receive: Q2QC.out(), elements: 5)
21	 def qConsumer = new QConsumerForTest (get: QC2Q.out(),
22	 receive: Q2QC.in())
23	 def testList = [qProducer, queue, qConsumer]
24	 new PAR (testList).run()
25					
26	 def expected = qProducer.sequence
27	 def actual = qConsumer.outSequence
28	 assertTrue(expected == actual)		
29	 }
30	}

Listing 6-5 The QueueTest Script

The values of the expected and actual returned values are obtained from their processes and tested
{26–28}. In more complex examples the construction of assertions is likely to be more elaborate depending
upon the nature of the data being input and generated.

6.4	 Summary

In this chapter we have introduced the concept of testing parallel systems, using the JUnit testing
framework within a Groovy environment. The key requirement is that the network of processes must
terminate. Further, the processes used to test the operation of the process network under test must
contain properties that can be populated with data that can then be tested in one or more assertions. In
Chapter 17 we reflect further on the testing of parallel systems and show how we can test systems that
are designed not to terminate.

6.5	 Exercises

Exercise 6-1

Construct a Test Case for the Three-To-Eight system constructed in the exercise for Chapter 2.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

91

Deadlock: An Introduction

7	 Deadlock: An Introduction
Deadlock and livelock are defined and then demonstrated by means of:

•	 firstly, a trivial example, and
•	 secondly by means of a more complex but typical situation

Deadlock occurs whenever a network of processes gets into a state where none of the processes is able
to continue execution. A similar and related problem is that of livelock, which occurs when part of a
process network operates in such a manner as to exclude some of the processes from execution, while
others appear to continue execution. A first simple example, based upon the producer – consumer pattern
already discussed demonstrates the ease with which a deadlocked system can be created.

7.1	 Deadlocking Producer and Consumer

Listing 7-1 gives the coding for a process BadP. The process has two channels {12, 13}. Its run method
initially prints a starting message {16} after which it enters a loop {18}. A message indicating the process
is about to write to outChannel {19} is printed and then the output takes place {20}. The same actions
are then undertaken for a read method on inChannel {21, 22}. A message indicating that the end of
the loop has been reached is printed {23} and the process loops back to {18}.

10	class BadP implements CSProcess {
11		
12	 def ChannelInput inChannel
13	 def ChannelOutput outChannel
14	
15	 def void run() {
16	 println "BadP: Starting"
17		
18	 while (true) {
19	 println "BadP: outputting"
20	 outChannel.write(1)
21	 println "BadP: inputting"
22	 def i = inChannel.read()
23	 println "BadP: looping"
24	 }
25	 }
26	}

Listing 7-1 BadP Process Coding

Listing 7-2 gives the coding for an equivalent matching process BadC, which has an identical structure
to BadP except that the messages produced are different.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

92

Deadlock: An Introduction

10	class BadC implements CSProcess {
11		
12	 def ChannelInput inChannel
13	 def ChannelOutput outChannel
14	
15	 void run() {
16	 println "BadC: Starting"
17		
18	 while (true) {
19	 println "BadC: outputting"
20	 outChannel.write(1)
21	 println "BadC: inputting"
22	 def i = inChannel.read()
23	 println "BadC: looping"
24	 }
25	 }
26	}

Listing 7-2 BadC Process Coding

When these processes are executed the console displays the messages shown in Output 7-1.

BadC: Starting

BadC: outputting

BadP: Starting

BadP: outputting

Output 7-1 Messages Resulting from the Parallel Execution of BadP and BadC

It can be seen that both processes start and achieve an output at lines {19} respectively but cannot make
further progress. The reason for this can be seen by inspection because both processes are attempting
to output to each other at the same time and neither can undertake the corresponding input operation.
It is shown diagrammatically in Figure 7-1, in which increasing time is represented down the page.

Figure 7-1 Diagrammatic Representation of Deadlocked Process Interactions

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

93

Deadlock: An Introduction

In this simple situation the outcome is obvious and easy to see, both processes are trying to output at
the same time and thus neither can progress any further because neither can undertake the matching
channel read operation. In more complex process networks this is much more difficult to see. Tools are
available such as FDR (Formal Systems Europe Ltd, 2013) and Spin (Holzmann G.J., 2013) which can
analyse networks of processes for deadlock and livelock but these are limited in the scale of network
that can be processed. A different solution is available which can avoid deadlock by engineering design
but first we shall investigate a more complex example.

7.2	 Multiple Network Servers

A common feature of modern networks is the ability to access many servers from the same workstation.
In the background, the network administrator may implement some form of mirror system so that the
servers are backed up on each other. When such systems were installed in early network designs there
often occurred periods when the network ran very slowly or actually came to halt. The only recourse
was to reboot the servers. The problem was this situation was unpredictable.

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/elearningforkids

Using Concurrency and
Parallelism Effectively – I

94

Deadlock: An Introduction

In this section we shall build a pair of servers that operate in a naïve manner and exhibit this behaviour
simply by the order in which data is accessed. The behaviour only requires two clients, which are able
to access data from each of the servers but which, crucially access the data through only one server. The
system structure is shown in Figure 7-2. Each server has one client and if the client needs to access data
that is not available on its own server an automatic access from its server is made to the other server.
In order to improve performance of the servers we will allow their clients to initiate another request
for data if the previous request has been passed to the other server. Thus requests are interleaved. The
connections are shown as double ended arrows to indicate there is a request phase and the subsequent
return of a data value corresponding to the request.

Figure 7-2 Cross-Coupled Clients and Servers System

The servers are implemented as Maps comprising 10 elements in each server. The keys for the map entries
are distinct. Each client has a list of map entries it wishes to access by key value.

7.2.1	 The Client Process

The coding for a Client process is shown in Listing 7-3. The Client process has two channel properties
requestChannel {13}, which is used to send requests to its Server and receiveChannel {12} used
to return results from the Server, to the Client. The property selectList {15} is a List initialised
to the set of entries in the Server’s Map that are to be accessed.

10	class Client implements CSProcess{
11		
12	 def ChannelInput receiveChannel
13	 def ChannelOutput requestChannel
14	 def clientNumber
15	 def selectList = []
16	
17	 void run () {

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

95

Deadlock: An Introduction

18	 def iterations = selectList.size
19	 �println "Client $clientNumber has $iterations values in $selectList"
20		
21	 for (i in 0 ..< iterations) {
22	 def key = selectList[i]
23	 requestChannel.write(key)
24	 def v = receiveChannel.read()
25	 }
26
27	 println "Client $clientNumber has finished"
28	 }
29	}

Listing 7-3 Client Process Structure

The number of elements in the selectList is found {18} and this is used as the range of a for loop
{21–25}. The client process identity and the list of keys it is going to access are then printed out. Each
key is found in sequence {22} and this is written to the requestChannel {23}. The Client then reads
the response from the Server {24}. At this point the process could print out the returned value but we
choose not to. It should be noted that the Client may have to wait for the response from its Server
{24}, if its Server has to access the other Server because it does not contain the required key itself.
A message is printed when the Client finishes {21}.

7.2.2	 The Server Process

The coding for the Server process is shown in Listing 7-4. The Server process has three pairs of channels
{12–17}, as can be observed from Figure 7-2. The channels clientRequest and clientSend provide
the connections to the Client process. The channels thisServerRequest and thisServerReceive
are used by this Server to make a request to the other Server and then receive a response back. The
channels otherServerRequest and otherServerReceive are used by the other server to make a
request to this server. Recall that we are only considering a situation in which there are only two servers.
The property dataMap {18} holds a map of the keys and values stored in the Server.

10	class Server implements CSProcess{
11		
12	 def ChannelInput clientRequest
13	 def ChannelOutput clientSend
14	 def ChannelOutput thisServerRequest
15	 def ChannelInput thisServerReceive
16	 def ChannelInput otherServerRequest
17	 def ChannelOutput otherServerSend
18	 def dataMap = [:]
19	
20	 void run () {
21	 def CLIENT = 0

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

96

Deadlock: An Introduction

22	 def OTHER_REQUEST = 1
23	 def THIS_RECEIVE = 2
24	 def serverAlt = new ALT ([clientRequest,
25						 otherServerRequest,
26						 thisServerReceive])
27	 while (true) {
28	 def index = serverAlt.select()
29		
30	 switch (index) {		
31	 case CLIENT :
32	 def key = clientRequest.read()
33	 if (dataMap.containsKey(key))
34		 clientSend.write(dataMap[key])
35	 else
36		 thisServerRequest.write(key)
37	 //end if
38	 break
39	 case OTHER_REQUEST :
40	 def key = otherServerRequest.read()
41	 if (dataMap.containsKey(key))
42		 otherServerSend.write(dataMap[key])
43	 else
44		 otherServerSend.write(-1)
45	 //end if

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/academictransfer

Using Concurrency and
Parallelism Effectively – I

97

Deadlock: An Introduction

46	 break
47	 case THIS_RECEIVE :
48	 clientSend.write(thisServerReceive.read())
49	 break
50	 } // end switch
51	 } //end while
52	 } //end run
53	}

Listing 7-4 The Server Process Coding

The Server can receive inputs from three different sources; its Client, a request from the other Server
and a result from the other Server in response to a request made by this Server. This is reflected in
the creation of three case constants {21-23} and an alternative over the three input channels {24–27}. The
Server then loops over which ever alternative guard is enabled and Selected followed by executing
the related code body in a switch statement {28, 30}.

In the case of a CLIENT request, the requested key value is read {32} and then a test is made to see if that
key is present in the Server {33}. If the key is present then value in the dataMap entry corresponding
to the key value is sent back to the Client {34}; otherwise the request is passed to the other server {36}.

In the case of an OTHER_REQUEST from the other server {39–46}, the CLIENT code body described
above is repeated except that a -1 value is returned {44} if a map entry with the requested key value is
not found (This should not happen!).

Finally, in the case THIS_RECEIVE, which is a response to a request made by this server on the other
server {47-49}, the received value is returned to the Client {48}.

7.2.3	 Running the Network of Clients and Servers

The script used to test the client and server model is shown in Listing 7-5. The eight channels are defined
{10-17}, where the notation X2Y implies that the writing (.out()) end of the channel is in the process
represented by X and the reading (.in()) end of the channel is in the Y process.

The maps associated with each server are then defined {19–20}. The list of key values that each client is
to access is then specified {22, 23} and it should be noted that both clients read values from both servers.

10	def S02S1request = Channel.one2one()
11	def S12S0send = Channel.one2one()
12	def S12S0request = Channel.one2one()
13	def S02S1send = Channel.one2one()
14	def C02S0request = Channel.one2one()
15	def S02C0send = Channel.one2one()
16	def C12S1request = Channel.one2one()

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

98

Deadlock: An Introduction

17	def S12C1send = Channel.one2one()
18
19	def server0Map = [1:10,2:20,3:30,4:40,5:50,6:60,7:70,8:80,9:90,10:100]
20	def server1Map = [11:110,12:120,13:130,14:140,15:150,
21					 16:160,17:170,18:180,19:190,20:200]
22	
23	def client0List = [1,12,3,14,15,16,7,18,9,10]
24	def client1List = [11,12,13,14,15,6,17,8,19,20]
25
26	def client0 = new Client (requestChannel: C02S0request.out(),
27						 receiveChannel: S02C0send.in(),
28						 selectList: client0List,
29						 clientNumber: 0)
30
31	def client1 = new Client (requestChannel: C12S1request.out(),
32						 receiveChannel: S12C1send.in(),
33						 selectList: client1List,
34						 clientNumber: 1)
35
36	def server0 = new Server (clientRequest: C02S0request.in(),
37						 clientSend: S02C0send.out(),
38						 thisServerRequest: S02S1request.out(),
39						 thisServerReceive: S12S0send.in(),
40						 otherServerRequest: S12S0request.in(),
41						 otherServerSend: S02S1send.out(),
42						 dataMap: server0Map)
43
44	def server1 = new Server (clientRequest: C12S1request.in(),
45						 clientSend: S12C1send.out(),
46						 thisServerRequest: S12S0request.out(),
47						 thisServerReceive: S02S1send.in(),
48						 otherServerRequest: S02S1request.in(),
49						 otherServerSend: S12S0send.out(),
50						 dataMap: server1Map)
51
52	def network = [client0, client1, server0, server1]
53	new PAR (network).run()

Listing 7-5 The Defintion of Channels, Server Maps and Client Key Lists

The processes are then defined such that client0 is connected to server0 and client1 is connected
to server1. The process network is then defined {52} and the network run {53}.

The result, see Output 7-2, from the execution of the network, shown in Figure 7-2 and Listing 7-5,
can be seen, by inspection, to have not completed because the final output line that indicates the client
processes have finished and terminated is not printed.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

99

Deadlock: An Introduction

Client 0 has 10 values in [1, 12, 3, 14, 15, 16, 7, 18, 9, 10]
Client 1 has 10 values in [11, 12, 13, 14, 15, 6, 17, 8, 19, 20]

Output 7-2 Correct Output from the Clients and Servers network

If we replace lines {23, 24} of Listing 7-5 with the following:

def client0List = [1,2,3,4,5,6,7,18,9,10]

def client1List = [11,12,13,4,15,16,17,18,19,20]

then the result shown in Output 7-3 is generated. This shows that both clients have accessed all the
data they require because they have produced the final completion message. Thus the ordering of client
requests is significant for the correct operation of the network of processes. This is something that should
not be allowed to occur. By inspection we can see that both servers can get into a state where they are
trying to access the other server either by making a request or by both waiting to receive a response so
that neither of them can complete a communication.

Client 1 has 10 values in [11, 12, 13, 4, 15, 16, 17, 18, 19, 20]

Client 0 has 10 values in [1, 2, 3, 4, 5, 6, 7, 18, 9, 10]

Client 0 has finished

Client 1 has finished

Output 7-3 Deadlocked Client Server Results

Download free eBooks at bookboon.com

Click on the ad to read more

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

Using Concurrency and
Parallelism Effectively – I

100

Deadlock: An Introduction

The programmer should resist the temptation to insert print statements to determine what has happened
because these can often remove the time critical nature of the interactions and the system appears to work.
This occurs because the network of processes is sequentialised by outputting to the common console or
other display device. This will be explored in the exercises. It can even depend upon the length of the
print statement as to whether a non-working system can be made to work.

It should be noted also that different executions of the same network, unaltered in any way, will often
produce different deadlock situations. It is dependent on the dynamics of the network. It can also vary
with the combination of processor, operating system, java virtual machine and the number of cores and
how they are utilised.

7.3	 Summary

In this chapter we have demonstrated how deadlock can occur, first in a very simplistic manner and
secondly, in a more complex set of interactions that are very hard to foresee. In the second case the
programmer attempted to ensure that the servers were undertaking as many interactions as possible
with the clients. A more careful programmer might have decided that instead of separating the request
and response made to the other server they would ensure that the response from the other server was
received and returned to the client before embarking upon another interaction. This would work in
the case where both servers were executing on the same processor because the interactions would be
interleaved and thus some distinct ordering might give the impression that the network operated correctly.

However, this would be a fool’s paradise in the case of servers running on different machines because in
due course the situation would arise where both servers were trying to send a request to each other and
the deadlock would occur, possibly after a long period, which had given the impression that the system
worked correctly and that the fault lay elsewhere.

Thus we have to find a design pattern that permits the safe design of parallel systems and that is the
content of the next chapter.

7.4	 Exercises

Exercise 71

By placing print statements in the coding for the Server and Client processes see if you can determine
the precise nature of the deadlock in the Client Server system. You will probably find it useful to add a
property to the Server process by which you can identify each Server.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

101

Client-Server: Deadlock Avoidance by Design

8	� Client-Server: Deadlock
Avoidance by Design

The fundamental client-server design pattern is described by

•	 defining client behaviour
•	 defining server behaviour
•	 defining the required relationship between clients and servers to ensure deadlock and

livelock freedom
•	 analysing the Queue processing system from Chapter 6 and showing it to comply with the

design pattern
•	 re-implementing the multi-server system of Chapter 7 so that we can design and implement

a deadlock and livelock free version

Chapter 7 demonstrated with two examples, one obvious and the other less so, that deadlocked systems
can be constructed quite easily even if the thought given to the design would suggest otherwise. A design
pattern is required that ensures deadlock and also livelock freedom. Brinch Hansen (Brinch Hansen, 1973)
formulated a design approach for operating systems in the 1970s based upon a client-server architecture.
It is a slightly updated version of that design approach that is presented here as the client-server design
pattern (Welch, et al., 1993) (Martin & Welch, 1997). It is captured in two simple rules, together with a
method for analysing a network.

1.	 A client process that issues a request to a server process guarantees to accept any response
from that server immediately. A client – server interaction requires a client request upon
the server but it is not necessary for there to be a communication from the server to the
client process.

2.	 A server process that accepts a request from a client process guarantees to return a response
to the client process within finite time. In addition, a server process will never send a
message to any of its clients without having first received a request from a client. A server
process can behave as a client to another server process.

3.	 Deadlock and livelock will not occur in such a network of client and server processes
provided a labelling of the client and server ends of the interactions between processes does
not result in a completed circuit of clients and servers.

8.1	 Analysing the Queue Accessing System

The Queue system discussed previously in Section 6.2 is, in fact, an example of a system that implements
the above set of client – server rules.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

102

Client-Server: Deadlock Avoidance by Design

C S

get

S C

QProducer

Queue

QConsumer

put

receive

Figure 8-1 Client – Server Labelling of the Queue Processing System

The process QProducer acts as a client to Queue process, which acts as a server. This interaction does
not involve a return communication from Queue to QProducer. QConsumer also acts as a client to
the Queue process but in this interaction the QConsumer process does expect a response. The client
behaviour of the QProducer process is captured in the following code snippet taken from Listing 5-6.
The client request is captured in the write method on the channel put {2}.

1 for (i in 1 .. iterations) {

2 put.write(i)

3 }

Download free eBooks at bookboon.com

Click on the ad to read more

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

Using Concurrency and
Parallelism Effectively – I

103

Client-Server: Deadlock Avoidance by Design

Similarly, the client behaviour of QConsumer is shown in the following snippet and is taken from
Listing 5-7. The client request is captured in the write on the get channel {5}, which can be simply
interpreted as a signal for the Queue process. As a client the QConsumer must be ready to receive a
response from the Queue process as soon as it is available. This is simply achieved by reading the
response on the receive channel {6}. Crucially, no other processing takes place between the request
{5} and the response {6}.

4 while (running) {

5 get.write(1)

6 def v = receive.read()

7 }

The Queue process, see Listing 5-8, simply alternates over the put and get channels and thus can never
generate an output of its own accord and thus behaves as a server for both its interactions. The network,
shown in Figure 8-1, contains no circuits and thus is guaranteed to be free from deadlock and livelock.

8.2	 Client and Server Design Patterns

The behaviour of processes that implement the Client and Servers patterns is given in the following
design templates.

1 class ClientTemplate implements CSProcess {
2 	 def ChannelOutput request
3 	 def ChannelInput response 		 // may not be required
4 	 void run() {
5 	 // initialise
6 	 while (true) {
7 	 // create server request object
8 	 request.write (requestObject) // could be a signal
9 	 result = response.read()	 // may not be required
10 	 // process result
11 	 }
12 	}
13 }

Template 8-1 Client Design Template

A process that behaves as a client (Template 8-1) will have an output channel upon which it makes
requests to its server {2}. It will probably have an input channel upon which it receives a response {3}
from the server but this may not always be necessary. A client process may undertake some initialisation
{5} before entering the main loop of the process {6}. Depending upon the nature of the interaction the
client process will either create a requestObject {7} or cause a signal to be sent to the server {8} if no
explicit data is required for the server to respond to the client process. The client process will immediately
wait for the response from the server if there is one {9}. The process will then continue processing.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

104

Client-Server: Deadlock Avoidance by Design

The server template (see Template 8-2) indicates that a server process requires a request {2} input
channel and may have a response {3} output channel if there is an explicit result written to the requesting
client process. The server may undertake some initialisation {5} after which it enters the main loop of
the process {6}. The server responds to client requests by either reading some form of requestObject
or a signal {7}. The nature of the request is determined unless that is implicit as a result of receiving a
signal {8}. The server then determines the result, which may require access to another server {9} after
which the result, if any, is written to the client {10}. The server then may have to update some internal
state {11} before repeating the loop.

1 	class ServerTemplate implements CSProcess {
2 	 def ChannelInput request
3 	 def ChannelOutput response // may not be required
4 	 void run() {
5 	 // initialise
6 	 while (true) {
7 	 def requestObject = request.read() // may be a signal
8 	 // process requestObject
9 	 // determine any result, may require request to another server
10 	 response.write(result) // may not be required
11 	 // update any internal state
12 	 }
13 	}
14 	}

Template 8-2 Server Design Template

By inspection we can determine that the client template does implement the first behavioural requirement
for a client, given previously, in that once it has made a request on a server it is immediately ready to
receive any response from that server. Similarly the server process template shows that the server will
respond in finite time. Two cases need to be considered. If the server makes no request to another server
then the response must be fully determined within the server process and thus this can be completed
in finite time as there will be no other communication, which is the only source of indefinite delay,
provided the computation is finite. If the server process makes a client style request on another server
then provided the requested server maintains the client – server contract then the originating server
can respond in finite time.

8.3	 Analysing the Crossed Servers Network

Figure 8-2 shows the client-server labelling of the network shown previously in Figure 7-2. The
relationship between the Client and Server processes is not the problem and in fact by inspection of
the Client process, Listing 7-3 lines {23–24}, it can be seen that this process does in fact implement
client behaviour.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

105

Client-Server: Deadlock Avoidance by Design

The problem lies with the Server processes, where there is a circuit from one Server to the other
and back again. Even if we implemented the Server, Listing 7-4, so that it did not interleave access,
it would still deadlock. In the implementation, shown in Listing 7-4, the chance of deadlock occurring
is compounded because the Server does not wait for a response from the other Server but starts
another client interaction. A simplistic solution could be attempted by making the Server process act
as a client when it is accessing the other Server. This will decrease the incidence of deadlock but it will
still happen, but less frequently, which perhaps makes it even more annoying for the Client processes.
Thus a different solution has to be found.

Figure 8-2 Client – Server Labelling of the Crossed Server Network

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/Subscrybe

Using Concurrency and
Parallelism Effectively – I

106

Client-Server: Deadlock Avoidance by Design

8.4	 Deadlock Free Multi-Client and Servers Interactions

Figure 8-3 shows a solution to the problem that is achieved by the use of a multiplexer. A multiplexer is a
process that accepts inputs from a number of input channels and then outputs these input communications
on a single output channel. A set of simple multiplexers is available in the package org.jcsp.groovy.
utils.

Figure 8-3 Multi-Client and Server Network

A Client makes a request upon a Multiplexer behaving as a server, which contains the data required to
determine upon which Server the required data resides. The Multiplexer then behaves as a client and
makes a request to the required Server. The corresponding data is then returned from the Server to the
Multiplexer and then finally the Client receives the data it requested. By inspection of the network we can
see there are no circuits of client – server labelling and hence the network will be deadlock free, provided
the processes are implemented in a manner that respects the rules of the client-server design pattern.

8.4.1	 The Multiplexer Process

Listing 8-1 shows the multiplexer used in this system. CSMux is more complex than the simple multiplexer
concept described previously. Requests are received from Clients by CSMux behaving as a server
and then CSMux determines the Server upon which the required data is to be found. The request is
then forwarded to a Server by the CSMux behaving as a client. CSMux waits for the response from
a Server that it then returns to the original Client behaving as a server. CSMux utilises properties
of type ChannelInputList and ChannelOutputList. These are two helper classes created as part
of the Groovy Parallel capability. As their names suggest these provide lists of channel input ends and
channel output ends respectively.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

107

Client-Server: Deadlock Avoidance by Design

10	class CSMux implements CSProcess {
11		
12	 def ChannelInputList inClientChannels
13	 def ChannelOutputList outClientChannels
14	 def ChannelInputList fromServers
15	 def ChannelOutputList toServers
16	 def serverAllocation = []	
17	
18	 void run() {
19	 def servers = toServers.size()
20	 def muxAlt = new ALT (inClientChannels)
21	 while (true) {
22	 def index = muxAlt.select()
23	 def key = inClientChannels[index].read()
24	 def server = -1
25	 for (i in 0 ..< servers) {
26	 if (serverAllocation[i].contains(key)) {
27	 server = i
28	 break
29	 }
30	 }
31	 toServers[server].write(key)
32	 def value = fromServers[server].read()
33	 outClientChannels[index].write(value)
34	 }
35	 }
36	}

Listing 8-1 The Multiplexer Coding

The ChannelInputList inClientChannels {12} is a list of input channel ends from each of the
Clients connected to CSMux. Similarly, fromServers {14} is a list of the channel input ends coming
from each of the Servers connected to CSMux. The list of out channels ends that connects CSMux to its
Clients is contained in the property outClientChannels {13} and the outputs from CSMux to the
connected Servers is passed as property toServers {15}. The property serverAllocation is a List
of Lists such that each internal List contains the keys of the values held respectively in each Server.
There is one list element per Server in serverAllocation {16}. The size() method is used to find
the number of Servers {19} because there must be as many Server processes as there are channels
in toServers. The alternative, muxAlt {20}, is simply constructed from the inClientChannels
ChannelInputList.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

108

Client-Server: Deadlock Avoidance by Design

Within the loop {21–34}, the index of the enabled alternative is selected {22} and its value used to
read a key value from the corresponding element of inClientChannels {23}. The for loop {25–30}
is used to determine in which server the key is located. The value of the key is written to the server
element of the ChannelOutputList toServers {31}. As this is the start of a client style interaction
the value corresponding to the key is read, as soon as it is available on the server element of the
ChannelInputList fromServers {32}. This maintains the client-server relationship between CSMux
and the Server. The value is then written to the index element of outClientChannels {33} thereby
completing the server style interaction between CSMux and the originating Client process.

This interaction typifies a more complex client and server interaction whereby the client makes a request
on a server style process which then becomes a client to another server. This can be undertaken as
many times as the application requires and, provided there are no circuits in the clients and servers, is
guaranteed to be deadlock and livelock free, provided the processes implement the client and server
behaviours as defined previously.

8.4.2	 The Server Process

The coding of the Server process is shown in Listing 8-2. A Server has two channel list properties,
one, fromMux is the input channels from CSMux {12} and the other {13}, toMux, provides the output
channels to CSMux. The property dataMap {14} is used to hold the Map of keys and values held within
this Server. An alternative serverAlt is used to alternate over the fromMux input channels {17}.
Once an enabled alternative has been selected {20}, its index is used to read the key value from the
corresponding element of fromMux {21}. This key value is then used to access dataMap, the value of
which is written to the related CSMux process using the index element of toMux {22}.

This simple interaction implements the simplest form of server behaviour, whereby the server reads the
request and responds immediately to the request with the required data value.

10	class Server implements CSProcess{
11		
12	 def ChannelInputList fromMux
13	 def ChannelOutputList toMux
14	 def dataMap = [:]
15	
16	 void run() {
17	 def serverAlt = new ALT(fromMux)
18		
19	 while (true) {
20	 def index = serverAlt.select()
21	 def key = fromMux[index].read()
22	 toMux[index].write(dataMap[key])
23	 }
24	 }
25	}

Listing 8-2 The Server Process Definition

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

109

Client-Server: Deadlock Avoidance by Design

8.4.3	 Exercising the System of Clients and Servers

Listing 8-3 gives the script that causes the system of Clients, CSMux processes and Servers to be
invoked and permit the number of Clients per CSMux to be varied at run time. The number of Servers
is limited to 2, identified as Server zero and Server one. Similarly there are two CSMux processes
providing the multiplex capability, referred to as CSMux zero and one respectively. In particular, it can
be seen that the Client process definition used in Chapter 7 is reused {10}, further reinforcing that it
already implemented the required client behaviour.

Initially the number of clients {11} is obtained and then used together with servers {12} to create a
set of One2OneChannel arrays {14–21}. The naming convention uses C to refer to a Client connection,
M a CSMux connection and S a Server connection. Thus, M0ToC0 {15} provides the connection from
CSMux zero to the Clients attached to that multiplexer and M1ToS connects CSMux one to both Servers.

These channel arrays are then converted to instances of ChannelInputList and ChannelOutputList
by simply calling the constructor of the required class {23–30}. For the channels lists that provide the
cross connections between the Server and CSMux processes we first create new, empty, instances of the
necessary channel lists, to which the required channel elements are appended {32–46}. The regularity
of the coding arises because all the elements at one end of a channel list have to be allocated to different
processes whereas they are all accessed by a single process at the other end.

Download free eBooks at bookboon.com

Click on the ad to read more

Losing track of your leads?
Bookboon leads the way
Get help to increase the lead generation on your own website. Ask the experts.

Interested in how we can help you?
email ban@bookboon.com

http://bookboonglobal.com/en/qualities2/content-and-dialogue-marketing-2/

Using Concurrency and
Parallelism Effectively – I

110

Client-Server: Deadlock Avoidance by Design

10	import c07.Client
11	�def clients = Ask.Int ("Number of clients per server; 1 to 9 ? ", 1, 9)
12	def servers = 2
13
14	def C0ToM0 = Channel.one2oneArray (clients)
15	def M0ToC0 = Channel.one2oneArray (clients)
16	def C1ToM1 = Channel.one2oneArray (clients)
17	def M1ToC1 = Channel.one2oneArray (clients)
18	def M1ToS = Channel.one2oneArray (servers)
19	def M0ToS = Channel.one2oneArray (servers)
20	def S0ToM = Channel.one2oneArray (servers)
21	def S1ToM = Channel.one2oneArray (servers)
22
23	def clientsToM0 = new ChannelInputList (C0ToM0)
24	def clientsToM1 = new ChannelInputList (C1ToM1)
25	def M0ToClients = new ChannelOutputList(M0ToC0)
26	def M1ToClients = new ChannelOutputList(M1ToC1)
27	def Mux0ToServers = new ChannelOutputList(M0ToS)
28	def Mux1ToServers = new ChannelOutputList(M1ToS)
29	def Server0ToMuxes = new ChannelOutputList (S0ToM)
30	def Server1ToMuxes = new ChannelOutputList (S1ToM)
31
32	def Server0FromMuxes = new ChannelInputList()
33	Server0FromMuxes.append(M0ToS[0].in())
34	Server0FromMuxes.append(M1ToS[0].in())
35
36	def Server1FromMuxes = new ChannelInputList()
37	Server1FromMuxes.append(M0ToS[1].in())
38	Server1FromMuxes.append(M1ToS[1].in())
39
40	def Mux0FromServers = new ChannelInputList ()
41	Mux0FromServers.append(S0ToM[0].in())
42	Mux0FromServers.append(S1ToM[0].in())
43
44	def Mux1FromServers = new ChannelInputList ()
45	Mux1FromServers.append(S0ToM[1].in())
46	Mux1FromServers.append(S1ToM[1].in())
47
48	def server0Map = [1:10, 2:20, 3:30, 4:40, 5:50,
49					 6:60, 7:70, 8:80, 9:90, 10:100]
50	def server1Map = [11:110,12:120,13:130,14:140,15:150,
51		 			 16:160,17:170,18:180,19:190,20:200]
52	def serverKeyLists = [[1,2,3,4,5,6,7,8,9,10],
53						 [11,12,13,14,15,16,17,18,19,20]]
54	
55	def client0List = [1,12,3,14,15,16,7,18,9,10]
56	def client1List = [11,12,13,14,15,6,17,8,19,20]

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

111

Client-Server: Deadlock Avoidance by Design

57
58	def network = []
59	def server0ClientList = (0 ..< clients).collect { i ->
60						� return new Client (requestChannel:

C0ToM0[i].out(),
61							 receiveChannel: M0ToC0[i].in(),
62							 clientNumber: i,
63							 selectList: client0List)
64							 }
65	def server1ClientList = (0 ..< clients).collect { i ->
66				 return new Client (requestChannel: C1ToM1[i].out(),
67								 receiveChannel: M1ToC1[i].in(),
68								 clientNumber: i+10,
69								 selectList: client1List)
70								 }
71	network << new CSMux (inClientChannels: clientsToM0,
72					 outClientChannels: M0ToClients,
73					 fromServers: Mux0FromServers,
74					 toServers: Mux0ToServers,
75					 serverAllocation: serverKeyLists)
76	network << new CSMux (inClientChannels: clientsToM1,
77					 outClientChannels: M1ToClients,
78					 fromServers: Mux1FromServers,
79					 toServers: Mux1ToServers,
80					 serverAllocation: serverKeyLists)
81	network << new Server (fromMux: Server0FromMuxes,
82					 toMux: Server0ToMuxes,
83					 dataMap: server0Map)
84	network << new Server (fromMux: Server1FromMuxes,
85					 toMux: Server1ToMuxes,
86					 dataMap: server1Map)
87	new PAR(network + server0ClientList + server1ClientList).run()

Listing 8-3 Script to Run the Network of Clients and Servers

This is followed by the definition of the Map data structures {48–51} that are passed to each Server
instance as the property dataMap {Listing 8-2, 14}. The serverKeyLists {52–53} comprise the sets of
key values associated with each Server and are passed to each CSMux as property serverAllocation
{Listing 8-1, 16}. Similarly, the list of key values which each Client process is to access is defined
separately for the Clients connected to each CSMux process {55, 56}. These Lists are passed to a
Client process as property selectList {Listing 7-3, 15}.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

112

Client-Server: Deadlock Avoidance by Design

The network of processes required to run the system is then created. The Groovy collect method is
used to construct a list of processes that are returned as new Client process instances in the associated
closure. Two such Lists are required one for each set of Clients attached to each of the CSMux processes
{59–70}. In the definition of a new Client note how the individual elements of the channel arrays are
accessed and further note that the ends of the channels so referenced are not part of the previously
defined channel lists.

The empty List network {58} is then populated with the required instances of the CSMux and Server
processes {71-86} using the append (<<) operator. Finally, a PAR is invoked {87} by passing the sum of all
the process lists as its parameter, which can then be run(). The output from an execution of the network
is analysed by ensuring that the Server dataMaps are accessed in the order specified in client0List
and client1List. It should be noted that the Client processes attached to CSMux zero are numbered
from 0 and those to CSMux one from 10. It can be observed that all the Clients access all the required
elements of the servers in the order specified. If the system is executed with one Client per CSMux;
then the version that deadlocked in Chapter 7 can be seen to be operating entirely as expected because
the elements accessed from each server are those that deadlocked previously. The major change is that
we can now run multiple clients per server, thereby increasing the complexity of the interactions that
are being undertaken.

8.5	 Summary

In this chapter the concept of the client-server design pattern has been introduced. This is the most
important design pattern we shall use and will become fundamental to all the subsequent designs used
in the rest of the book.

The key aspect to assimilate is that design is initiated by a network diagram showing the processes, their
connections and the data that flows between them along the channels. The diagram is then analysed
from the point of view of any client-server interactions and adjustments made to ensure deadlock and
livelock freedom. Finally, the code for each of the processes is produced ensuring that it maintains the
required client and server behaviour defined in the diagram.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

113

Client-Server: Deadlock Avoidance by Design

8.6	 Exercises

Exercise 8-1

Modify the Client process c07.Client so that it can ensure that the values returned from
the Server arrive in the order expected according to their selectList property. It should
print a suitable message that the test has been undertaken and whether it passed or failed. You
are not to use the GroovyTestCase mechanism because this would require that the CSMux
and Server processes would have to terminate, which would require a lot of unnecessary
programming. Hint: you can use the relationship between key and values held in the database
as a means of testing the returned values.

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/EOT

Using Concurrency and
Parallelism Effectively – I

114

External Events: Handling Data Sources

9	� External Events: Handling
Data Sources

External event handling is shown to be very amenable to concurrent and parallel programming by:

•	 managing events as communications rather than interrupts
•	 exploiting the client-server pattern to build architectures that embody event handling
•	 separating event handling from processing using a buffer that is a pure server, thereby

ensuring deadlock freedom
•	 enabling analysis of system behaviour
•	 permitting determination on the time upper bound for event processing
•	 processing events from many different sources

Traditionally, real-time systems that respond to external stimuli have utilised interrupts. An interrupt
is a hardware signal that indicates that a device needs to be serviced and which causes the processors’
central processing unit to interrupt the current program and invoke the device’s service routine returning
to the original program once the device has been serviced. Over the years a great deal of effort has been
expended in trying to make interrupt based systems more efficient and easier to program. However, the
basic problem still remains that an interrupt causes the halting of the current program, saving its state
and then starting an interrupt service routine. The problems become more complex when an interrupt
service routine is itself interrupted by a device with a higher priority. The approach has been to reduce
the amount of time when interrupts are disabled. This in itself leads to further problems because it is
very difficult then to foresee the precise nature of interactions between interrupts that can then take
place. It is these indeterminate interactions that cause problems when systems are running because it is
impossible to test for all the possible interactions, especially in highly complex systems.

The framework built so far, using parallelism and alternation to capture non-deterministic behaviour,
provides a means of describing, implementing and analysing such event driven systems. Rather than
building a system that interrupts itself on receipt of an event notification; build a system that expects
such events to occur so that programmers can better reason about its behaviour. In effect, the external
event is considered to be the same as a channel communication. Furthermore, the client-server design
pattern gives us a handle by which the system can be analysed to ensure that unwanted interactions
between events do not occur.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

115

External Events: Handling Data Sources

9.1	 An Event Handling Design Pattern

The aim of the pattern is to allow the system to respond to external events as quickly as possible. However,
the situation has to be considered that events may occur so rapidly that the system cannot deal with all
the events. Such a situation tends to overwhelm interrupt based systems. The pattern also has to take
account of any priority requirement the application may have, thereby influencing the order in which
events are handled. Such ordering of the handling of events may result in some events being lost. However,
if the designer is aware of this situation then steps can be taken at design time to ameliorate their effects.

The key to building an event handling system is that the process dealing with receipt of the event has to
be ready, waiting, for the associated channel (event) communication, so it can be read and the associated
data passed on to another process. The event receiving process can then return to the state of waiting for
the next event communication. If we connect the event receiving process directly to the event processing
process then the event receiver might be delayed by having to wait for the processing of another event
to finish. We thus require an intermediate stage that separates event receiving from event processing.
This can be implemented by some form of buffer. More specifically, the buffer should always be ready
to receive a communication from the event receiver process. This may mean that previous buffered
values may be overwritten. In addition, a mechanism by which buffered values can be requested from
the buffer process, in a manner similar to that used in the Queue process described in Chapter 5. The
resulting process structure is shown in Figure 9-1, to which a client-server labelling has been added. It
demonstrates that there are no client-server loops in the architecture.

Figure 9-1 Event Handling Design Pattern

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

116

External Events: Handling Data Sources

Events are received by the EventReceiver and immediately sent to the EventOverwritingBuffer so that
EventReceiver is ready to read the next event. The EventPrompter indicates that it wants to get some
data, which it will receive immediately from the EventOverwritingBuffer if data is already buffered or
it will have to wait until an event has been input. The EventPrompter then writes the data to the rest of
the system where it is processed. Thus it is EventPrompter that has to wait until subsequent processing
can be undertaken, allowing EventReceiver always ready to read an event. Later we shall show that
the time required to process events can in fact be calculated to give an absolute upper bound on the
performance of the system. Such a bound cannot be calculated for interrupt based systems. In addition,
the client-server labelling shows that the pattern has no deadlock or livelock inherent within it and thus
provided the rest of the system is also deadlock and livelock free ensures that the system will behave
as expected. This is easily deduced because the EventOverwritingBuffer is a pure server and hence any
client-server circuit cannot exist.

9.2	 Utilising the Event Handing Pattern

The pattern can be transformed easily into a set of processes that achieves its effect.

Download free eBooks at bookboon.com

Click on the ad to read more

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

Using Concurrency and
Parallelism Effectively – I

117

External Events: Handling Data Sources

9.2.1	 The EventReceiver Process

Listing 9-1 shows the definition of the EventReceiver process. The process has eventIn {12} and
eventOut {13} channel properties. In this implementation, every input that is read from eventIn is
immediately written to the eventOut channel {17}. In a realistic implementation it would probably
be necessary to determine the source of the event and possibly read some data from a hardware register.
However, we can presume that such additional processing would not create any substantial delay within
the system because the event would not be raised if there was no reason.

10	class EventReceiver implements CSProcess {
11		
12	 def ChannelInput eventIn
13	 def ChannelOutput eventOut
14	
15	 void run() {
16	 while (true){
17	 eventOut.write(eventIn.read())
18	 }
19	 }
20	}

Listing 9-1 The EventReceiver Process

9.2.2	 The Event Overwriting Buffer Process

The implementation of EventOWBuffer is shown in Listing 9-2.

10	class EventOWBuffer implements CSProcess {
11		
12	 def ChannelInput inChannel
13	 def ChannelInput getChannel
14	 def ChannelOutput outChannel
15	
16	 void run () {
17	 def owbAlt = new ALT ([inChannel, getChannel])
18		
19	 def INCHANNEL = 0
20	 def GETCHANNEL = 1
21	 def preCon = new boolean[2]
22	 preCon[INCHANNEL] = true
23	 preCon[GETCHANNEL] = false
24	 def e = new EventData ()
25	 def missed = -1
26		
27	 while (true) {
28	 def index = owbAlt.priSelect (preCon)
29		

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

118

External Events: Handling Data Sources

30	 switch (index) {
31	 case INCHANNEL:
32	 e = inChannel.read().copy()
33	 missed = missed + 1
34	 e.missed = missed
35	 preCon[GETCHANNEL] = true
36	 break
37	
38	 case GETCHANNEL:
39	 def s = getChannel.read()
40	 outChannel.write (e)
41	 missed = -1
42	 preCon[GETCHANNEL] = false
43	 break
44	
45	 } // end switch
46	 } // end while
47	 } // end run
48	}

Listing 9-2 The EventOWBuffer Process

The channel inChannel {12} inputs data from the EventReceiver process. The getChannel
{13} receives a signal from EventPrompter whenever that process requires data. The response to
EventPrompter is to output event data on the channel outChannel {14}. The process receives inputs
on its input channels over which it must alternate as the order in which such inputs are read cannot be
determined. This is captured in the definition of owbAlt {17}. The EventOWBuffer also has to capture
the behaviour that requests for data from the EventPrompter process can only be allowed when the
buffer contains data. To this end we used pre-conditions on owbAlt in a manner similar to that used in
the Queue process described in Chapter 5. The constants INCHANNEL {19} and GETCHANNEL {20} are
used to access the elements of the preCon {21} boolean array and also to identify the cases within
the switch that implements the main processing loop. The initial values of the preCon elements can
be specified as follows. The process is always willing to accept inputs on its inChannel and thus this
element is always true {22}. Initially there is no data in the buffer and thus requests to get data from
EventPrompter must not be permitted and thus that pre-condition has to be set false {23}. The
actual buffer is represented by the variable e {24} and is of type EventData, see Listing 9-4. The variable
missed {25} will count the number of times the data in the buffer e was overwritten and will be passed
through the system so that its performance can be analysed. It is initialised to -1 so that when the next
event is read its value will be considered not to have been overwritten because the value of missed will
then be 0.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

119

External Events: Handling Data Sources

The main loop of EventOWBuffer {27–46} initially determines the index of the enabled channel, with
priority being given to inChannel {17} because we always want EventReceiver to be ready to read the
next event. In that case, the event data is read from inChannel {32} and a deep copy is made into the
buffer variable e. The interface JCSPCopy, defined in org.jcsp.groovy, defines an abstract method
copy() that can be used to make a deep copy of an object. Recall that if an object is transferred from one
process to another then if these processes are on the same processor then this communication is achieved
by passing an object reference. We must ensure that two processes do not access the same object at the
same time and hence the need to make a deep copy of the object. The value of missed is incremented
{33} and saved in the buffer variable e {34}. The preCon element GETCHANNEL can now be set true
{35} because there is data in the buffer that can be sent to EventPrompter following a request for data.

Once the buffer contains data then requests for data can be read from the getChannel {39} and the
contents of the buffer are immediately written to the outChannel {40}. This interaction ensures the
process behaves like a server. The preCon element GETCHANNEL must now be set false {42} because
there is no longer any data in the buffer and likewise the variable missed must be reset to -1 {41}.

9.2.3	 The Event Prompter Process

This process is shown in Listing 9-3. This process has channel properties {12–14} that reflect the process
structure shown in Figure 9-1.

Download free eBooks at bookboon.com

Click on the ad to read more

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

Using Concurrency and
Parallelism Effectively – I

120

External Events: Handling Data Sources

10	class EventPrompter implements CSProcess {
11
12	 def ChannelInput inChannel
13	 def ChannelOutput getChannel
14	 def ChannelOutput outChannel
15	
16	 void run () {
17	 def s = 1
18	 while (true) {
19	 getChannel.write(s)
20	 def e = inChannel.read().copy()
21	 outChannel.write(e)
22	 }
23	 }
24	}

Listing 9-3 The EventPrompter Process

A signal is written to the getChannel {19}, the completion of which may be delayed until the
EventOWBuffer contains event data. The response from EventOWBuffer is immediately read into a
variable e {20} and also uses the copy() method to ensure that the data cannot be modified as it resides
within the EventPrompter before being output to the next process. The data is then written {21} to
the outChannel, where yet again a delay may be incurred due to the processing system not being in a
state where the data from this event source can be processed.

9.2.4	 The EventData Class

EventData contains three properties for this explanatory description comprising source {12}, data
{13} and missed {14}, shown in Listing 9-4. The source is used to indicate from which event source
the event came. The actual data value sent by the event is contained in data. The class implements the
Serializable interface so that EventData objects can be communicated over networks. The interface
JCSPCopy is implemented so that the copy method {16–21} can be defined that makes a deep copy of
EventData objects. A toString method has also been provided so that event data can be more easily
output {23–29}.

10	class EventData implements Serializable, JCSPCopy {
11		
12	 def int source = 0
13	 def int data = 0
14	 def int missed = -1
15	
16	 def copy() {
17	 def e = new EventData (source: this.source,
18						 data: this.data,
19						 missed: this.missed)

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

121

External Events: Handling Data Sources

20	 return e
21	 }
22	
23	 def String toString() {
24	 def s = "EventData -> [source: "
25	 s = s + source + ", data: "
26	 s = s + data + ", missed: "
27	 s = s + missed + "]"
28	 return s
29	 }
30	
31	}

Listing 9-4 The EventData Class Definition

9.2.5	 The EventHandler Process

The EventHandler process is the parallel composition of the the processes shown in Figure 9-1, as
shown in Listing 9-5.

The Event Handler process is written to accept input events on its inChannel {12}. The events are then
output on its outChannel {13}. The process has three internal channels, get, transfer and toBuffer
{16–18}. These are used to connect the processes that are created in the HandlerList {20–28}. The
processes used in the HandlerList have been previously described in Sections 9.2.1 to 9.2.3. The
processes are then invoked by a PAR {29}.

10	class EventHandler implements CSProcess {
11		
12	 def ChannelInput inChannel
13	 def ChannelOutput outChannel
14	
15	 void run () {
16	 def get = Channel.one2one()
17	 def transfer = Channel.one2one()
18	 def toBuffer = Channel.one2one()
19		
20	 def handlerList = [new EventReceiver (eventIn: inChannel,
21								 eventOut: toBuffer.out()),
22					 new EventOWBuffer (inChannel: toBuffer.in(),
23								 getChannel: get.in(),
24								 outChannel: transfer.out()),
25					 new EventPrompter (inChannel: transfer.in(),
26								 getChannel: get.out(),
27								 outChannel: outChannel)
28]
29	 new PAR (handlerList).run()
30	 }
31	}

Listing 9-5 The EventHandler Process Definition

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

122

External Events: Handling Data Sources

9.3	 Analysing Performance Bounds

The ability of the design pattern to handle repeated events can be determined for two different cases. The
first and simplest case occurs when there is no outstanding request for data from the EventPrompter
process. The time to handle an event can be calculated by adding together the processing times of lines
Listing 9-1 17, and Listing 9-2 lines 32–35 plus the time to undertake a single communication from
EventReceiver to EventOWBuffer. This value can be determined by calculation if the time to execute
each statement can be determined.

The second case is slightly more complex and concerns the situation when EventOWBuffer has just
accepted a request to get data from EventPrompter and an event arrives at EventReceiver. The
consequent processing delay comprises Listing 9-2 lines 39–42 and Listing 9-3 line 20 plus the time
taken to undertake a single communication from EventOWBuffer to EventPrompter. Thus this time,
plus the time to actually process the event, which is the same as the first case, gives the total time that
is required to handle an event. This therefore gives an upper bound for the time to process an event
and thus the maximum rate at which events can be handled in the worst case scenario. On a modern
processor these times will be measured in nanoseconds. The fact that the processing system might not
be able to keep up with such a rate merely points to a possible deficiency in the system design and not
a failure of the ability to use parallel processing techniques to handle events.

9.4	 Simple Demonstration of the Event Handling System

The demonstration comprises an EventHandler process which is fed with ‘events’ by an EventGenerator
process that outputs data values according to a uniformly distributed delay strategy. The EventHandler
outputs its ‘events’ to another process that simulates the time it takes to process an event according
to a different uniformly distributed delay strategy. Finally, the processed ‘events’ are printed using a
GPrint process.

9.4.1	 The Event Generator Process

The EventGenerator process, shown in Listing 9-6, itself comprises two parallel processes,
EventStream and UniformlyDistributedDelay. The properties of the process are passed directly
to these processes and will thus be described in the next sections.

10	class EventGenerator implements CSProcess {
11		
12	 def ChannelOutput outChannel
13	 def int source = 0
14	 def int initialValue = 0
15	 def int minTime = 100
16	 def int maxTime = 1000
17	 def int iterations = 10
18	

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

123

External Events: Handling Data Sources

19	 void run () {
20	 def es2udd = Channel.one2one()
21	 println "Event Generator for source $source has started"
22		
23	 def eventGeneratorList = [
24	 new EventStream (source: source,
25						 initialValue: initialValue,
26						 iterations: iterations,
27						 outChannel: es2udd.out()),
28	 new UniformlyDistributedDelay (minTime: minTime,
29								 maxTime: maxTime,
30								 inChannel: es2udd.in(),
31								 outChannel: outChannel)
32]
33		
34	 new PAR (eventGeneratorList).run()
35	 }
36	}

Listing 9-6 The EventGenerator Process

Download free eBooks at bookboon.com

Click on the ad to read more

How to retain your
top staff

FIND OUT NOW FOR FREE
Get your free trial

Because happy staff get more done

What your staff really want?

The top issues troubling them?

How to make staff assessments
work for you & them, painlessly?

DO YOU WANT TO KNOW:

http://s.bookboon.com/performancereviewpro

Using Concurrency and
Parallelism Effectively – I

124

External Events: Handling Data Sources

9.4.2	 The Event Stream Process

Listing 9-7 shows the EventStream process, in which the source property {12} is used to identify the
stream and which has an initialValue {13}. The process will output a stream of length iterations
{14}. The stream of ‘events’ will be output on the channel outChannel {15}. The process uses the upto
method to create the loop {20}. An event e is constructed {21} and then written to outChannel {22}.
On completion the process outputs a message {25} as this will prove invaluable in understanding how
the system functions.

10	class EventStream implements CSProcess {
11		
12	 def int source = 0
13	 def int initialValue = 0
14	 def int iterations = 10
15	 def ChannelOutput outChannel
16	
17	 void run () {
18	 def i = initialValue
19		
20	 1.upto(iterations) {
21	 def e = new EventData (source: source, data: i)
22	 outChannel.write(e)
23	 i = i + 1
24	 }
25	 println "Source $source has finished"
26	 }
27	}

Listing 9-7 The EventStream Process

9.4.3	 The Uniformly Distributed Delay Process

The UniformlyDistributedDelay process, shown in Listing 9-8, uses a random number generator
{19} to produce a delay between minTime and maxTime {23}. The event data is read from inChannel
{22} and after waiting for the delay {24} period it is output on outChannel {25}.

10	class UniformlyDistributedDelay implements CSProcess {
11		
12	 def ChannelInput inChannel
13	 def ChannelOutput outChannel
14	 def int minTime = 100
15	 def int maxTime = 1000
16	
17	 void run () {
18	 def timer = new CSTimer()
19	 def rng = new Random()
20		

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

125

External Events: Handling Data Sources

21	 while (true) {
22	 def v = inChannel.read().copy()
23	 def delay = minTime + rng.nextInt (maxTime – minTime)
24	 timer.sleep (delay)
25	 outChannel.write(v)
26	 }
27	 }
28	}

Listing 9-8 The UniformlyDistributedDelay Process

The effect of the UniformlyDistributedDelay process is to ensure that events are generated with
delays that vary uniformly between minTime and maxTime.

9.4.4	 Demonstration of a Single Stream Event Processing System

The script that invokes the system with a single source of events is shown in Listing 9-9. The
collection of processes comprises the processes already described, executed in parallel. An additional
UniformlyDistributedDelay process has been included to represent the varying time it takes to
process an event. The events are passed to a GPrint process where they are simply printed. Of particular
interest is the number of events that are missed.

10	def eg2h = Channel.one2one()
11	def h2udd = Channel.one2one()
12	def udd2prn = Channel.one2one()
13	def eventTestList = [
14	 new EventGenerator (source: 1,
15						 initialValue: 100,
16						 iterations: 100,
17						 outChannel: eg2h.out(),
18						 minTime: 100,
19						 maxTime:200),
20
21	 new EventHandler (inChannel: eg2h.in(),
22					 outChannel: h2udd.out()),
23						
24	 new UniformlyDistributedDelay (inChannel:h2udd.in(),
25							 outChannel: udd2prn.out(),
26							 minTime: 1000,
27							 maxTime: 2000),
28									
29	 new GPrint (inChannel: udd2prn.in(),
30		 		 heading : "Event Output",
31		 		 delay: 0)
32]
33
34	new PAR (eventTestList).run()

Listing 9-9 The Srcript Used to Invoke the Single Stream Event Handling System

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

126

External Events: Handling Data Sources

The events are generated with a delay that varies between 100 and 200 milliseconds {18, 19}. The
simulation of processing time {26, 27} varying between 1000 and 2000 milliseconds means we would
expect around 8 or 9 events to be missed but will depend on the actual random values. A sample output
from the system is shown in Output 9-1.

The first two events pass through the system without any delay because that is the time when the buffers
within the system are being filled. Thereafter, data appears with varying numbers of events missed and
in general these match what would be expected. The last three events are produced after the event
generator has finished because they are buffered up within the system. It should be noted that a check of
correctness of operation is possible because the data value, after the first, is equal to the previous output
data value plus the number missed plus 1.

Event Output

Event Generator for source 1 has started

EventData -> [source: 1, data: 100, missed: 0]

EventData -> [source: 1, data: 101, missed: 0]

EventData -> [source: 1, data: 110, missed: 8]

EventData -> [source: 1, data: 122, missed: 11]

EventData -> [source: 1, data: 128, missed: 5]

EventData -> [source: 1, data: 140, missed: 11]

Download free eBooks at bookboon.com

Click on the ad to read more

https://inspiredbusinessmedia.co.uk/conferences/cmo-inspired-oct-2018/

Using Concurrency and
Parallelism Effectively – I

127

External Events: Handling Data Sources

EventData -> [source: 1, data: 149, missed: 8]

EventData -> [source: 1, data: 159, missed: 9]

EventData -> [source: 1, data: 168, missed: 8]

EventData -> [source: 1, data: 176, missed: 7]

Source 1 has finished

EventData -> [source: 1, data: 186, missed: 9]

EventData -> [source: 1, data: 195, missed: 8]

EventData -> [source: 1, data: 199, missed: 3]

Output 9-1 A Sample Output from the Event Handling System

9.5	 Processing Multiple Event Streams

Now that we have seen how to process a single stream of events; it becomes noteworthy to process
multiple streams of events that are generated with varying uniformly distributed delays. We combine the
event generation and event handling into a single process called EventSource shown in Listing 9-10.

10	class EventSource implements CSProcess {
11		
12	 def source
13	 def iterations = 99
14	 def minTime = 100
15	 def maxTime = 250
16	 def ChannelOutput outChannel
17	
18	 void run() {
19	 def eg2h = Channel.one2one()
20	 def sourceList = [new EventGenerator (source: source,
21									 initialValue: 100 * source,
22									 iterations: iterations,
23									 minTime: minTime,
24									 maxTime: maxTime,
25									 outChannel: eg2h.out()),
26					 new EventHandler (inChannel: eg2h.in(),
27								 outChannel: outChannel)
28]
29		
30	 new PAR (sourceList).run()
31	 }
32	}

Listing 9-10 The Process that Generates Events and Handles Them

The EventSource process uses the processes EventGenerator and EventHandler, previously
described in Sections 9.4.1 and 9.2.5. Each source can be assigned its own minTime {14, 23} and maxTime
{15, 24} used in the UniformlyDistributedDelay process contained within each EventGenerator.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

128

External Events: Handling Data Sources

The output from each EventSource is output on its outChannel {16} to an EventProcessing
process shown in Listing 9-11.

10	class EventProcessing implements CSProcess{
11		
12	 def ChannelInputList eventStreams
13	 def minTime = 500
14	 def maxTime = 750
15	
16	 void run() {
17	 def mux2udd = Channel.one2one()
18	 def udd2prn = Channel.one2one()
19	 def pList = [
20			 new FairMultiplex (inChannels: eventStreams,
21							 outChannel: mux2udd.out()),
22			 new UniformlyDistributedDelay (inChannel:mux2udd.in(),
23									 outChannel: udd2prn.out(),
24									 minTime: minTime,
25									 maxTime: maxTime),
26	 new GPrint (inChannel: udd2prn.in(),
27					 heading : "Event Output",
28					 delay: 0)
29]
30	 new PAR (pList).run()
31	 }
32	}

Listing 9-11 The EventProcessing Process Definition

The process EventProcessing receives inputs from each of the event streams on the ChannelInputList
eventStreams {12}. The manner in which each event stream is selected is determined by the multiplexer
{20–21}. The version shown in Listing 9-11 uses a FairMultiplex process, that ensures each stream
is allocated an equal amount of the available output bandwidth. Other multiplexers can be used that
have different properties, see org.jcsp.groovy.util. As in the single stream version the delay taken
by processing the event is simulated by a UniformlyDistributedDelay process {22–25} before the
events are printed using a GPrint process {26–28}.

The script that executes the multiStream version is shown in Listing 9-12.

10	�def sources = Ask.Int ("Number of event sources between 1 and 9 ? ", 1, 9)
11
12	minTimes = [10, 20, 30, 40, 50, 10, 20, 30, 40]
13	maxTimes = [100, 150, 200, 50, 60, 30, 60, 100, 80]
14	
15	def es2ep = Channel.one2oneArray(sources)

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

129

External Events: Handling Data Sources

16
17	ChannelInputList eventsList = new ChannelInputList (es2ep)
18
19	def sourcesList = (0 ..< sources).collect { i ->
20	 new EventSource (source: i+1,
21	 outChannel: es2ep[i].out(),
22	 minTime: minTimes[i],
23	 maxTime: maxTimes[i])
24	 }
15
26	def eventProcess = new EventProcessing (eventStreams: eventsList,
27									 minTime: 10,
28									 maxTime: 400)
29
30	new PAR(sourcesList + eventProcess).run()

Listing 9-12 The Run MultiStream Script

Initially the number of sources is determined by user interaction {10}. Then two lists {12, 13} are defined
that specify the minimum and maximum time to be allocated to the UniformlyDistributedDelay
process in each EventSource.

Download free eBooks at bookboon.com

Click on the ad to read more

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

Using Concurrency and
Parallelism Effectively – I

130

External Events: Handling Data Sources

9.6	 Summary

This chapter has shown that the adoption of parallel processing design techniques and implementation can
shed a new light on age old computing problems. In particular, it allows designers to reason about both a
system’s behaviour and its performance when subjected to a large number of randomly occurring events.

9.7	 Exercises

Exercise 9-1

Using the suggestion (Section 9.4.4) made earlier in the chapter, construct an additional process
for the event handling system that ensures that the number of missed events is correct. The
additional process should be added to the network of processes. You may need to modify the
EventData class (Section 9.2.4) to facilitate this.

Exercise 9-2

The accompanying exercise package contains a version of the event handling system,
RunMultiStream, which allows the creation of 1 to 9 event streams. By modifying the times
associated with each event generation stream and also of the processing system explore the
performance of the system. What do you conclude?

Exercise 9-3

The process EventProcessing has three versions of multiplexer defined within it, two of
which are commented out. By choosing each of the options in turn, comment upon the effect
that each multiplexer variation has on overall system performance.

Exercise 9-4

A manufacturing process utilises hoppers and a blender. The hoppers are used to hold raw
materials and the blender is used to mix the contents from one or more hoppers. The collection
of hoppers and the blender is managed by a controller. The hoppers indicate when they are
ready to be used. The blender indicates when it is ready and also when mixing is to stop. The
hoppers and the blender are clients to the server manager of the controller. The hoppers make
a request to the manager to determine when they should stop processing raw materials. The
aim of this exercise is to create three different control regimes as follows:

i.	 The hoppers and the blender indicate they are ready to start but mixing only commences
when all three hoppers are ready after which the ready signal from the blender is ready.

ii.	 As in (i) above but mixing commences as soon as two hoppers and the blender are
ready. If three hoppers are ready before the blender is ready then the last hopper is
not used and will only be used during the following mixing cycle.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

131

External Events: Handling Data Sources

iii.	As in (ii) above but mixing commences as soon as just one hopper and the blender
are ready. If more than one hopper is ready before the blender becomes ready then
these are retained until the following mixing cycle(s).

The accompanying exercises package has definitions for Hopper and Blender processes that utilise the
GConsole to enable user interaction. These processes are complete and implement a client style behaviour.
The user inputs an ‘r’ into the input area of the GConsole of the required Hopper or Blender to signify
that it is ready. The Hopper or Blender process then outputs a ‘1’ to signal to the Manager process that
it is ready. The Manager then implements the required control regime as described above. A Hopper
process then sends a ‘2’ signal to the Manager indicating that it is ready to be stopped. The Blender
process waits for the user to input an ‘f ’ to indicate that blending can stop. The Blender then sends a ‘2’
to the Manager process. The Manager then completes the client-server interactions. The web site contains
scripts to execute each of the above control regimes. There are also outline process definitions for each
of the control regimes that need to be completed. Initially, you are advised to produce a process network
diagram to enable a better understanding of the interactions and process architecture.

Download free eBooks at bookboon.com

Click on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

Using Concurrency and
Parallelism Effectively – I

132

Deadlock Revisited: Circular Structures

10	� Deadlock Revisited:
Circular Structures

Some networks cannot be analysed using a client-server labelling

•	 a ring of processes invariably deadlocks
•	 plausible solutions are presented and then discounted
•	 deadlock avoidance strategies are described
•	 an argument is developed that shows that the final system will not deadlock

In previous chapters the concept of a client-server design pattern has been introduced and it has then
been applied to a number of simple examples. The primary requirement of the pattern is that any resulting
network should not contain any circuits of client and server labels. Needless to say, that if we have a ring
of processes then a circuit is inevitable. Hence, we shall investigate a ring of processes to explore how,
even though the client-server pattern cannot be applied, we can construct a system that is deadlock free.

The aim of the application is to construct a message passing structure from one node to another by
providing a set of message passing elements that connect each node to the next. The simplest way of
doing this is to create a ring of message passing nodes to which message sender and receiver processes
are attached. Figure 10-1 shows the basic structure with a client-server labelling that demonstrates
immediately that deadlock will occur, even ignoring the effect of the Sender and Receiver processes. It is
obvious that the set of channels that connect the Ring Element processes has to be broken in some way.
Deadlock will occur trivially when every Ring Element attempts to either input or output a message at
the same time. Thus we have to find a way of breaking the ring

Figure 10-1 The Basic Message passing System

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

133

Deadlock Revisited: Circular Structures

10.1	 A First Sensible Attempt

The simplest way of the breaking the ring of channels connecting the Ring Element processes is to add
another element to the ring which does the input and output operations in a different order to that
undertaken by the Ring Elements. This will mean that there is at least one element on the ring that is
always able to undertake an input operation if all the other Ring Elements are trying to output to the
ring. This is shown in Figure 10-2.

Figure 10-2 Adding the Extra Ring Element

The client-server labelling has not altered and still indicates a problem but we now know that the Extra
Ring Element undertakes its input – output operations in a different order to the Ring Elements. The
behaviour of a Ring Element is shown in Listing 10-1.

10	class RingElementv0 implements CSProcess {
11		
12	 def ChannelInput fromRing
13	 def ChannelOutput toRing
14	 def ChannelInput fromLocal
15	 def ChannelOutput toLocal
16	 def int element
17	
18	 void run () {
19	 def RING = 0
20	 def LOCAL= 1
21	 def ringAlt = new ALT ([fromRing, fromLocal])
22	 while (true) {
23	 def index = ringAlt.priSelect()
24	 switch (index) {

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

134

Deadlock Revisited: Circular Structures

25	 case RING:
26	 def packet = (RingPacket) fromRing.read()
27	 if (packet.destination == element)
28		 toLocal.write(packet)
29	 else
30		 toRing.write (packet)
31	 break
32	 case LOCAL:
33	 def packet = (RingPacket) fromLocal.read()
34	 toRing.write (packet)
35	 break
36	 }
37	 }
38	 }
39	}

Listing 10-1 The Ring Element Process Behaviour (Print Statements Omitted)

A Ring Element alternates over inputs from the ring and from its local sender process {21}. In a loop {22}
it determines the enabled alternative, giving priority to inputs from the ring {23}. An enabled input from
the ring is read {26} as a RingPacket, and if the message is for this element, it is written to the local
receiver {28}, otherwise it is written to the ring {30} for onward transmission. If the enabled alternative
is an input from the local sender then it is read {33} and written to the ring {34}.

Download free eBooks at bookboon.com

Click on the ad to read more

TMP PRODUCTION NY026057B

PSTANKIE

gl/rv/rv/baf

ACCCTR0005

Bookboon Ad Creative

4

6 x 4

12/13/2013

Bring your talent and passion to a
global organization at the forefront of
business, technology and innovation.
Discover how great you can be.

Visit accenture.com/bookboon

©
2013 Accenture.

All rights reserved.

http://s.bookboon.com/accentureCZintl

Using Concurrency and
Parallelism Effectively – I

135

Deadlock Revisited: Circular Structures

The behaviour of the Extra Ring Element is shown in Listing 10-2.

10	class ExtraElement implements CSProcess {
11
12	 def ChannelInput fromRing
13	 def ChannelOutput toRing
14	
15	 void run () {
16	 def packet = new RingPacket (source:-1, destination:-1,
17							 value:-1, full: false)
18	 while (true) {
19	 toRing.write(packet)
20	 packet = (RingPacket) fromRing.read()
21	 }
22	 }
23	}

Listing 10-2 The Behaviour of the Extra Ring Element (print Statements Omitted)

Given that the Ring Elements initially input from the ring, or local Sender process then the Extra Ring
Element has to output a packet, so that a Ring Element has a packet to read. A RingPacket is defined
{16, 17} which is then written to the ring {19}. Thereafter the process simply reads a RingPacket from
the ring {20} and then outputs it to the ring {19}. The empty packet will continue to circulate forever.

10.1.1	 Evaluation

The accompanying examples package contains a version of this first attempt c10.Runv0.groovy that
has print statements inserted within it to show the effect of this solution formulation. The user is able
to indicate the number of nodes in the network when the system is executed. The messages received by
each receiver process are displayed using a GConsole process. A network with 4 nodes will additionally
have the extra node numbered as node 0. The output changes with each execution of the network but
seldom terminates, though on occasion it has terminated. In a 4 node system each node should receive
3 messages from each of the other nodes, that is, each should receive 9 messages. Typically, no node
receives all its messages and some nodes receive no messages. Inspection of the system console print
messages indicates that the extra node does indeed output its empty packet and that this is read by the
next node in the ring. This means that the other nodes have no input on their ring input channels and so
they read a message from their local sender process. The sender processes attempt to send their messages
as quickly as possible. This then has the effect of sending many messages on to the ring, which at some
stage may deadlock when every node, including the extra node, attempt to undertake an input or an
output operation. Just when this occurs depends on the particular execution sequence. It is obvious that
we have to find a way of managing the number of messages in the ring.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

136

Deadlock Revisited: Circular Structures

10.2	 An Improvement

A simple improvement can be seen quite easily. If a node sends a message to another node on behalf
of its local node then the receiving node undertakes to send a message back to the original source that
the message has been read. This means that each node can only ever have one packet on the ring at
any one time. On the first part of its journey it contains the desired message and then once it has been
processed by the destination node it is returned with an empty flag. The definition of the RingPacket
used to send messages around the system is shown in Listing 10-3. The property source {12} gives
the number of the node that sent the message and destination {13} is the node to which it is to be
sent. The actual message is contained in the property value {14} and the Boolean full {15} indicates
whether the packet contains a message or is just an empty packet. A toString method is provided to
enable printing of the packet on the console window and also on the GConsole processes.

10	class RingPacket implements Serializable, JCSPCopy {
11		
12	 def int source
13	 def int destination
14	 def int value
15	 def boolean full
16	
17	 def copy () {
18	 def p = new RingPacket (source: this.source,
19						 destination: this.destination,
20						 value: this.value,
21						 full: this.full)
22	 return p
23	 }
24
25	 def String toString () {
26	 �def s = "Packet [s: ${source}, d: ${destination}, v: ${value}, f: ${full}] "
27	 return s
28	 }
29	}

Listing 10-3 The RingPacket Class definition

A first running, c10.examples.Runv1.groovy, of this modification typically results in even worse
performance than the initial version. On reflection this is obvious. The Extra Ring Element process still
outputs an empty packet onto the ring and thus there will be no space for the messages to rotate around
the ring. The solution is to modify the Extra Ring Element process so that it provides an empty space
on the ring of nodes so that a communication can take place. This behaviour is shown in Listing 10-4.
This does mean that the Extra Ring Element has to read {17} and then write {18} a packet, the same as
all the other nodes.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

137

Deadlock Revisited: Circular Structures

10	class ExtraElementv1 implements CSProcess {
11		
12	 def ChannelInput fromRing
13	 def ChannelOutput toRing
14	
15	 void run () {
16	 while (true) {
17	 def packet = (RingPacket) fromRing.read()
18	 toRing.write(packet)
19	 }
20	 }
21	}

Listing 10-4 The Modified Behaviour of The Extra Ring Element (Print Statements Omitted)

The execution of c10.examples.Runv1a.groovy now results in the proper operation of the network
with all Receivers getting and outputting the expected messages. The solution does however have some
limitations in that only one packet is ever in circulation for each node as shown in the behaviour given
in Listing 10-5.

The solution uses an alternative with pre-conditions to control the input of messages either from the ring
or from the local sender {19–24}. Initially, messages can be input either from the ring or from the local
sender {23, 24}. The index of the enabled alternative is determined using a select method call {26}.

Download free eBooks at bookboon.com

Click on the ad to read more

 .

http://s.bookboon.com/AlcatelLucent

Using Concurrency and
Parallelism Effectively – I

138

Deadlock Revisited: Circular Structures

For messages read from the ring {29}, it is first determined whether the message has its destination
at this element {30}. It is then necessary to determine whether or not the packet is full {31}.

10	 class RingElementv1 implements CSProcess {
11	
12	 def ChannelInput fromRing
13	 def ChannelOutput toRing
14	 def ChannelInput fromLocal
15	 def ChannelOutput toLocal
16	 def int element
17	
18	 void run () {
19	 def RING = 0
20	 def LOCAL= 1
21	 def ringAlt = new ALT ([fromRing, fromLocal])
22	 def preCon = new boolean[2]
23	 preCon[RING] = true
24	 preCon[LOCAL] = true
25	 while (true) {
26	 def index = ringAlt.select(preCon)
27	 switch (index) {
28	 case RING:
29	 def packet = (RingPacket) fromRing.read()
30	 if (packet.destination == element) {
31		 if (packet.full) {
32			 toLocal.write(packet.copy())
33			 packet.destination = packet.source
34			 packet.source = element
35			 packet.full = false
36			 toRing.write(packet)
37		 }
38		 else
39			 preCon[LOCAL] = true
40	 }
41	 else
42		 toRing.write (packet)
43	 break
44	 case LOCAL:
45	 def packet = (RingPacket) fromLocal.read()
46	 toRing.write (packet)
47	 preCon[LOCAL] = false
48	 break
49	 }
50	 }
51	 }
52	}

Listing 10-5 The Ring Element That Expects A Returned Empty Packet (Print Statements Omitted)

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

139

Deadlock Revisited: Circular Structures

If the packet is full then we can write a copy of the packet to the local receiver process {32}. After which
we can update the content of the packet for its return journey to its originating node, because a copy
was written to the local receiver process. The destination and source properties of the packet are
updated accordingly {33, 34}, the packet.full indication is set false {35} and the revised packet
written to the ring {36}. If the received packet is not full {38} then this is a returned packet and the
ring element process can now input a message from its local sender, requiring an update to the associated
pre-condition {39}.

If the initial packet was not destined for this node element {41} then it is simply written to the ring {42}.

Messages read from the local sender process {45} are immediately written to the ring {46} and the pre-
condition controlling input from the local sender is set false {47}. As described above, this pre-condition
will only be set true, when the returned empty packet has been received.

10.2.1	 Evaluation

This solution, though functional, does still have some performance limitations in that an element has
to wait for a sent packet to be returned before the next message can be sent. This means that on average
half the network is filled with empty packets. The next solution removes this restriction by allowing the
reuse of an empty packet if a node is ready to send a message from its local sender process.

10.3	 A Final Resolution

The behaviour shown in Listing 10-6 shows the behaviour modification required to use an empty packet,
as it passes through a node that is ready to output a local message.

10	class RingElementv2 implements CSProcess {
11	
12	 def ChannelInput fromRing
13	 def ChannelOutput toRing
14	 def ChannelInput fromLocal
15	 def ChannelOutput toLocal
16	 def int element
17	
18	 void run () {
19	 def RING = 0
20	 def LOCAL= 1
21	 def ringAlt = new ALT ([fromRing, fromLocal])
22	 def preCon = new boolean[2]
23	 preCon[RING] = true
24	 preCon[LOCAL] = true
25	 def emptyPacket = new RingPacket (source: -1, destination: -1 ,
26								 value: -1 , full: false)
27	 def localBuffer = new RingPacket()

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

140

Deadlock Revisited: Circular Structures

28	 def localBufferFull = false
29	 toRing.write (emptyPacket)
30	 while (true) {
31	 def index = ringAlt.select(preCon)
32	 switch (index) {
33	 case RING:
34	 def ringBuffer = (RingPacket) fromRing.read()
35	 if (ringBuffer.destination == element) {
36	 toLocal.write(ringBuffer)
37	 if (localBufferFull) {
38		 toRing.write (localBuffer)
39		 preCon[LOCAL] = true
40		 localBufferFull = false
41	 }
42	 else {
43		 toRing.write (emptyPacket)
44	 }
45	 }
46	 else {
47	 if (ringBuffer.full) {
48	 toRing.write (ringBuffer)
49	 }
50	 else {
51		 if (localBufferFull) {
52		 toRing.write (localBuffer)
53		 preCon[LOCAL] = true
54		 localBufferFull = false
55	 }
56	 else {
57		 toRing.write (emptyPacket)
58	 }
59	 }
60	 }
61	 break
62	 case LOCAL:
63	 localBuffer = fromLocal.read()
64	 preCon[LOCAL] = false
65	 localBufferFull = true
66	 break
67	 } // end switch
68	 }
69	 }
70	}

Listing 10-6 The Final Ring Element Process (Print Statements Omitted)

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

141

Deadlock Revisited: Circular Structures

The setup of the preconditions and the alternative are the same as the previous version {19–24}. An
emptyPacket is defined {25, 26} as is a buffer {27} to hold messages from the local sender process.
A Boolean flag, localBufferFull {28} is used to signify whether or not the localBuffer is full.
The first action each RingElement node undertakes is to output an emptyPacket {29}, which has
the effect of initialising the system. In general, this initial empty packet will only pass as far as the next
node, which by then will have input a message from its local sender and will thus be able to use this
empty packet. The extra element has the revised behaviour given in Listing 10-4. As before, the index
of the enabled alternative is determined {31) and the appropriate case selected {32}.

If the selected alternative is to read an input packet from the local sender process {62} this is read
into the localBuffer {63}, the pre-condition flag for this alternative is set false {64} and the
localBufferFull flag set true{65}. This does not cause the packet to be written to the ring, merely
to get it ready to be written.

If the selected alternative relates to an input from the ring then the message packet is read into a ringBuffer
{34} and the subsequent processing is determined by the state of that message. If the destination of the
message is for this node {35} then the message is written to the local receiver process {36}. This means that
the node can output the localBuffer to the ring if it is full and update the flags associated with the buffer
{37–40}; otherwise an emptyPacket is written to the ring {43}. If the ringBuffer does not have this node
as its destination {46} then if the ringBuffer is full it is simply written to the ring {47–48}, otherwise
the localBuffer is processed in the way described previously {51–58}.

Download free eBooks at bookboon.com

Click on the ad to read more

��������	
�����
������
��������
���������
�����������
��������
�����
��
���������������������������

������
������

������������������������������ �����	�����
	�
�����	������!���"�
	������������

�
	�

�����#$%����&'())%�*+������
	�
���,���������
�-

.�
��������������������
������������
��

��������	
��
����

��	��������	
��
����

���������
���

����������

����������
�����
��

���������

 The Wake
the only emission we want to leave behind

http://www.mandieselturbo.com

Using Concurrency and
Parallelism Effectively – I

142

Deadlock Revisited: Circular Structures

10.3.1	 Evaluation

This final version has resulted in a solution that routes messages around a circular network, which is
inherently prone to deadlock. This version does not suffer from the drawbacks of the previous solution
in that an empty packet only travels around the network until it comes to a node that needs to send a
message from its localBuffer to another node. An argument has been presented that explains why
deadlock will not occur because client-server labelling does not provide a categorical solution and
furthermore indicates that deadlock will occur.

10.4	 Summary

This chapter has analysed a set of processes that inherently tend to deadlock. Two algorithms have been
developed that overcome the problems. The benefit of one solution over the other has been explained,
though this is difficult to measure unless the system is run over a real network, where each Ring Element
process can be placed on a specific processor of that network.

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/gee_change

Using Concurrency and
Parallelism Effectively – I

143

Graphical User Interfaces: Brownian Motion

11	� Graphical User Interfaces:
Brownian Motion

This chapter introduces the concept of active user interface components

•	 active components are implemented by a process
•	 they have channel interfaces
•	 an alternative can be used to determine which component is ready for interaction
•	 the user interface has a declarative style with little or no coding for the interactions
•	 the application demonstrates how animation can be achieved
•	 the use of any2one and one2any channels is explained and justified

Previously, a simple user interface (GConsole) has been used that enables easier interpretation of the
output from process networks. This chapter explores more complex user interfaces in conjunction with
a relatively simple graphical application based upon particle movement.

The JCSP package contains an active implementation of the Java AWT (Abstract Windows Toolkit). The
term active is here used to mean that each AWT component, for example, button, scrollbar and canvas,
has been wrapped in a process so that component events and configuration are undertaken by channel
communications. This means that the active components can be connected to any process. Furthermore,
the programmer does not have to write any event handling or listener methods as these are contained
within the active process wrapper. The active components inherit capabilities from the basic AWT
components, thus the methods and fields associated with the component can be reused and active and
ordinary, non-active, components can be used in the same interface.

The primary benefit of the active AWT components is that processes that access the user interface
can utilise their non-deterministic capabilities, thereby reflecting the unpredictable behaviour of user
interfaces. The user interface has no knowledge of when, for example, a button is going to be pressed
and thus either a channel communication or an alternative provides a simple method for capturing that
non-deterministic behaviour.

11.1	 Active AWT Widgets

The fundamental process diagram for an active widget is shown in Figure 11-1. A widget is any component
available in the java.awt package for which an active version has been constructed. Some active widgets
have been constructed that simplify the construction of user interfaces. Specific widgets may have more
or less channels depending upon the functionality of the widget.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

144

Graphical User Interfaces: Brownian Motion

All widgets have a configure input channel which enables the configuration of the widget at run-time.
In most cases the configuration of a new widget can be defined when it is constructed, unless of course
the content of the user interface is to be altered by changing the configuration of one of its widgets. For
example, when a button has its associated text changed to reflect the state of the user interface. Each
of the active component output channels produces data values that are related to the underlying AWT
specification of that event and is specified in the java.awt documentation. The role of the configuration
and event channels is specified in the org.jcsp.awt documentation and depends upon the specific
component. For example, if the event arises from the pressing of an ActiveButton then the message
communicated is the text string associated with the button. Similarly, a configuration channel message
could be a text string that is to replace the current text associated with the button.

Active

Widget
configure

event

widget event

focus event

key event

mouse event

mouse motion event

Figure 11-1 Generic Active Widget Process Diagram

11.2	 The Particle System – Brownian Motion

A particle motion system (Lea, 2003) comprises a number of particles that move around at random. Their
position is shown on a Canvas. Using Java threads and a Canvas results in a somewhat cumbersome
representation of the solution because a Canvas executes in its own thread of control, which has the
effect of distributing the particle control, random movement and the graphical representation throughout
the classes that make up the solution.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

145

Graphical User Interfaces: Brownian Motion

In the parallel solution that follows (see Figure 11-2) these drawbacks are eliminated and the fact that
a Canvas has to execute in its own thread of control is hidden from the programmer. Furthermore in
this solution we shall introduce some additional capabilities. The particles will bounce off the side of
the bounding Canvas. The user will be given control of the application with a button that allows them
to initially start the system and then subsequently to pause and resume its operation. In addition two
buttons are provided which modify the ‘temperature’ of the system. The higher the temperature the
greater the random movement exhibited by the particles. The particles do not bounce off each other
and that is left as an additional exercise for the interested reader.

A number of particles (Particle 0 to n) are connected to the ParticleInterface. This utilises
a new form of channel called any2one. An any2one channel enables the connection of any number
of writer processes to a single reader process. The point-to-point nature of channel communication is,
however, still maintained because only one communication can proceed at a time. Communications on
an any2one are such that communication from one writer to the single reader is completed before the
next writer can commence its communication. The converse is true of one2any channels. The JCSP
library also includes any2any channels where yet again once a communication has started it behaves
like a one-to-one communication.

Download free eBooks at bookboon.com

Click on the ad to read more

Corporate eLibrary
See our Business Solutions for employee learning

Click here

Management

CoachingMotivationGoal setting

Problem solving

Time Management

Project Management

http://s.bookboon.com/bbg-elibrary-2015

Using Concurrency and
Parallelism Effectively – I

146

Graphical User Interfaces: Brownian Motion

Particles are not aware of their position relative to the sides of the bounding Canvas and thus
the particle may move to a position that is outside the bounding Canvas. In this case the particle’s
position is updated within the ParticleInterface. The updated position together with any change
of temperature is returned to the Particle using the update channel. The update channel is a one2any
channel that permits one writer to write to any number of readers. This is not a broadcast communication
because the writer can only write to one of the reader processes at any one time. Furthermore, once one
of the many reader processes has committed to a communication no other reader will be able to start a
communication until the writer has written to that reader process.

cc

connect

update

Particle 0 Particle n

ParticleManager

UserInterface

dList tempConfig uiEvent

…

pauseConfig

ParticleInterface

s

Figure 11-2 Brownian Motion Process Network

The ParticleManager is responsible for receiving inputs from the Particle processes; modifying
their position, should the indicated position lie outside the bounding canvas; and then causing the display
of the particle’s position on the canvas. The ParticleManager is also responsible for dealing with button
events from the UserInterface and configuring the buttons and labels within the UserInterface.
Data is passed between the Particle processes and the ParticleManager by means of a data object
that contains both positional information as well as any change to the temperature.

The UserInterface contains the display canvas, together with a button that is used to initially start
and then subsequently used to pause and restart the system. Two further buttons are provided that are
used to increase or decrease the temperature together with a Label that shows the current temperature
value with an indication of whether the last change was up or down. The channels used between the
ParticleManager and the UserInterface will be described more fully in a later section.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

147

Graphical User Interfaces: Brownian Motion

11.2.1	 The Position Data Object

The Position data object, see Listing 11-1, is used to communicate data between the Particles and the
ParticleInterface.

Position implements the interface JCSPCopy {10}, which is defined within the org.jcsp.groovy
package. It should be recalled that objects are passed between processes running on the same machine
by means of an object reference. In some situations this could lead to the creation of a large number of
newly created short-lived objects, which could lead to the calling of the automatic Java garbage collector.
The calling of the garbage collector during a graphical display would interfere with the presentation.
The abstract interface JCSPCopy defines a method called copy(), which can be used to generate a deep
copy of an object.

Lines {12–17} define the properties of Position. The property id is the number of the Particle. The
properties lx and ly are the newly calculated [x, y] position co-ordinates of the Particle. These co-
ordinates may lie outside the display area. The properties px and py are the co-ordinates of the previous
position of the particle. The property temperature maintains the current value of the temperature
within the system. All the properties, apart from id can be altered within the ParticleInterface.

10	class Position implements JCSPCopy {
11		
12	 def int id // particle number
13	 def int lx // current x location of particle
14	 def int ly // current y location of particle
15	 def int px // previous x location of particle
16	 def int py // previous y location of particle
17	 def int temperature // current working temperature
18	
19	 def copy() {
20	 def p = new Position (id: this.id,
21						 lx: this.lx, ly: this.ly,
22						 px: this.px, py: this.py,
23						 temperature : this.temperature)
24	 return p
25	 }
26
27	 def String toString () {
28	 def s = "[Position-> " + id + ", " + lx + ", " + ly
29	 s = s + ", " + px + ", " + py
30	 s = s + ", " + temperature + "]"
31	 return s
32	 }
33	}

Listing 11-1 The Position Data Object

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

148

Graphical User Interfaces: Brownian Motion

Lines {19–25} define the method copy required for the implementation of the interface JCSPCopy.
For completeness, a toString method is defined {27–32} that can be used to output the contents of a
Position object.

11.2.2	 The Particle Process

The definition of the Particle process is shown in Listing 11-2.

10	class Particle implements CSProcess {
11		
12	 def ChannelOutput sendPosition
13	 def ChannelInput getPosition
14	 def int x = 100 // initial x location
15	 def int y = 100 // initial y location
16	 def long delay = 200 // delay between movements
17	 def int id
18	 def int temperature = 25 // in range 10 to 50
19	
20	 void run() {
21	 def timer = new CSTimer()
22	 def rng = new Random()
23	 �def p = new Position (id: id, px: x, py: y, temperature: temperature)
24	 while (true) {
25	 p.lx = p.px + rng.nextInt(p.temperature) – (p.temperature / 2)

Download free eBooks at bookboon.com

Click on the ad to read more

http://thecvagency.co.uk

Using Concurrency and
Parallelism Effectively – I

149

Graphical User Interfaces: Brownian Motion

26	 p.ly = p.py + rng.nextInt(p.temperature) – (p.temperature / 2)
27	 sendPosition.write (p)
28	 p = ((Position)getPosition.read()).copy()
29	 timer.sleep (delay)
30	 }
31	 }
32	}

Listing 11-2 The Particle Process

A Particle has two channels one {12}, sendPosition, to output its Position to, and the other
{13}, getPosition, to receive updated Positions from the ParticleInterface. It should be noted
that even though these channels will eventually be implemented as any2one and one2any channels as
far as the process is concerned these are just a ChannelOutput and ChannelInput respectively. The
properties x {14} and y {15} hold the initial position of the particle. A default display area of 200 pixels
is presumed and thus all particles start their movement from the centre of that area. The position of
the particles will be recalculated after the interval specified by delay {16}, which is initially set to 200
milliseconds. Each Particle is given a unique identification id {17}. The initial temperature of the
system is set at 25 {18} and can range from 10 to 50.

The run method defines a CSTimer called timer {21} and uses the Java provided random number
generator mechanism, Random () {22}. The variable p holds the Position of the particle and is
constructed using the initial values held within the properties passed to the process {23}.

The main loop of the process {24-30} requires the calculation of the new position of the particle lx and ly
that are stored in the variable object p {25, 26}. The calculation ensures that the particle moves in a space
that surrounds the current location [px, py] by a square with a side of size temperature. The position
p is then written to the ParticleInterface {27}. This is a write operation that is implemented
on a shared any2one channel and thus the process will have to wait until any other outstanding
communications have completed. An any2one channel is essentially fair in that the communications
are placed in a queue of such communications.

The Particle process behaves like a client to the ParticleInterface’s server. As soon as it has
written its position to the ParticleInterface it reads the updated position information {28} from
the getPosition channel. The getPosition channel is implemented by means of a one2any channel
and thus this client – server interaction has to be carefully considered. When the sendPosition.
write(p) {27} communication is completed only this Particle process can be in that state because
only one communication is permitted on an any2one channel. Hence the only process that will be in
a position to undertake a read on the getPosition channel is this process. Hence we are assured
that a Particle process that writes its position to ParticleInterface will be the one to receive its
response, even though we are using shared any2one and one2any channels.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

150

Graphical User Interfaces: Brownian Motion

Finally, the Particle process sleeps for the delay period {29} after which the loop is repeated until the
user stops the application through the user interface. The user interface will cause the Particle processes
to stop even though they are implemented using a non-terminating while-loop.

11.2.3	 The Particle Interface Process

This process, shown in Listing 11-3 is typical of any application that uses a graphical user interface in
that it comprises a process that undertakes both the interaction with the user interface and the rest of
the system and the process that implements the user interface itself. These two processes are always run
in parallel using communication channels to pass events and configuration information between the
processes.

The channels inChannel {12} and outChannel {13} are used to connect this process to the Particle
processes. Yet again this process definition does not need to be aware of the specific implementation of
the channels actually used to connect the processes together. The property canvasSize {14} provides
a default size for the display area. Similarly, properties are defined for the number of particles {15},
the centre of the display area {16} and the intialtemp(erature) {17} of the system.

The variable dList {20} is of type DisplayList, defined within org.jcsp.awt. The use of dList
will be described later. It is sufficient to note, at this stage, that it is passed as a property to the
ParticleManager process {28}. An ActiveCanvas, particleCanvas is defined {21} and then a
call to its setPaintable() method is made that associates it with dList {22}. In this manner both
ParticleManager and UserInterface can access dList, the former directly as a property and
the other indirectly through particleCanvas {36}. Essentially, dList is a shared object between
the processes but the user can only modify the dList in ParticleManager directly. Therefore a
DisplayList object has to be defined before either of the processes that access it are defined. A
DisplayList is the mechanism by which animation can be more easily achieved.

10	class ParticleInterface implements CSProcess {
11		
12	 def ChannelInput inChannel
13	 def ChannelOutput outChannel
14	 def int canvasSize = 100
15	 def int particles
16	 def int centre
17	 def int initialTemp
18	
19	 void run() {
20	 def dList = new DisplayList()
21	 def particleCanvas = new ActiveCanvas()
22	 particleCanvas.setPaintable (dList)
23	 def tempConfig = Channel.one2one()

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

151

Graphical User Interfaces: Brownian Motion

24	 def pauseConfig = Channel.one2one()
25	 def uiEvents = Channel.any2one(new OverWriteOldestBuffer(5))
26	 def network = [new ParticleManager (fromParticles: inChannel,
27								 toParticles: outChannel,
28								 toUI: dList,
29								 fromUIButtons: uiEvents.in(),
30								 toUIPause: pauseConfig.out(),
31								 toUILabel: tempConfig.out(),
32								 CANVASSIZE: canvasSize,
33								 PARTICLES: particles,
34								 CENTRE: centre,
35								 START_TEMP: initialTemp),
36					 �new UserInterface (particleCanvas: particleCanvas,
37								 canvasSize: canvasSize,
38								 tempValueConfig: tempConfig.in(),
39								 �pauseButtonConfig: pauseConfig.in(),
40								 buttonEvent: uiEvents.out())
41]
42	 new PAR (network).run()
43	 }
44	}

Listing 11-3 The ParticleInterface Process

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/elearningforkids

Using Concurrency and
Parallelism Effectively – I

152

Graphical User Interfaces: Brownian Motion

The tempConfig channel {23} is used to update the temperature display in the interface. The pauseConfig
{24} channel is used to set the text in the START/PAUSE/RESTART button.

The uiEvents channel {25} passes button events from the UserInterface to the ParticleManager
process. It is not possible to press two buttons at the same time hence we can use an any2one
channel, which simplifies processing within the ParticleManager process. The parameter
OverWriteOldestBuffer (5) specifies that this channel will use a buffer of 5 elements in which,
should it become full the oldest element in the buffer will be overwritten. This buffer is required because
it is essential that events on this channel are always read otherwise the underlying Java event thread may
block, which would also have the effect of stopping the rest of the user interface. The specified buffer will
always read an input, hence ensuring that the Java event thread will not block and that another process
will always be able to read the last few events, five in this case, even if the reading process is slow.

The network {26–41} simply comprises the ParticleManager and UserInterface processes with
parameters and variables passed as parameters as required to construct the process network as shown
in Figure 11-2.

11.2.4	 The ParticleManager Process

The properties of the ParticleManager process are shown in Listing 11-4. The channel connections
with Particle processes are provided by the channels fromParticles {12} and toParticles {13}.
When the system is instantiated these will be passed shared channels of type any2one and one2any
respectively. The constant properties {15–18} respectively contain the size of the square display area
(CANVASSIZE), number of particles (PARTICLES), the centre co-ordinate of the display area (CENTRE)
and the initial value of the system temperature (START_TEMP). The DisplayList property {14}, toUI,
provides the graphical connection between the ParticleManager and UserInterface processes.
The ChannelInput {19}, fromUIButtons, is the channel by which button events from the user
interface are communicated to ParticleManager. Finally, the ChannelOutputs toUILabel {20}
and toUIPause {21} provide the means by which the temperature value and the START, PAUSE and
RESTART button have their values changed.

10	class ParticleManager implements CSProcess {
11		
12	 def ChannelInput fromParticles
13	 def ChannelOutput toParticles
14	 def DisplayList toUI
15	 def int CANVASSIZE
16	 def int PARTICLES
17	 def int CENTRE
18	 def int START_TEMP
19	 def ChannelInput fromUIButtons
20	 def ChannelOutput toUILabel
21	 def ChannelOutput toUIPause
22	

Listing 11-4 ParticleManager Properties

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

153

Graphical User Interfaces: Brownian Motion

The initialisation of the ParticleManager is shown in Listing 11-5. The variable colourList {24–26}
contains a list of java.awt.colors that is used to colour the particles once they start moving. The
variable temperature {28} is assigned the value of property START_TEMP.

The next part {30–46} initialises the variables that will be used by the DisplayList mechanism.
The variable, particleGraphics {30}, used to set() a DisplayList comprises an array of
GraphicsCommands. The initial element of particleGraphics {32} contains a GraphicsCommand
that clears the display area. The remainder of particleGraphics comprises two elements per particle.
The first element of which is a command to set the colour of the particle and the second will draw a circle
of that colour with a radius of 10 pixels at the position of the particle. However for initialisation, each
particle is set to the colour BLACK {36} and placed at the CENTRE {37} of the display area. This is captured
in the variable initialGraphic {34}. The nested for loops {39–44} copy the initialGraphic into
the array particleGraphics. Thus particleGraphics comprises a first command to clear the
display followed by as many pairs of GraphicsCommands as there are particles needing to be drawn.
The DisplayList, toUI is then set() to particleGraphics {46}. The manner in which the
DisplayList is manipulated will be described later.

The two element array positionGraphic {47–51} will subsequently be used to update the DisplayList
to reflect the movement of particles. It is initialised to sensible values that will be overwritten. However it
can be observed that the first element of the array contains a command to set the colour and the second
causes the drawing of a circle of that colour. The ParticleManager process alternates over inputs from
the user interface buttons, fromUIButtons and from the particles on channel fromParticles {53}.
The String initTemp is defined to hold the initial value of temperature {55} surrounded by spaces.
This String is then written to the label that displays this value using the channel toUILabel {56}.

23	 void run() {
24	 def colourList = [Color.BLUE, Color.GREEN,
25					 Color.RED, Color.MAGENTA,
26					 Color.CYAN, Color.YELLOW]
27
28	 def temperature = START_TEMP
29
30	 �GraphicsCommand[] particleGraphics = new GraphicsCommand[1+(PARTICLES*2)]
31	
32	 �particleGraphics[0] = new GraphicsCommand.ClearRect(0, 0,

CANVASSIZE,CANVASSIZE)
33
34	 GraphicsCommand [] initialGraphic = new GraphicsCommand [2]
35
36	 initialGraphic[0] = new GraphicsCommand.SetColor (Color.BLACK)
37	 �initialGraphic[1] = new GraphicsCommand.FillOval (CENTRE, CENTRE, 10, 10)
38	

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

154

Graphical User Interfaces: Brownian Motion

39	 for (i in 0 ..< PARTICLES) {
40	 def p = (i * 2) + 1
41	 for (j in 0 ..< 2) {
42	 particleGraphics [p+j] = initialGraphic[j]
43	 }
44	 }
45	
46	 toUI.set (particleGraphics)
47	 GraphicsCommand [] positionGraphic = new GraphicsCommand [2]
48	 positionGraphic =
49	 [new GraphicsCommand.SetColor (Color.WHITE),
50	 new GraphicsCommand.FillOval (CENTRE, CENTRE, 10, 10)
51]
52	
53	 def pmAlt = new ALT ([fromUIButtons, fromParticles])
54	
55	 def initTemp = " " + temperature + " "
56	 toUILabel.write (initTemp)
57	
58	 def direction = fromUIButtons.read()
59	 while (direction != "START") {
60	 direction = fromUIButtons.read()
61	 }
62	 toUIPause.write("PAUSE")
63	

Listing 11-5 ParticleManager Initialisation

The variable direction is read from the channel fromUIButtons {58}. A user interface button signals
a button event by communicating the String that is currently displayed by the button. Recall that all
the user interface buttons are connected to the same channel, fromUIButtons. Only the START/PAUSE/
RESTART button has the initial value START and thus the process will wait until the button labelled
START is pressed. This behaviour is captured in the while loop {59–61}, which ignores any other button
events. Once START has been read, the button’s text value is changed to PAUSE {62} by writing to the
toUIPause channel. The operation of the system now commences and this is shown in Listing 11-6.

The index of the selected alternative is obtained, with priority being given to button events {65}. If the
value read from the channel fromUIButtons is PAUSE {68} then it is immediately overwritten with
RESTART {69}. The process then waits for the button event RESTART ignoring all other button events
{71–73}. Once the system has been restarted the button is overwritten with the value PAUSE {74}.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

155

Graphical User Interfaces: Brownian Motion

64	 while (true) {
65	 def index = pmAlt.priSelect()
66	 if (index == 0) { // dealing with a button event
67	 direction = fromUIButtons.read()
68	 if (direction == "PAUSE") {
69	 toUIPause.write("RESTART")
70	 direction = fromUIButtons.read()
71	 while (direction != "RESTART") {
72		 direction = fromUIButtons.read()
73	 }
74	 toUIPause.write("PAUSE")
75	 }
76	 else {
77	 if ((direction == "Up") && (temperature < 50)) {
78			 temperature = temperature + 5
79			 def s = "+" + temperature + "+"
80			 toUILabel.write (s)
81	 }
82	 else {
83		 if ((direction == "Down") && (temperature > 10)) {
84			 temperature = temperature – 5
85			 def s = "-" + temperature + "-"
86			 toUILabel.write (s)

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/academictransfer

Using Concurrency and
Parallelism Effectively – I

156

Graphical User Interfaces: Brownian Motion

87		 }
88		 else {
89		 }
90	 }
91	 }
92	 }

Listing 11-6 ParticleManager Button Event Processing

If the value read into direction is not PAUSE then it must either be Up or Down which are the text strings
associated with the buttons that manipulate the temperature of the system. If the Up button is pressed
and provided the current value of temperature is less than 50 {70} then the temperature is raised
by 5 {78} and the new value of temperature is written to the interface using the channel toUILabel
surrounded by + symbols {79–80}. Similarly if the Down button is pressed then the temperature is
reduced by 5 provided its current value is greater than 10 and is output surrounded by – symbols {83–89}.

Listing 11-7 shows the processing that deals with the movement of particles.

93	 else { // index is 1 particle movement
94	 def p = (Position) fromParticles.read()
95	 if (p.lx > CANVASSIZE) { p.lx = (2 * CANVASSIZE) – p.lx }
96	 if (p.ly > CANVASSIZE) { p.ly = (2 * CANVASSIZE) – p.ly }
97	 if (p.lx < 0) { p.lx = 0 – p.lx }
98	 if (p.ly < 0) { p.ly = 0 – p.ly }
99	 �positionGraphic [0] = new GraphicsCommand.SetColor(colourList.

getAt(p.id%6))
100	 �positionGraphic [1] = new GraphicsCommand.FillOval (p.lx, p.ly, 10, 10)
101	 toUI.change (positionGraphic, 1 + (p.id * 2))
102	 p.px = p.lx
103	 p.py = p.ly
104	 p.temperature = temperature
105	 toParticles.write(p)
106	 } // index test
107	 } // while
108	 } // run
109	}

Listing 11-7 ParticleManager Particle Movement Processing

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

157

Graphical User Interfaces: Brownian Motion

Recall that ParticleManager is behaving as a server process. Hence we would expect to see it read a client
request {94}, undertake some processing and then respond with the return value {105}. The Position
data object is read into the variable p from the channel fromParticles {94}. The proposed location
[lx, ly] of the particle is then assessed as to whether it still remains within the display area {95–98}
and if not, its position is adjusted assuming that the reflection from the side of the display area involves
no friction or elastic compression of the particle. The value of the PositionGraphic array is then
modified to reflect the particle’s colour by taking the modulus 6 remainder of the particle’s id {99} and
then setting the centre of the circle to [lx, ly] {100}. This is then used to overwrite the data for this
particle in the DisplayList parameter using the toUI.change() method {101}.

The position of the particle can now be updated {102, 103}. The current value of temperature is assigned
to the corresponding property of object p {104} and the updated object p is then written back to the
waiting Particle process {105}, as described in Section 11.2.2.

The description of the operation of a DisplayList can now be completed. An ActiveCanvas takes the
DisplayList object as a parameter. Internally, the ActiveCanvas constructs two copies of the associated
DisplayList array of Graphics commands. These copies are used to provide a double buffering mechanism;
this however is hidden from the programmer. At a specified period the ActiveCanvas draws the current
buffer on the display, while other changes are recorded in the other copy. This mechanism is repeated
displaying the first buffer and recording changes in the second and then displaying the second buffer
while recording changes in the first copy.

The DisplayList is initialised by a set method {46}. Thereafter specific elements of the DisplayList
can be altered using the change method {101}. Thus the programmer generates the effect of continually
updating the display, which in fact is using a double buffering technique to smooth the repainting of
the display. The user is not concerned with the repainting of the display as this handled within the
ActiveCanvas process. Thus the DisplayList array of GrahicsCommands has an initial element
that clears the display area, which is then overwritten by the sequence of GraphicsCommands in
the array. In this manner sophisticated animation can be achieved, without having to overwrite each
particle individually.

11.2.5	 The UserInterface Process

The UserInterface process is shown in Listing 11-8. The properties of the process include the
particleCanvas, fromPM {12}, the size of the canvas {13}, the two input channels, tempValueConfig
{14} and pauseButtonConfig {15} used to configure the temperature value and the start button. Finally,
the buttonEvent channel is used to output button events to the ParticleManager process {16}.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

158

Graphical User Interfaces: Brownian Motion

The run method of this process comprises a declarative style list of definitions and associated method calls
that instantiates the graphical user interface. First, root {19}, an ActiveClosingFrame is defined that
will be used to hold the rest of the interface components. An ActiveClosingFrame is defined with the
frame’s title as a parameter and is not introduced by a property name because these processes are defined
as Java classes and thus are constructed using the normal Java mechanism. ActiveClosingFrame is
a specialisation of ActiveFrame that permits the closing of the frame using the normal window based
controls. Interface components have to be added to the enclosed frame which is accessed by means of
the getActiveFrameMethod() call {20}. The next part of the Listing shows the definition of the
interface widgets both active and ordinary AWT non-active ones which can be mixed as required. The
Label, tempLabel, which displays the text ‘Temperature’ is constructed {21}. An ActiveLabel
called tempValue is then defined {22} with the channel tempValueConfig as its parameter. Typically,
an active widget has a constructor that comprises the configuration and event channels, together with
any other appropriate parameter. The alignment of the label is also specified {23}. After this the required
ActiveButtons are defined {24–26}, in which the null parameter is a placeholder for the not needed
configuration channel. The additional parameter specifies the initial text associated with the button. The
pauseButton requires a configuration channel {26} because the value of the text String associated
with the button changes as the application progresses.

Download free eBooks at bookboon.com

Click on the ad to read more

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

Using Concurrency and
Parallelism Effectively – I

159

Graphical User Interfaces: Brownian Motion

10	class UserInterface implements CSProcess {
11		
12	 def ActiveCanvas particleCanvas
13	 def int canvasSize
14	 def ChannelInput tempValueConfig
15	 def ChannelInput pauseButtonConfig
16	 def ChannelOutput buttonEvent
17	
18	 void run() {
19	 �def root = new ActiveClosingFrame ("Brownian Motion Particle System")
20	 def mainFrame = root.getActiveFrame()
21	 def tempLabel = new Label ("Temperature")
22	 def tempValue = new ActiveLabel (tempValueConfig)
23	 tempValue.setAlignment(Label.CENTER)
24	 def upButton = new ActiveButton (null, buttonEvent, "Up")
25	 def downButton = new ActiveButton (null, buttonEvent, "Down")
26	 �def pauseButton = new ActiveButton(pauseButtonConfig, buttonEvent, "START")
27	 def tempContainer = new Container()
28	 tempContainer.setLayout (new GridLayout (1, 5))
29	 tempContainer.add (pauseButton)
30	 tempContainer.add (tempLabel)
31	 tempContainer.add (upButton)
32	 tempContainer.add (tempValue)
33	 tempContainer.add (downButton)
34	 particleCanvas.setSize (canvasSize, canvasSize)
35	 mainFrame.setLayout(new BorderLayout())
36	 mainFrame.add (particleCanvas, BorderLayout.CENTER)
37	 mainFrame.add (tempContainer, BorderLayout.SOUTH)
38	 mainFrame.pack()
39	 mainFrame.setVisible (true)
40	 �def network = [root, particleCanvas, tempValue, upButton,

downButton, pauseButton]
41	 new PAR (network).run()
42	 }
43	}

Listing 11-8 The User Interface Process

Next a Container, tempContainer is defined {27} that holds all the components associated with the
manipulation of temperature together with the pauseButton. The Container uses a GridLayout
{28}. The previously defined buttons and labels are then added to the tempContainer {29–33}. The
size of particleCanvas is specified {34}.

The mainframe can now be created {35–39} by specifying it to be a BorderLayout {35}. The
particleCanvas and tempContainer are then added to the mainframe in the CENTER and SOUTH of
the layout {36, 37}. The mainframe is then packed and setVisible {38, 39}, in the manner normally
required by AWT interfaces.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

160

Graphical User Interfaces: Brownian Motion

Finally, a process network is constructed that comprises the root and the remaining active widgets {40}.
The network is then run {41} and that is all that needs to be specified for the user interface requirements
of this application. The event handler and listener methods normally required do not have to be written
as these have been encapsulated within the active widgets, thereby simplifying the construction of the
user interface.

11.2.6	 Invoking the Brownian Motion System

Listing 11-9 gives the script that is required to invoke the Brownian motion system. The any2one
channel connect and the one2any channel update are defined {10, 11}. The fundamental constants
of the system are either obtained from a user interaction or defined as constants {13-16}. The empty
List network is defined {18} to which is appended each of the Particle processes {20–26}. The
ParticleInterface process is finally appended to network {28–33}. The system is then executed
by running PAR {35}.

10	def connect = Channel.any2one()
11	def update = Channel.one2any()
12
13	def CSIZE = Ask.Int ("Size of Canvas (200, 600)?: ", 200, 600)
14	def CENTRE = CSIZE / 2
15	def PARTICLES = Ask.Int ("Number of Particles (10, 200)?: ", 10, 200)
16	def INIT_TEMP = 20
17
18	def network = []
19	for (i in 0..< PARTICLES) {
20	 network << new Particle (id: i,
21						 sendPosition: connect.out(),
22						 getPosition: update.in(),
23						 x: CENTRE,
24						 y: CENTRE,
25						 temperature: INIT_TEMP)
26	}
27
28	network << (new ParticleInterface (inChannel: connect.in(),
29							 outChannel: update.out(),
30							 canvasSize: CSIZE,
31							 particles: PARTICLES,
32							 centre: CENTRE,
33							 initialTemp: INIT_TEMP))
34	println "Starting Particle System"
35	new PAR (network).run()

Listing 11-9 The Script To Invoke the Brownian Motion System

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

161

Graphical User Interfaces: Brownian Motion

A typical screen capture of the system, when it has been PAUSEd is shown in Output 11-1. We can observe
that the control button has been set to RESTART. The temperature is currently set at 40 and the last operation
was to increase its value because it is surrounded by + symbols. The Up and Down buttons are clearly visible.
The screen is derived from a system that has a canvas size of 450 pixels running 100 particles.

Output 11-1 Screen Capture of the Brownian Motion System

Download free eBooks at bookboon.com

Click on the ad to read more

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

Using Concurrency and
Parallelism Effectively – I

162

Graphical User Interfaces: Brownian Motion

11.3	 Summary

This chapter has described how user interfaces can be constructed very simply using the active widget
concept. Of most significance is the relative simplicity of the user interface definition as it does not require
the programmer to implement the event and listener methods normally required. It has introduced a
standard design pattern for user interface applications in which there is a process that undertakes the
processing ParticleManager and its associated UserInterface process that are executed in parallel.

The concept of a DisplayList has been introduced which simplifies the programming of animated
user interfaces based upon drawing in an ActiveCanvas. This in itself typifies the ease with which
user interfaces can be constructed using active widgets because the programmer can use the parallel
programming constructs to implement the interaction between user and application processes.

The design and implementation of user interfaces has become a much easier task because the user is no
longer concerned with the writing of event handler and listener methods. Furthermore, the encapsulation
of interface components, which run in their own thread and their associated event handler thread into
a single process, makes it much easier to build the system that interacts with the interface.

11.4	 Exercises

Exercise 11-1

The Control process in the Scaling system (Chapter 5) currently updates the scaling factor according to
an automatic system. Replace this with a user interface that issues the suspend communication, obtains
the current scaling factor and then asks the user for the new scaling factor that is then injected into the
Scaler. The original and scaled values should also be output to the user interface. There is a widget
called ActiveTextEnterField that may be useful (see the JCSP documentation).

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

163

Dining Philosophers: A Classic Problem

12	� Dining Philosophers:
A Classic Problem

Dining Philosophers is one of the best known and most used of the classic problems in concurrent and
parallel programming. This chapter:

•	 defines the problem
•	 explains its continuing relevance
•	 develops two different solutions, each of which begins with a faulty design

This problem first formulated by Dijkstra is cited by Hoare in his original paper on Communicating
Sequential Processes (Hoare, 1978). Tantalisingly, Hoare presents the problem and a partial solution
leaving it up to the reader to finish the solution. The problem was formulated at a time, in the mid-1970s,
when computer manufacturers were having a great deal of difficulty in building operating systems that
were correct and could withstand continued use. Typical problems that had to be overcome were deadlock
between different tasks and other tasks being starved of resources; exactly the same problems that the
client-server design pattern solves.

The problem has the following statement. Five philosophers spend their lives thinking and eating. They
share a common dining room in their college where there is a circular table surrounded by five chairs,
each is assigned to one of the philosophers. In the centre of the table there is a large bowl of spaghetti. The
table is set with five forks each one assigned to a specific philosopher. On feeling hungry the philosopher
enters the room, sits in his own chair and picks up his fork, which is to his left hand. The spaghetti is
so tangled that he needs to use the fork to his right hand side as well. When he has finished eating he
replaces both forks and leaves the room. The college has provided a butler who ensures that the bowl
of spaghetti is always full and can carry out other duties as necessary such as washing-up and guiding
philosophers to their own seat.

It is apparent that the critical aspect of this problem is in the management of the forks. If a philosopher
is never able to pick up the fork to their right then they will never be able to eat and will thus exhibit
starvation or as we have termed it, livelock. Similarly, if all the philosophers enter the room at the same
time and each picks up their own left fork none of them will be able to pick up their neighbour’s fork to
their right and thus deadlock will ensue as none of the philosophers will ever be able to eat.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

164

Dining Philosophers: A Classic Problem

12.1	 Naïve Management

The behaviour of a philosopher is relatively simple and is captured in Listing 12-1. A Philosopher can
access their own leftFork {12}, and their neighbour’s as their rightFork {13} they can also enter
{14} into or exit {15} from the room. A set of output channels is provided for each Philosopher so they
can indicate their intentions. A philosopher is identified by a property id {16}. The behaviour of each
philosopher will be governed by a timer {18}.

A method, action, has been provided {20-23} that prints the current action of a philosopher and also
makes them wait for a specified period. A Philosopher is initially thinking for 1 second {27}, after which
they enter the room {28}. They then indicate they are picking up their left fork by means of a signal {30}
and similarly for their right fork {32}.

They are then eating for 2 seconds {34}, after which they put down their left fork {35}, then their right
fork {37} and then they leave the room {39} to resume thinking {27}. After each successful interaction
an appropriate message is printed to the console. The messages from the Philosophers will be interleaved
on the console but in this case that is precisely what is required as we want to see how the Philosophers
interact with each other.

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/Subscrybe

Using Concurrency and
Parallelism Effectively – I

165

Dining Philosophers: A Classic Problem

10	class Philosopher implements CSProcess {
11	
12	 def ChannelOutput leftFork
13	 def ChannelOutput rightFork
14	 def ChannelOutput enter
15	 def ChannelOutput exit
16	 def int id
17	
18	 def timer = new CSTimer()
19	
20	 def void action (id, type, delay) {
21	 println "${type} : ${id} "
22	 timer.sleep(delay)
23	 }
24	
25	 void run() {
26	 while (true) {
27	 action (id, " thinking", 1000)
28	 enter.write(1)
29	 println "$id: entered"
30	 leftFork.write(1)
31	 println "$id: got left fork"
32	 rightFork.write(1)
33	 println "$id: got right fork"
34	 action (id, " eating", 2000)
35	 leftFork.write(1)
36	 println "$id: put down left"
37	 rightFork.write(1)
38	 println "$id: put down right"
39	 exit.write(1)
40	 println "$id: exited"
41	 }
42	 }
43	}

Listing 12-1The Behaviour of a Philosopher

A Fork, Listing 12-2, can either be picked up from the right or the left depending upon which Philosopher
has sat down. These are indicated by a signal on the appropriate channel, left {12}, or right {13}.

10	class Fork implements CSProcess {
11	
12	 def ChannelInput left
13	 def ChannelInput right
14	
15	 void run () {
16	 def fromPhilosopher = [left, right]

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

166

Dining Philosophers: A Classic Problem

17	 def forkAlt = new ALT (fromPhilosopher)
18	 while (true) {
19	 def i = forkAlt.select()
20	 fromPhilosopher[i].read() //pick up fork i
21	 fromPhilosopher[i].read() //put down fork i
22	 }
23	 }
24	}

Listing 12-2 The Fork Behaviour

An alternative is constructed, forkAlt {16, 17}. Once a fork has been picked up by a philosopher it can
only be put down by that philosopher, thus all we have to do is process the signal indicating the picking
up of the fork {20} and then wait for the signal indicating that it has been put down {21}.

The college has employed a lazy butler who simply notes the entries and exits to the dining room and
does little else apart from washing the forks and replenishing the bowl of spaghetti. The latter actions
are of no concern. The behaviour of the LazyButler is shown in Listing 12-3.

10	class LazyButler implements CSProcess {
11	
12	 def ChannelInputList enters
13	 def ChannelInputList exits
14	
15	 void run() {
16	 def seats = enters.size()
17	 def allChans = []
18	
19	 for (i in 0 ..< seats) { allChans << exits[i] }
20	 for (i in 0 ..< seats) { allChans << enters[i] }
21	
22	 def eitherAlt = new ALT (allChans)
23	
24	 while (true) {
25	 def i = eitherAlt.select()
26	 allChans[i].read()
27	 } // end while
28	 } //end run
29	} // end class

Listing 12-3 The Lazy Butler’s Behaviour

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

167

Dining Philosophers: A Classic Problem

The channels used to signal the entry and exit from the room are passed to the LazyButler as
ChannelInputLists enters {12} and exits {13}. The number of seats in the dining room can
be determined by the size of the list enters {16}. A List of all the channels, allChans {17} is defined
to which each of the elements of the exits and enters lists are appended {19, 20}. An alternative,
eitherAlt is defined over allChans {22} and as signals are received {25} on any of the channels they
are read {26} and ignored by the lazy butler.

The college, believing this to be a sufficient solution, implements it as shown in Listing 12-4 in the script
c12.fork.RunLazyCollege.

10	def PHILOSOPHERS = 5
11
12	def lefts = Channel.one2oneArray(PHILOSOPHERS)
13	def rights = Channel.one2oneArray(PHILOSOPHERS)
14	def enters = Channel.one2oneArray(PHILOSOPHERS)
15	def exits = Channel.one2oneArray(PHILOSOPHERS)
16
17	def entersList = new ChannelInputList(enters)
18	def exitsList = new ChannelInputList(exits)
19
20	def butler = new LazyButler (enters: entersList, exits: exitsList)
21

Download free eBooks at bookboon.com

Click on the ad to read more

Losing track of your leads?
Bookboon leads the way
Get help to increase the lead generation on your own website. Ask the experts.

Interested in how we can help you?
email ban@bookboon.com

http://bookboonglobal.com/en/qualities2/content-and-dialogue-marketing-2/

Using Concurrency and
Parallelism Effectively – I

168

Dining Philosophers: A Classic Problem

22	def philosophers = (0 ..< PHILOSOPHERS).collect { i ->
23	 return new Philosopher (leftFork: lefts[i].out(),
24							 rightFork: rights[i].out(),
25							 enter: enters[i].out(),
26							 exit: exits[i].out(), id:i) }
27
28	def forks = (0 ..< PHILOSOPHERS).collect { i ->
29	 return new Fork (left: lefts[i].in(),
30	 right: rights[(i+1)%PHILOSOPHERS].in()) }
31
32	def processList = philosophers + forks + butler
33
34	new PAR (processList).run()

Listing 12-4 The College’s Lazy Implementation

The number of PHILOSOPHERS is defined {10} and then each of the required channel arrays {12–15}
and corresponding channel lists {17, 18} are defined. The butler and collection of philosophers are
defined, passing channel parameters as required {20–26}. The collection of forks is then defined {28–30}
noting that the same fork can be accessed as the left fork of the i’th philosopher and the right fork of
the i+1’th philosopher {30}, using modulo arithmetic to ensure the subscripts stay in range. Execution
of this scheme produces the output shown in Output 12-1.

 thinking : 1

 thinking : 2

 thinking : 3

 thinking : 4

 thinking : 0

1: entered

2: entered

3: entered

4: entered

0: entered

2: got left fork

3: got left fork

1: got left fork

4: got left fork

0: got left fork

Output 12-1Operation Of The Lazy College

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

169

Dining Philosophers: A Classic Problem

As can be observed, all the philosophers think, then enter the dining room and then they each pick up
their left fork after which no further progress is possible. Even more worrying for the college is that
sometimes the solution appears to work. Faced with this situation the college reflects on their operation
and decides that the butler has to be more proactive in managing the dining room.

12.2	 Proactive Management

The butler is now required to ensure that no more than four of the philosophers are in the room at any
one time. This guarantees that at least one of the philosophers will be able to pick the single spare fork
on their right hand side. The required behaviour of the butler is shown in Listing 12-5.

The first part of the behaviour up to {21} is identical to that of the LazyButler except that a variable
seated has been defined {17}, which counts the number of philosophers already sitting. In addition,
an extra alternative, exitAlt {24} is defined over the exits only. Initially, the butler determines whether
there are at least two spare seats in the room {27}, in which case there is space for another philosopher
to enter and start eating. In this case we can accept an input on any of the channels, allChans, managed
by the butler. If there is no space then we can only accept inputs from philosophers wishing to exit the
room. The alternative to use is determined based on the value of space {28}. An enabled input is then
selected {29} and read {30}. It is important to note that allChans contains the exits channels
first so that we can read exit signals from allChans; regardless of which alternative is used. We can
determine whether or not this instance results from a philosopher exiting or entering the room by
testing the index of the read channel, i, against the number of seats {31} and updating the number
of philosophers seated accordingly.

The college is very relieved to discover that this simple change of butler behaviour is sufficient to remedy
the situation provided they replace the invocation of the LazyButler by the Butler on line {20} of
Listing 12-4.

10	class Butler implements CSProcess {
11	
12	 def ChannelInputList enters
13	 def ChannelInputList exits
14	
15	 void run() {
16	 def seats = enters.size()
17	 def seated = 0
18	
19	 def allChans = []
20	 for (i in 0 ..< seats) { allChans << exits[i] }
21	 for (i in 0 ..< seats) { allChans << enters[i] }
22	
23	 def eitherAlt = new ALT (allChans)
24	 def exitAlt = new ALT (exits)

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

170

Dining Philosophers: A Classic Problem

25	
26	 while (true) {
27	 def spaces = seated < (seats – 1)
28	 def usedAlt = spaces ? eitherAlt : exitAlt
29	 def i = usedAlt.select()
30	 allChans[i].read()
31	 def exiting = i < seats
32	 seated = exiting ? seated – 1 : seated + 1
33	 } // end while
34	 } //end run
35	} // end class

Listing 12-5 The Modified Butler Behaviour

Output from the modified butler behaviour is shown in Output 12-2. It can be seen that all bar Philosopher
0 enter the room and that means that Philosopher 1 and 2 can eat at the same time. When Philosopher
1 finishes eating and leaves the room to resume thinking, Philosopher 3 is now able to eat. Further
analysis shows that there are two Philosophers eating most of the time as should be expected. Thinking
appears to be a solitary activity!

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/EOT

Using Concurrency and
Parallelism Effectively – I

171

Dining Philosophers: A Classic Problem

 thinking : 0

 thinking : 1

 thinking : 2

 thinking : 3

 thinking : 4

1: entered

2: entered

3: entered

4: entered

1: got left fork

2: got left fork

3: got left fork

4: got left fork

1: got right fork

 eating : 1

2: got right fork

 eating : 2

1: put down left

1: put down right

0: entered

0: got left fork

1: exited

 thinking : 1

2: put down left

3: got right fork

 eating : 3

Output 12-2 Modified Behaviour

12.3	 A More Sophisticated Canteen

In an effort to provide a better service the college decides that, rather than having a single dining room
with its somewhat limited eating facilities, it is going to invest in a canteen style food facility. Philosophers
will be allowed to enter the canteen, go to a serving hatch, pick up their food, in the form of a chicken,
without having to wait, in fact waiting will not be allowed and then go into the canteen to find a place
to sit. The college authorities guarantee that there will be sufficient places for everyone to sit and that
nothing else can go wrong. They are so confident that they allow any number of philosophers to enter
the canteen. To this end they have decided that a visual display will be provided showing the state of the
kitchen, in which the chef cooks the chickens, the state at the serving hatch and they have also installed
monitoring devices that shows the action each philosopher is currently undertaking.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

172

Dining Philosophers: A Classic Problem

The chef is capable of cooking four chickens at a time but it does take time for them to cook and also
to take them to the serving hatch. This is shown in Listing 12-6.

10	class Chef implements CSProcess {
11	
12	 def ChannelOutput supply
13	 def ChannelOutput toConsole
14	
15	 void run () {
16
17	 def tim = new CSTimer()
18	 def CHICKENS = 4
19	
20	 toConsole.write("Starting … \n")
21	 while(true){
22	 toConsole.write("Cooking … \n") // cook 4 chickens
23	 tim.after (tim.read () + 2000) // this takes 2 seconds to cook
24	 toConsole.write("$CHICKENS chickens ready … \n")
25	 supply.write (CHICKENS)
26	 toConsole.write("Taking chickens to Canteen … \n")
27	 supply.write (0)
28	 }
29	 }
30	}

Listing 12-6 The Chef’s behaviour

The supply channel {12} is used to indicate to the canteen how many chickens are about to arrive.
The toConsole channel {13} is used to write information on the display. It takes 2 seconds to cook
the chickens {23} with appropriate messages output to the console. The number of chickens is sent on
the supply channel to the canteen {25}. The write to the supply channel {26} is used to represent the
point at which the chickens have been transferred to the serving hatch as can be seen in Listing 12-7.

The canteen receives requests for a chicken from a philosopher on the service channel {12} and
notification of its availability is given on the deliver channel {13}. The Chef process uses the supply
channel to indicate that chickens are ready for serving {14}. The toConsole channel is used to display
the current availability of chickens on the display {15}. The canteen alternates over the supply and
service channels {19}. A timer {24} is required to reflect the time it takes to set down the chickens
by the Chef. The enabled alternative is selected using the fair option {30}.

In the case of SUPPLY, when more chickens become available, the value is read from supply {32}
and a message written to the console {33}. A delay of 3 seconds is created {34} representing the time
taken to transfer chickens from the kitchen to the canteen. After this the number of chickens available
is incremented {35} by value. The canteen console is updated {36} and the signal written by the Chef
{Listing 12-6, 27} is read {37} and this permits the Chef to return to the Kitchen to cook more chickens.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

173

Dining Philosophers: A Classic Problem

10	class InstantCanteen implements CSProcess {
11
12	 def ChannelInput service
13	 def ChannelOutput deliver
14	 def ChannelInput supply
15	 def ChannelOutput toConsole
16
17	 void run () {
18
19	 def canteenAlt = new ALT ([supply, service])
20
21	 def SUPPLY = 0
22	 def SERVICE = 1
23
24	 def tim = new CSTimer()
25	 def chickens = 0
26
27	 toConsole.write("Canteen : starting … \n")
28
29	 while (true) {
30	 switch (canteenAlt.fairSelect ()) {
31	 case SUPPLY:
32	 def value = supply.read()
33	 toConsole.write("Chickens on the way …\n")

Download free eBooks at bookboon.com

Click on the ad to read more

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

Using Concurrency and
Parallelism Effectively – I

174

Dining Philosophers: A Classic Problem

34	 tim.after (tim.read() + 3000)
35	 chickens = chickens + value
36	 toConsole.write("$chickens chickens now available …\n")
37	 supply.read()
38	 break
39	 case SERVICE:
40	 def id = service.read()
41	 if (chickens > 0) {
42		 chickens = chickens – 1
43		 �toConsole.write ("chicken ready for Philosopher $id …$chickens
	 chickens left\n")
44		 deliver.write(1)
45		 }
46		 else {
47		 toConsole.write(" NO chickens left … \n")
48		 deliver.write(0)
49	 }
50	 break
51	 }
52	 }
53	 }
54	}

Listing 12-7 The Canteen Behaviour

When a philosopher requires SERVICE, their id is read from the service channel {40}. The Canteen
at this point recognises that there may be no chickens available but is sure that this will not happen. Thus
a test is undertaken on the number of available chickens {41} and if there is a chicken available the
number of chickens is decremented {42} and a message to that effect output {43}. The philosopher is
informed by the writing of a 1 on the deliver channel {44}. If no chickens are available, a message is
displayed {47} and a zero is written to the deliver channel {48}.

The behaviour of the Philosophers is now somewhat different; they still think and eat forever, in rotation.
However, the philosophers are now somewhat sanguine about the College authorities’ capabilities and
use a behaviour in which they try to cover every eventuality as shown in Listing 12-8. A philosopher
has an id {12}, a channel upon which a service request is made {13} and one upon which a chicken
delivery is made {14} plus a channel to write messages on a console {15}. A timer {18} is required
to time the philosopher’s actions and an initial message is written toConsole {19}.

10	class PhilosopherBehaviour implements CSProcess {
11	
12	 def int id = -1
13	 def ChannelOutput service
14	 def ChannelInput deliver
15	 def ChannelOutput toConsole
16	

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

175

Dining Philosophers: A Classic Problem

17	 void run() {
18	 def tim = new CSTimer()
19	 toConsole.write("Starting … \n")
20	 while (true) {
21	 toConsole.write("Thinking … \n")
22	 if (id > 0) {
23	 tim.sleep (3000)
24	 }
25	 else {
26	 // Philosopher 0, has a 0.1 second think
27	 tim.sleep (100)
28	 }
29	 toConsole.write("Need a chicken …\n")
30	 service.write(id)
31	 def gotOne = deliver.read()
32	 if (gotOne > 0) {
33	 toConsole.write("Eating … \n")
34	 tim.sleep (2000)
35	 toConsole.write("Brrrp … \n")
36	 }
37	 else {
38	 toConsole.write("			 Oh dear No chickens left \n")
39	 }
40	 }
41	 }
42	}

Listing 12-8 The Philosopher Behaviour

Initially, a philosopher thinks for 3 seconds {22}, unless they are philosopher 0 who only thinks for
0.1 seconds {27}. At this point the behaviour is common and starts by indicating on the console that
the philosopher needs a chicken {29}, and is followed by a signal request on the service channel with
the philosopher’s id {30}. At this point we note that the philosopher is behaving like a client and thus
immediately follows the service request with the input of the chicken on the deliver channel {31}
containing the server response from the canteen. The philosopher now tests the value of gotOne {32}
to see if they have been given a chicken. If this is the case, then a message is output and the philosopher
takes 2 seconds to eat the chicken, after which he burps {35}. If no chicken is available a sad message
appears {38}.

The above process is formed into a further process each with a GConsole, upon which console messages
can be displayed.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

176

Dining Philosophers: A Classic Problem

The script that invokes the system is shown in Listing 12-9. The channels that implement the service
and deliver connections between the philosophers and the canteen are shared {10, 11}, any2one and
one2any channels respectively, enabling any of the philosophers to access the canteen. A list of five
philosophers is then created with each connected to service and deliver {16, 17}. The other processes,
InstantServery comprising the canteen and its console and the Kitchen comprising the Chef and
its console are added to processList {20-24}. The processes are then run. This can be observed by
running the script InstantCollege in c12.examples.canteen. Needless to say we observe that
some philosophers do not get a chicken and more importantly miss their turn!

10	def service = Channel.any2one ()
11	def deliver = Channel.one2any ()
12	def supply = Channel.one2one ()
13	
14	def philosopherList = (0 .. 4).collect{
15	 i -> return new Philosopher(philosopherId: i,
16								 service: service.out(),
17								 deliver: deliver.in())
18	 }
19
20	def processList = [new InstantServery (service:service.in(),
21								 deliver:deliver.out(),
22								 supply:supply.in()),
23					 new Kitchen (supply:supply.out())
24]
25
26	processList = processList + philosopherList
27	new PAR (processList).run()

Listing 12-9 The Instant Canteen Script

It is obvious that the behaviour of the canteen is at fault as it did not stop philosophers making requests
for service when there were no chickens available. The revised behaviour is shown in Listing 12-10,
which has been augmented by the use of pre-conditions.

The precondition array is initialised {20} so that chickens can always be supplied from the kitchen. Initially,
there are no chickens available so the service precondition is false. At the start of the process’ main
loop the state of the service precondition is re-evaluated {31}. If no chickens are available a message to
that effect is displayed {32–34}. Now, of course, we enter each case in the switch associated with the
enabled alternative knowing the precise state of the canteen and thus the coding is much simpler. In
particular, we only permit service requests when we are assured that chickens are available {44–48}.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

177

Dining Philosophers: A Classic Problem

This version of the system can be executed using the script QueuingCollege and another version
that shows clock ticks in the canteen console is also available, ClockedQueuingCollege. It can be
observed from an execution of the system, which allows numbers other than five philosophers, that every
philosopher gets a chicken whenever they are hungry, however, they may have to wait.

10	class QueuingCanteen implements CSProcess {
11	
12	 def ChannelInput service
13	 def ChannelOutput deliver
14	 def ChannelInput supply
15	 def ChannelOutput toConsole
16	
17	 void run () {
18
19	 def canteenAlt = new ALT ([supply, service])
20	 def boolean [] precondition = [true, false]
21	
22	 def SUPPLY = 0
23	 def SERVICE = 1
24
25	 def tim = new CSTimer()
26	 def chickens = 0
27	

Download free eBooks at bookboon.com

Click on the ad to read more

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

Using Concurrency and
Parallelism Effectively – I

178

Dining Philosophers: A Classic Problem

28	 toConsole.write ("Canteen : starting … \n")
29
30	 while (true) {
31	 precondition[SERVICE] = (chickens > 0)
32	 if (chickens == 0){
33	 toConsole.write ("Waiting for chickens …\n")
34	 }
35	 switch (canteenAlt.fairSelect (precondition)) {
36	 case SUPPLY:
37	 def value = supply.read()
38	 toConsole.write ("Chickens on the way …\n")
39	 tim.after (tim.read() + 3000)
40	 chickens = chickens + value
41	 toConsole.write ("$chickens chickens now available …\n")
42	 supply.read()
43	 break
44	 case SERVICE:
45	 def id = service.read()
46	 chickens = chickens – 1
47	 �toConsole.write ("chicken ready for Philosoper $id … $chickens
						 chickens left \n")
48	 deliver.write(1)
49	 break
50	 }
51	 }
52	 }
53	}

Listing 12-10 The Revised Canteen With Alternative Pre-conditions

12.4	 Summary

This chapter has presented solutions to the classical dining philosophers’ problem using two different
formulations. The second solution, using a canteen is also an instance of the client-server design pattern
with the canteen acting as a pure server and the chef and philosophers acting as pure clients. This perhaps
demonstrates that even though the coding in both cases followed the client-server pattern it was still
possible to create an erroneous solution. The client-server design pattern is not a panacea for all occasions;
it has to be applied sensibly and with understanding. Even if the communication patterns are correct it
is still possible to create incorrect systems if insufficient thought is given to the problem solution.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

179

Accessing Shared Resources: CREW

13	� Accessing Shared
Resources: CREW

Shared resource management is commonly used to access large amounts of data by many users;

•	 the shared resource concept is defined
•	 concurrent read exclusive write is explained
•	 a simple example is developed demonstrating the concept

This chapter describes techniques that were developed for, and are used most often in shared memory
multi-processing systems. In such systems great care has to be taken to ensure that processes running on
the same processor do not access an area of shared memory in an uncontrolled manner. Up to now the
solutions have simply ignored this problem because all data has been local to and encapsulated within
a process. One process has communicated data to another as required by the needs of the solution. The
process and channel mechanisms have implicitly provided two capabilities, namely synchronisation
between processes and mutual exclusion of data areas. In shared memory environments the programmer
has to be fully aware of both these aspects to ensure that neither is violated.

Download free eBooks at bookboon.com

Click on the ad to read more

How to retain your
top staff

FIND OUT NOW FOR FREE
Get your free trial

Because happy staff get more done

What your staff really want?

The top issues troubling them?

How to make staff assessments
work for you & them, painlessly?

DO YOU WANT TO KNOW:

http://s.bookboon.com/performancereviewpro

Using Concurrency and
Parallelism Effectively – I

180

Accessing Shared Resources: CREW

Mutual exclusion ensures that while one process is accessing a piece of shared data no other process
will be allowed access regardless of the interleaving of the processes on the processor. Synchronisation
ensures that processes gain access to such shared data areas in a manner that enables them to undertake
useful work. The simplest solution to both these problems is to use a pattern named CREW, Concurrent
Read Exclusive Write, which, as its names suggests, allows any number of reader processes to access
a piece of shared data at the same time but only one writer process to access the same piece of data
at one time. The CREW mechanism manages this requirement and in sensible implementations also
imposes some concept of fairness. If access is by multiple instances of reader and writer processes then
one could envisage a situation where the readers could exclude writers and vice versa and this should
be ameliorated as far as is possible. The JCSP implementation of a CREW does exhibit this capability of
fairness, as shall be demonstrated.

At the simplest level the CREW has to be able to protect accesses to the shared data and the easiest
way of doing this is to surround each access, be it a read or write with a call to a method that allows
the start of an operation and subsequently when the operation is finished to indicate that it has ended.
Between such pairs of method calls the operation of the CREW is guaranteed. Thus the programmer
has to surround access to shared data with the required start and end method calls be they a read or
write to the shared data. It is up to the programmer to ensure that all such accesses to the shared data
are suitably protected.

In the JCSP implementation of CREW we extend an existing storage collection with a Crew class.
Then we ensure that each access that puts data into the collection is surrounded by a startWrite()
and endWrite() pair of method calls on the Crew. Similarly, that each get access is surrounded by a
startRead() and endRead() method call. Internally, the Crew then ensures that access to the shared
storage collection is undertaken in accordance with the required behaviour. Further, fairness can be
implemented quite simply by ensuring that if the shared data is currently being accessed by one or more
reader processes then as soon as a writer process indicates that it wishes to put some data into the shared
collection then no further reader processes are permitted to start reading until the write has finished.
Similarly, a sequence of write processes, each of which requires exclusive access, will be interposed by
reader process accesses as necessary.

13.1	 CrewMap

Listing 13-1 shows a simple extension of a HashMap {10} by means of an instance of a Crew {12}. The
put and get methods of HashMap are then overwritten with new versions that surround them with
the appropriate start and end method calls {15, 17} and {21, 24}, between which the normal HashMap’s
get and put methods can be called as usual.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

181

Accessing Shared Resources: CREW

10	class CrewMap extends HashMap<Object, Object> {
11
12	 def theCrew = new Crew()
13	
14	 def Object put (Object itsKey, Object itsValue) {
15	 theCrew.startWrite()
16	 super.put (itsKey, itsValue)
17	 theCrew.endWrite()
18	 }
19
20	 def Object get (Object itsKey) {
21	 theCrew.startRead()
22	 def result = super.get (itsKey)
23	 theCrew.endRead()
24	 return result
25	 }
26
27	}

Listing 13-1 The CrewMap Class Definition

At this point a word of caution has to be given. This arises because Java allows exceptions to be thrown
at any point. Thus in the above formulation it might be possible for the lines that represent normal
access to the shared resource {16, 22} to fail. In such a case the call to the end synchronisation method
{17, 23} will never happen and thus the Crew will fail in due course as the required locks will not be
released. The associated documentation for JCSP Crew discusses this in more detail. The solution is to
encapsulate the access in a try .. catch .. finally block. The problem arises because Java invokes
code sequences that are not part of the coding sequence and thus the programmer has to be very wary
of these possibilities. In the following description we shall presume that all access is well behaved and
such a fault will not occur.

Once the CrewMap has been defined it can be used in a solution that requires multiple processes access
to its shared data collection. Figure 13-1 shows such a typical application. In this case two Read and
two Write processes access the shared DataBase resource. The coding of the DataBase process is
shown in Listing 13-2.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

182

Accessing Shared Resources: CREW

Figure 13-1 A Simple Use of CrewMap

13.2	 The DataBase Process

The DataBase process has two channel list properties {12, 13} comprising the channels used by the
Read and Write processes to access it. Additionally, properties are required that define the number of
such Read and Write processes, readers and writers respectively {14, 15}.

Download free eBooks at bookboon.com

Click on the ad to read more

https://inspiredbusinessmedia.co.uk/conferences/cmo-inspired-oct-2018/

Using Concurrency and
Parallelism Effectively – I

183

Accessing Shared Resources: CREW

10	class DataBase implements CSProcess {
11		
12	 def ChannelInputList inChannels
13	 def ChannelOutputList outChannels
14	 def int readers
15	 def int writers
16	
17	 void run () {
18	 println "DataBase has started"
19	 def crewDataBase = new CrewMap()
20	 for (i in 0 ..< 10) {
21	 crewDataBase.put (i, 100 + i)
22	 }
23	 for (i in 0 ..< 10) {
24	 println "DB: Location $i contains ${crewDataBase.get(i)} "
25	 }
26	 def processList = []
27	 for (i in 0..< readers) {
28	 processList.putAt (i, new ReadClerk (cin: inChannels[i],
29									 cout: outChannels[i],
30									 data: crewDataBase))
31	 }
32	 for (i in 0 ..< writers) {
33	 �processList.putAt ((i + readers), new WriteClerk (cin:

inChannels[i + readers],
34							 cout: outChannels[i + readers],
35							 data: crewDataBase))
36	 }
37	 new PAR (processList).run()
38	 }
39	}

Listing 13-2 The DataBase Process definition

The run method {17} essentially creates the structure shown in Figure 13-1. An instance of CrewMap
is defined called crewDataBase {19}. The shared resource crewDataBase is then populated with
initial values {20–22}, which initialises the first ten locations with the values 100 to 109 in sequence.
An empty processList {26} is then defined that will hold instances of the required ReadClerk and
WriteClerk processes. The required number of ReadClerk processes are then created {27–36} and
placed in processList. Each ReadClerk is allocated the corresponding element of the inChannels
and outChannels channel lists {28, 29}. Finally, the ReadClerk process has its data property initialised
to the crewDataBase itself {30}. The WriteClerk processes are instantiated in the same manner
{32–36} ensuring that the correct elements of the inChannels and outChannels lists are allocated to
the processes. This means that the all the ReadClerk and WriteClerk processes have shared access
to the crewDataBase. The processList can now be passed to a PAR for running {37}.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

184

Accessing Shared Resources: CREW

Communication between the Read and Write processes and the DataBase is achieved by a single
class called DataObject {10}, see Listing 13-3. DataObject comprises three properties {12–14}, pid
hold the identity number of the accessing Read or Write process, location holds the index of the
resource element to be accessed and value is either the value read from that element or that is to be
written to the element.

10	class DataObject implements Serializable, JCSPCopy {
11		
12	 def int pid
13	 def int location
14	 def int value
15	}

Listing 13-3 The Definition of DataObject (Omitting Methods copy and toString)

It should be noted that this formulation of the DataBase contains no alternative (ALT) as might be
expected from previous examples. This arises because we are using a formulation that contains a CREW
that essentially provides the same functionality, but only for shared memory applications. The advantage
of the alternative is that it can be used to alternate over networked channels and thus is more flexible.
It also has the advantage of exposing the alternative concept that is so important in the modelling of
parallel systems.

13.3	 The Read Clerk Process

Listing 13-4 shows the ReadClerk process, which has channel input and output properties cin {12}
and cout {13} respectively and a data property {14} that accesses the CREW resource.

10	class ReadClerk implements CSProcess {
11		
12	 def ChannelInput cin
13	 def ChannelOutput cout
14	 def CrewMap data
15	
16	 void run () {
17	 println "ReadClerk has started "
18	 while (true) {
19	 def d = new DataObject()
20	 d = cin.read()
21	 d.value = data.get (d.location)
22	 �println "RC: Reader ${d.pid} has read ${d.value} from ${d.location}"
23	 cout.write(d)
24	 }
25	 }
26	}

Listing 13-4 The ReadClerk Process

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

185

Accessing Shared Resources: CREW

The run method {16-25} defines an instance d of type DataObject {19} after which the value of d is
read from cin {20}. The location property of d is then used to access the CrewMap property data
{21} to get the corresponding value which is then stored in the value property of d. The revised value
of d is then written to the channel cout {23}, after an appropriate message is printed.

13.4	 The Write Clerk Process

The WriteClerk process is shown in Listing 13-5 and is fundamentally the same as that shown in the
ReadClerk process except that a new value is put into the shared resource {21}. The unmodified
DataObject d is written back to the corresponding Write process to confirm that the operation has
taken place {23}.

10	class WriteClerk implements CSProcess {
11
12	 def ChannelInput cin
13	 def ChannelOutput cout
14	 def CrewMap data
15	
16	 void run () {
17	 println "WriteClerk has started "
18	 while (true) {
19	 def d = new DataObject()
20	 d = cin.read()

Download free eBooks at bookboon.com

Click on the ad to read more

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

Using Concurrency and
Parallelism Effectively – I

186

Accessing Shared Resources: CREW

21	 data.put (d.location, d.value)
22	 �println "WC: Writer ${d.pid} has written ${d.value} to ${d.location}"
23	 cout.write(d)
24	 }
25	 }
26	}

Listing 13-5 The WriteClerk Process

Each of the Clerk processes behaves as a pure server. The server behaviour is guaranteed provided access
to the shared data resource always complete in finite time. This will happen provided no exception is
thrown and handled incorrectly in the shared data resource.

13.5	 The Read Process

The Read process is shown in Listing 13-6. It has three properties. A channel by which it writes to the
database r2db {12} and one by which it reads returned values db2r {13}. The last property, id {14}, is
the identity number of the Read process. The channel toConsole {15} writes messages to an associated
GConsole process. The run method {17} initialises a DataObject with the Read process’ id {22}
and then reads a value from each location of the shared resource in sequence {20}, printing out each
returned value {25}. This is achieved by allocating the loop value i to the location property of d {22}.
The instance d is then written to the shared resource using the channel r2db {23}. The process then
waits until it can read the returned DataObject into d using the channel db2r {24}. This means that
the process behaves as a pure client.

10	class Read implements CSProcess {
11	
12	 def ChannelOutput r2db
13	 def ChannelInput db2r
14	 def int id
15	 def ChannelOutput toConsole
16	
17	 void run () {
18	 def timer = new CSTimer()
19	 toConsole.write ("Reader $id has started \n")
20	 for (i in 0 ..<10) {
21	 def d = new DataObject(pid:id)
22	 d.location = i
23	 r2db.write(d)
24	 d = db2r.read()
25	 �toConsole.write ("Location "d.location+" has value "+d.value + "\n")
26	 timer.sleep(100)
27	 }
28	 toConsole.write ("Reader $id has finished \n")
29	 }
30	}

Listing 13-6 The Read Process

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

187

Accessing Shared Resources: CREW

13.6	 The Write Process

The Write process is shown in Listing 13-7 and is very similar to the Read process except that the
elements of the shared resource are accessed in reverse order, that is from 9 to 0 {22}. The value written
to the shared resource is dependent upon the id of the writing process {24} and is sufficiently different
to make observation of the resulting behaviour easier.

10	class Write implements CSProcess {
11	
12	 def ChannelOutput w2db
13	 def ChannelInput db2w
14	 def int id
15	 def ChannelOutput toConsole
16	
17	 void run () {
18	 def timer = new CSTimer()
19	 toConsole.write ("Writer $id has started \n")
20	 for (j in 0 ..<10) {
21	 def d = new DataObject(pid:id)
22	 def i = 9 – j // write in reverse order
23	 d.location = i
24	 d.value = i + ((id+1)*1000)
25	 w2db.write(d)
26	 d = db2w.read()
27	 �toConsole.write ("Location "+d.location+" now contains "+d.value+"\n")
28	 timer.sleep(100)
29	 }
30	 toConsole.write ("Writer $id has finished \n")
31	 }
32	}

Listing 13-7 The Write Process

13.7	 Creating the System

The script that invokes the DataBase system is shown in Listing 13-8.

10	def nReaders = Ask.Int ("Number of Readers ? ", 1, 5)
11	def nWriters = Ask.Int ("Number of Writers ? ", 1, 5)
12	def connections = nReaders + nWriters
13
14	def toDatabase = Channel.one2oneArray(connections)
15	def fromDatabase = Channel.one2oneArray(connections)
16	def consoleData = Channel.one2oneArray(connections)
17
18	def toDB = new ChannelInputList(toDatabase)
19	def fromDB = new ChannelOutputList(fromDatabase)
20

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

188

Accessing Shared Resources: CREW

21	def readers = (0 ..< nReaders).collect { r ->
22					 return new Read (id: r,
23						 		 r2db: toDatabase[r].out(),
24						 		 db2r: fromDatabase[r].in(),
25						 		 toConsole: consoleData[r].out())
26					 }
27
28	def writers = (0 ..<nWriters).collect { w ->
29					 int wNo = w + nReaders
30					 return new Write (id: w,
31						 		 w2db: toDatabase[wNo].out(),
32						 		 db2w: fromDatabase[wNo].in(),
33						 		 �toConsole: consoleData[wNo].

out())
34					 }
35
36	def database = new DataBase (inChannels: toDB,
37						 outChannels: fromDB,
38						 readers: nReaders,
39						 writers: nWriters)
40
41	def consoles = (0 ..< connections).collect { c ->
42					 def frameString = c < nReaders ?
43					 		 "Reader " + c :
44					 		 "Writer " + (c – nReaders)
45					 �return new GConsole (toConsole: consoleData[c].in(),
46						 		 frameLabel: frameString)
47					 }
48	def procList = readers + writers + database + consoles
49
50	new PAR(procList).run()

Listing 13-8 The Script to Invoke the DataBase System

Initially, the number of Read and Write processes is obtained {10, 11} by a console interaction. The
total number of connections to the DataBase is then calculated as connections {12}. The system
uses a GConsole process for each Read and Write process to display the outcome of the interactions
with the DataBase. The channels used to connect the Read and Write processes to the Database and
the GConsoles are then defined {14–16}. The corresponding channel lists toDb and fromDb are then
defined {18, 19}, which connect the Read and Write processes to the DataBase.

The required number of Read processes is then created in the list readers {21–26}. Each instance uses
the closure property r to identify the required element of the previously declared channel arrays that
connect the process to the DataBase and its GConsole process. Similarly, the required number of Write
processes is defined {28–34}. The variable wNo {29} is used to ensure that the index used to associate
Write process channel indeces is offset by the number of Read processes.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

189

Accessing Shared Resources: CREW

An instance of the DataBase process is then created {36–39}, using the previously declared channel lists.
The list consoles {41–47} contains the instances of GConsole required to connect to the Read and
Write processes. Finally, procList is created as the addition of all the process lists and the database
process {48} and then run {50}.

Outputs 13-1 and 13-2 show the output from the running of the system when it is started with two Read
and two Write processes. The order in which the Write process have been executed can be determined
from the values that have been read by the two Read processes. Recall that the Write processes access the
database locations in reverse order to the Read processes. The outputs indicate that the implementation
of the Crew class is inherently fair because the values read by the Read processes change from the initial
values to the modified values about half way through the cycle. The values read from locations 5 and 6
also vary indicating that state of the DataBase was in flux at that point in the access cycles with read
and write operations fully interleaved.

Download free eBooks at bookboon.com

Click on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

Using Concurrency and
Parallelism Effectively – I

190

Accessing Shared Resources: CREW

Location 1 has value 101
Location 2 has value 102
Location 3 has value 103
Location 4 has value 104
Location 5 has value 105
Location 6 has value 1006
Location 7 has value 2007
Location 8 has value 2008
Location 9 has value 2009
Reader has finished

Output 13 – 1 Output From Read process 0

Location 1 has value 101
Location 2 has value 102
Location 3 has value 103
Location 4 has value 104
Location 5 has value 1005
Location 6 has value 2006
Location 7 has value 2007
Location 8 has value 2008
Location 9 has value 2009
Reader has finished

Output 13 – 2 Output From Read process 1

13.8	 Summary

In this chapter we have investigated a typical mechanism used in shared memory multi-processing system.
The formulation tends to hide the interactions that take place because these are captured somewhat
remotely in the CrewMap class definition.

13.9	 Challenge

Rewrite the system so that a Crew is not used and the DataBase process alternates over the input channels
from the Read and Write processes. The system should capture the same concept of fairness as exhibited
in the CREW based solution.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

191

Barriers and Buckets: Hand-Eye Co-ordination Test

14	� Barriers and Buckets: Hand-Eye
Co-ordination Test

This chapter develops a solution to a highly dynamic system using a number of shared memory
synchronisation capabilities including:

•	 barrier
•	 alting barrier
•	 bucket
•	 channel data stores are used to overcome inconsistenices in the underlying Java user

interface model

Three shared memory synchronisation techniques are combined to provide control of a highly dynamic
environment. A Barrier provides a means whereby a known number of processes collectively control
their operation so they all wait at the barrier until all of them have synchronised with the barrier at which
time they are all released to run in parallel. An AltingBarrier is a specialisation of the Barrier
that allows it to act also as a guard in an Alternative (Welch, et al., 2010). Finally, a Bucket (Kerridge,
et al., 1999) provides a flexible refinement of a barrier. Typically, there will be a collection of Buckets
into which processes are placed depending upon some criterion. Another process then, subsequently,
causes a Bucket to flush all its processes so they are executed concurrently. These processes will in due
course, become idle, whereupon they place themselves in other buckets. The next Bucket in sequence
is then flushed and so the cycle is repeated. Buckets can be used to control discrete event simulations
in a very simple manner. The process that undertakes the flushing of the buckets must not be one of the
processes that can reside in a Bucket.

The aim of this example is to present a user with a randomly chosen set of targets that each appear for
a different random time. During the time the targets are available the user clicks the mouse over each
of the targets in an attempt to hit as many of the targets as possible. The display includes information
of how many targets have been hit and the total number of targets that have been displayed. The targets
are represented by different coloured squares on a black background and a hit target is coloured white.
A target that is not ‘hit’ before its self determined random time has elapsed is coloured grey. There is a
gap between the end of one set of targets and the display of the next set during which time the screen is
made all black. The minimum time for which a target is displayed is set by the user; obviously the longer
this time the easier it is to hit the targets. Targets will be available for a period between the shortest time
and twice that time. Figure 14-1 shows the screen, at the point when six targets have been displayed, and
none have yet been hit. The system has displayed a total of 88 targets of which 15 targets have been hit.
The minimum target delay was 900 milliseconds. It can be deduced there are 16 targets in a 4 × 4 matrix.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

192

Barriers and Buckets: Hand-Eye Co-ordination Test

The solution presumes that each target is managed by its own process and that it is these processes
that are held in a Bucket until it is the turn of that Bucket to be flushed. When a target is enabled it
displays itself until either it is ‘hit’ by a mouse-press, in which case it turns white, or the time for which
it appears elapses and it is coloured grey. It is obvious that each of these target processes will finish at
a different time and because the number of targets is not predetermined a barrier is used to establish
when all the enabled target processes have finished. After this, the target process determines into which
bucket it is going [to] fall and thereby remains inactive until that bucket is flushed. The other processes
used in the solution are shown in Figure 14-2.

Figure 14-1 The Screen for the Hand-Eye Co-ordination Test

The system comprises a number of distinct phases each of which is controlled by its own barrier, which
depending on the context is either a simple Barrier or an AltingBarrier.

Figure 14-2 shows the system at the point where it is about to synchronise on the setUpBarrier.
During this setup phase there are no channel communications but the processes that synchronise on
setUpBarrier either have to initialise themselves in some manner or must not progress beyond a
certain point to ensure the system will not get out of step with itself. The setup phase only occurs once
when the system is initially executed. The processes that are not part of the setUpBarrier cannot
make any progress because they are dependent on other barriers or communications with processes that
synchronise on the setUpBarrier.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

193

Barriers and Buckets: Hand-Eye Co-ordination Test

The BarrierManager is a process that is used to manage phase synchronisations and as such will be
seen in subsequent figures to be part of a number of other barriers. For ease of description the structure
of each phase will show only the relevant barrier and channels that are operative at that time. The
separation into these distinct phases also makes it easier to analyse the system from the point of view
of its client-server architecture, thereby enabling deadlock and livelock analysis.

The TargetFlusher and TargetProcess processes are the only processes that can manipulate the
array of Buckets. The Buckets are not shown on the diagram. The TargetProcesses are able to
identify which Bucket they are going to enter when they stop running. TargetFlusher is the only
process that can cause the flush and subsequent execution of the processes contained with a Bucket.
The processing cycle of a TargetProcess is to wait until it is flushed from a Bucket; it then runs
until it determines, itself, that it has ceased to run at which point it causes itself to fallInto a Bucket,
which it also determines.

The DisplayController process initialises the display window to black. It also initialises, to zero, the
information contained in the display windows as to the number of hits that have occurred and the total
number of targets that have been displayed.

Download free eBooks at bookboon.com

Click on the ad to read more

TMP PRODUCTION NY026057B

PSTANKIE

gl/rv/rv/baf

ACCCTR0005

Bookboon Ad Creative

4

6 x 4

12/13/2013

Bring your talent and passion to a
global organization at the forefront of
business, technology and innovation.
Discover how great you can be.

Visit accenture.com/bookboon

©
2013 Accenture.

All rights reserved.

http://s.bookboon.com/accentureCZintl

Using Concurrency and
Parallelism Effectively – I

194

Barriers and Buckets: Hand-Eye Co-ordination Test

Figure 14-2 System At Setup Barrier Synchronisation

Figure 14-3 shows the system at the initBarrier synchronisation, which is the point at which those
targets that are executing have initialised themselves and the associated display window is showing
the targets. Prior to the initBarrier the only process that can execute is TargetController. The
TargetController requests the TargetManager to flush the next Bucket; a request that is passed
onto the TargetFlusher process. The TargetFlusher accesses the Buckets in sequence until it
finds a non-empty one. It then initialises the initBarrier with the number of TargetProcesses.
It returns this number to the TargetManager and then flushes the TargetProcesses, which start
running. The TargetManager then determines which of the TargetProcesses has been started by
waiting for a communication from each of them informing it of the identity of the running targets. These
identities are then formed into a List, which is then communicated to both the TargetController
and DisplayController processes.

The TargetController can now construct a ChannelOutputList that will be subsequently used to
communicate the location where mouse presses occur to each of the TargetProcesses. Similarly, the
DisplayController can modify the display window to show the running targets.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

195

Barriers and Buckets: Hand-Eye Co-ordination Test

Figure 14-3 System At the Initialise Barrier Synchronisation

The MouseBufferPrompt and MouseBuffer have a design similar to that used previously in the
manipulation of a queue (Chapter 6.2) and event handling (Chapter 11.2). MouseBuffer only accepts a
request from MouseBufferPrompt when it has already received an event on its mouseEvent channel.
The Gallery process is responsible both for the ActiveCanvas upon which the targets are displayed
and the detection and communication of mouse click events. At this stage the MouseBufferPrompt
process has no channel on which it can output points but that is not required until the system progresses
to the next, goBarrier phase.

The goBarrier is simply required to ensure that all the running TargetProcesses, the
TargetController and DisplayController have reached a state whereby the system can start
execution from a known state. As such this phase does not require any channel communication as shown
in Figure 14-4. Once these processes have synchronised the system enters the normal running state of
the system with some of the TargetProcesses executing.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

196

Barriers and Buckets: Hand-Eye Co-ordination Test

Each of the Barriers used so far are of the simple variety because the number of processes that require
synchronising can be predetermined and there is no need for any of these Barriers to interact with
a possible communication or timer in an alternative. The communications are all required to have
completed before the processes can reach the synchronisation point. The remaining Barriers are of
the AltingBarrier variety because the requirement to synchronise can happen at the same time as a
timer alarm or communication occurs.

Figure 14-4 System At the Go Barrier Synchronisation

Figure 14-5 shows the system structure when the TargetProcesses are waiting for mouse clicks to
determine whether or not they have been hit. The figure also shows the client-server analysis appropriate
to this phase of the system’s operation.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

197

Barriers and Buckets: Hand-Eye Co-ordination Test

Initial, cursory inspection, would seem to suggest that there a client-server loop has been created.
However, it can be seen that the MouseBuffer is a pure server and therefore ensures that no loop is
formed. Furthermore, the Gallery process provides a user interface capability that has some unusual
properties. Any incoming communication is always fully acted upon within the process and is not
transmitted further. Thus for its inputs the Gallery acts as a pure server. For any mouse events that
it might generate, the Gallery acts as a pure client provided any event channels are communicated
by a channel that utilises an overwriting buffer. This requirement is expounded further in the JCSP
documentation and was discussed in Chapter 11.2.3.

The operation of a TargetProcess is specified as follows. After synchronising on the goBarrier
it calculates its own random alarm time, which then forms part of an alternative that comprises the
alarm and channel communications on its mousePoints channel. This alternative is looped around
until either the alarm time occurs or the target is hit. In either case the target is no longer active.
Another alternative is then entered that comprises communications on its mousePoints channel or the
timeAndHitBarrier. Even though a target is inactive other targets may still not yet have timed out and
thus mouse clicks will still be received. The timeAndHitBarrier determines when either all the targets
have been hit or they have all timed out or some combination of these situations has occurred. It also has
the effect of breaking the connection between TargetController and MouseBufferPrompt until
the next set of targets are initialised. To ensure this does not cause a problem the channel pointsToTC
uses an OverWriteOldestBuffer data store.

Download free eBooks at bookboon.com

Click on the ad to read more

 .

http://s.bookboon.com/AlcatelLucent

Using Concurrency and
Parallelism Effectively – I

198

Barriers and Buckets: Hand-Eye Co-ordination Test

Figure 14-5 System Running Awaiting timeAndHitBarrier

When the state of a target changes (timed out or hit) it sends a communication to the
DisplayController accordingly, which can then update the display maintained by Gallery
appropriately. TargetController receives a java.awt.Point from MouseBufferPrompt that give
the coordinates where the mouse has been pressed. The TargetController then outputs this Point
value to each of the TargetProcesses in parallel using the ChannelOutputList mousePoints.
Once all the targets have either been hit or timed out the timeAndHitBarrier synchronises at which
point the TargetProcesses individually determine into which randomly chosen Bucket they are
going to fall.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

199

Barriers and Buckets: Hand-Eye Co-ordination Test

The system then moves on to the final phase of processing shown in Figure 14-6. The
DisplayController process contains an alternative with guards comprising the finalBarrier and
the channel targetStateToDC. Thus when it is offering the guard finalBarrier together with
BarrierManager the barrier synchronises and the system is able to progress onto another initial phase
as described previously. The only process to undertake any substantial processing in the final phase is
the DisplayController which leaves the final state of the display for a preset constant time, then
sets all the targets to black, thereby obliterating them and then waits for another preset constant time.
The coding of each of the processes now follows.

Figure 14-6 System At Final Barrier Synchronisation

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

200

Barriers and Buckets: Hand-Eye Co-ordination Test

14.1	 Barrier Manager

The BarrierManager, shown in Listing 14-1, simply defines as properties all the barriers in which it
participates {12–15}. By definition an AltingBarrier must be part of an alternative and thus two ALTs
are defined {18, 19} in which the particular AltingBarrier is the only guard. BarrierManager then
waits to synchronise on setUpBarrier {20}. Thereafter, the process repeatedly synchronises on the
goBarrier, timeAndHitBarrier and finalBarrier in sequence {23–25}. A Barrier synchronises
using the sync() method call, whereas synchronisation on an AltingBarrier is achieved by calling
the select() method call of the ALT that contains the barrier as a guard. In this case because the
guard is the only element in the alternative a simple call of the select() method is sufficient, the
value returned is of no importance. An alting barrier becomes enabled when all other members of the
AltingBarrier also select() the same alting barrier.

10	class BarrierManager implements CSProcess{
11		
12	 def AltingBarrier timeAndHitBarrier
13	 def AltingBarrier finalBarrier
14	 def Barrier goBarrier
15	 def Barrier setUpBarrier
16
17	 void run() {
18	 def timeHitAlt = new ALT ([timeAndHitBarrier])
19	 def finalAlt = new ALT ([finalBarrier])
20	 setUpBarrier.sync()
21		
22	 while (true){
23	 goBarrier.sync()
24	 def t = timeHitAlt.select()
25	 def f = finalAlt.select()
26	 }
27	 }
28	}

Listing 14-1 Barrier Manager

14.2	 Target Controller

Listing 14-2 shows the coding of the TargetController process, which is the process that effectively
controls the operation of the complete system. The properties of the process are defined {12–20} and
these directly implement the channel and barrier structures shown in Figures 14-2 to 14-6.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

201

Barriers and Buckets: Hand-Eye Co-ordination Test

10	class TargetController implements CSProcess {
11		
12	 def ChannelOutput getActiveTargets
13	 def ChannelInput activatedTargets
14	 def ChannelInput receivePoint
15	 def ChannelOutputList sendPoint
16	
17	 def Barrier setUpBarrier
18	 def Barrier goBarrier
19	 def AltingBarrier timeAndHitBarrier
20	 def int targets = 16
21
22	 void run() {
23	 def POINT = 1
24	 def BARRIER = 0
25	 �def controllerAlt = new ALT ([timeAndHitBarrier, receivePoint])
26	
27	 setUpBarrier.sync()
28	 while (true) {
29	 getActiveTargets.write(1)
30	 def activeTargets = activatedTargets.read()
31	 def runningTargets = activeTargets.size
32	 def ChannelOutputList sendList = []
33	 for (t in activeTargets) sendList.append(sendPoint[t])
34	 def active = true

Download free eBooks at bookboon.com

Click on the ad to read more

��������	
�����
������
��������
���������
�����������
��������
�����
��
���������������������������

������
������

������������������������������ �����	�����
	�
�����	������!���"�
	������������

�
	�

�����#$%����&'())%�*+������
	�
���,���������
�-

.�
��������������������
������������
��

��������	
��
����

��	��������	
��
����

���������
���

����������

����������
�����
��

���������

 The Wake
the only emission we want to leave behind

http://www.mandieselturbo.com

Using Concurrency and
Parallelism Effectively – I

202

Barriers and Buckets: Hand-Eye Co-ordination Test

35	 goBarrier.sync()
36	 while (active) {
37	 switch (controllerAlt.priSelect()) {
38		 case BARRIER:
39			 active = false
40			 break
41		 case POINT:
42			 def point = receivePoint.read()
43			 sendList.write(point)
44			 break
45	 } // end switch
46	 } // end while active
47	 } // end while true
48	 } // end run
49	}

Listing 14-2 Target Controller

Within the run method some constants used to identify guards are defined {23, 24} of an alternative {25}.
The zero’th guard of the alternative controllerAlt is the AltingBarrier timeAndHitBarrier
and as such is incorporated into an ALT like any other guard. The process then waits for all the other
enrolled processes to synchronise on setUpBarrier {27} before continuing with the unending loop
{28–47} that is the main body of the process.

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/gee_change

Using Concurrency and
Parallelism Effectively – I

203

Barriers and Buckets: Hand-Eye Co-ordination Test

The first action of the process is to send a signal {29} to the TargetManager process using the channel
getActiveTargets. This is the first part of a client-server request and response pair of communications,
the second of which is the receipt of a list of the targetIds of the activeTargets from the channel
activatedTargets {30}. The activeTargets list is then used to create {33} a subset of the
ChannelOutputList property sendPoint {15} in another ChannelOutputList sendList, which
is used subsequently to communicate with each of the TargetProcesses. The Boolean property active is
then defined {34} and will be used to control the subsequent operation of the process. The process now waits
to synchronise on the goBarrier {35}. Prior to the goBarrier synchronisation all the TargetProcesses
will have synchronised on the initBarrier but that is of no concern to the TargetController process.

The goBarrier is used to synchronise the operation of all the targets in the running TargetProcesses, the
BarrierManager and the DisplayController as well as TargetController. The synchronisation
enables each of these processes to run in that part of the system which allows users to move their mouse
over the active targets and to try and hit each of them, by means of a mouse press, before each target times
out. Thus the only actions that can occur are either, a mouse press occurs, or all the targets have either
been hit or timed out. The mouse press manifests itself as the input of a Point on the receivePoint
channel {42}. The value of point is then communicated, in parallel {43}, to all the members of sendList
to each of the running TargetProcesses. (A write on a ChannelOutputList causes the writing of
the method call parameter to all the channels in the list in parallel). If the barrier guard is selected then
the loop terminates as soon as all the other processes on the timeAndHitBarrier have been selected
{38}. The value of active is set false {39}which causes the inner while loop to terminate {36} ready for
the process to cycle again round the outer non-terminating while loop {28}.

14.3	 Target Manager

Listing 14-3 shows the coding of the TargetManager process. Its properties are defined {12–18}.
The process does not have anything to do prior to the setUpBarrier synchronisation {21}. Its body
comprises a non-terminating loop {22–34}. Initially, it reads the signal from TargetController
on its getActiveTargets channel {24}, which causes the writing of yet a further signal to the
TargetFlusher process on the flushNextBucket channel {25}. This is also the first part of the client-
server communication pattern between TargetManager and TargetFlusher. The corresponding
response is read from the targetsFlushed channel, which is the number of TargetProcesses that
have been initialised into the variable targetsRunning {26}. The next phase {27–30} is to read from each
of the initialised TargetProcesses their identity on the targetIdFromTarget channel and append
it to the targetList {28}. This list is then written to the TargetController process {31} using the
activatedTargets channel, thereby completing the client-server interaction between TargetManager
and TargetController. Finally, the list of initialised targets is written to the DisplayController
using the channel activatedTargetsToDC {32}. These two communications allow the receiving process
to complete their initialisation prior to further operation. The process then cycles waiting to read the next
group of actived targets {24}, which cannot be undertaken until the next bucket is flushed.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

204

Barriers and Buckets: Hand-Eye Co-ordination Test

10	class TargetManager implements CSProcess {
11
12	 def ChannelInput targetIdFromTarget
13	 def ChannelInput getActiveTargets
14	 def ChannelOutput activatedTargets
15	 def ChannelOutput activatedTargetsToDC
16	 def ChannelInput targetsFlushed
17	 def ChannelOutput flushNextBucket
18	 def Barrier setUpBarrier
19
20	 void run() {
21	 setUpBarrier.sync()
22	 while (true) {
23	 def targetList = []
24	 getActiveTargets.read()
25	 flushNextBucket.write(1)
26	 def targetsRunning = targetsFlushed.read()
27	 while (targetsRunning > 0) {
28	 targetList << targetIdFromTarget.read()
29	 targetsRunning = targetsRunning – 1
30	 } // end of while targetsRunning
31	 activatedTargets.write(targetList)
32	 activatedTargetsToDC.write(targetList)
33	 } // end of while true
34	 }
34	}

Listing 14-3 Target Manager

14.4	 Target Flusher

The role of the TargetFlusher process, shown in Listing 14-4, is to manage the Buckets into which
the TargetProcesses fall.

10	class TargetFlusher implements CSProcess {
11
12	 def buckets
13	 def ChannelOutput targetsFlushed
14	 def ChannelInput flushNextBucket
15	 def Barrier initBarrier
16
17	 void run() {
18	 def nBuckets = buckets.size()
19	 def currentBucket = 0
20	 def targetsInBucket = 0
21	 while (true) {
22	 flushNextBucket.read()
23	 targetsInBucket = buckets[currentBucket].holding()

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

205

Barriers and Buckets: Hand-Eye Co-ordination Test

24	 while (targetsInBucket == 0) {
25	 currentBucket = (currentBucket + 1) % nBuckets
26	 targetsInBucket = buckets[currentBucket].holding()
27	 } // end of while targetsInBucket
28	 initBarrier.reset(targetsInBucket)
29	 targetsFlushed.write(targetsInBucket)
30	 buckets[currentBucket].flush()
31	 currentBucket = (currentBucket + 1) % nBuckets
32	 } // end of while true
33	 }
34	}

Listing 14-4 Target Flusher

The process also completes the client-server interaction with the TargetManager process. Its properties
are defined {12–15}. Some variables are initialised {18–20} in the first part of the run method. The main
loop of the process {21–32} initially reads the signal {22} that causes it to start the initialisation of some
TargetProcesses. The number of TargetProcesses in the currentBucket is determined by means
of a call of the holding() method {23}. The next piece of coding {24–27} ensures that the number of
TargetProcesses that are flushed is greater then zero.

Download free eBooks at bookboon.com

Click on the ad to read more

Corporate eLibrary
See our Business Solutions for employee learning

Click here

Management

CoachingMotivationGoal setting

Problem solving

Time Management

Project Management

http://s.bookboon.com/bbg-elibrary-2015

Using Concurrency and
Parallelism Effectively – I

206

Barriers and Buckets: Hand-Eye Co-ordination Test

At this stage initBarrier can be set to the number of targetsInBucket {28} by means of a call to
the reset method. The number of targetsInBucket can now be written to the TargetManager
process {29}. Now the TargetProcesses contained in the currentBucket can be flushed {30} and
therefore start running. Finally, the value of currentBucket can be incremented subject to its value
staying within zero to the number of Buckets, nBuckets {31}.

14.5	 Display Controller

The DisplayController process is shown in Listings 14-5 to 14-8 and manages the interaction
between the TargetProcesses and the user interface provided by the Gallery process, described in
the next section.

The TargetProcesses communicate with the DisplayController by means of the channel stateChange
{11}, which is the ‘one’ end of an any2one channel. The channel activeTargets {12} is used to input
the list of running targets during the initial phase of a cycle. The displayList property {14} provides
the connection between this process and the ActiveCanvas contained in the Gallery process.
The channels hitsToGallery and possiblesToGallery {15, 16} are used to send values to the
ActiveLabels in the Gallery process that display the number of targets that have been hit and the
total number of targets displayed. Finally, the barriers upon which DisplayController synchronises
are defined {18–20}.

10	class DisplayController implements CSProcess {
11	 def ChannelInput stateChange
12	 def ChannelInput activeTargets
13	
14	 def DisplayList displayList
15	 def ChannelOutput hitsToGallery
16	 def ChannelOutput possiblesToGallery
17	
18	 def Barrier setUpBarrier
19	 def Barrier goBarrier
20	 def AltingBarrier finalBarrier
21	

Listing 14-5 Display Controller Properties

Listing 14-6 gives the array of GraphicsCommands and list of values used to change the displayList.
These are not shown complete, but are those parts that relate to the first and last. The array targetGraphics
is used to initially create the displayList. Each of the elements of the list targetColour comprises
the colour of the target and the element of targetGraphics that has to be changed in order to display
the target. The first two elements of targetGraphics {25, 26} have the effect of completely ‘blacking’ out
the display canvas prior to its repainting within the Canvas thread.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

207

Barriers and Buckets: Hand-Eye Co-ordination Test

22	 void run() {
23
24	 def GraphicsCommand [] targetGraphics = new GraphicsCommand [34]
25	 targetGraphics[0] = new GraphicsCommand.SetColor (Color.BLACK)
26	 targetGraphics[1] = new GraphicsCommand.FillRect (0, 0, 450, 450)
27	 targetGraphics[2] = new GraphicsCommand.SetColor (Color.BLACK)
28	 targetGraphics[3] = new GraphicsCommand.FillRect (10, 10, 100, 100)
29	 targetGraphics[4] = new GraphicsCommand.SetColor (Color.BLACK)
30	 targetGraphics[5] = new GraphicsCommand.FillRect (120, 10, 100, 100)
31	 targetGraphics[6] = new GraphicsCommand.SetColor (Color.BLACK)
32	 targetGraphics[7] = new GraphicsCommand.FillRect (230, 10, 100, 100)
33	…
34	 targetGraphics[30] = new GraphicsCommand.SetColor (Color.BLACK)
35	 �targetGraphics[31] = new GraphicsCommand.FillRect (230, 340, 100, 100)
36	 targetGraphics[32] = new GraphicsCommand.SetColor (Color.BLACK)
37	 �targetGraphics[33] = new GraphicsCommand.FillRect (340, 340, 100, 100)
38
39	 def targetColour = [
40	 [new GraphicsCommand.SetColor (Color.RED), 2],
41	 [new GraphicsCommand.SetColor (Color.GREEN), 4],
42	 [new GraphicsCommand.SetColor (Color.YELLOW), 6],
43	 [new GraphicsCommand.SetColor (Color.BLUE), 8],
44	…
45	 [new GraphicsCommand.SetColor (Color.MAGENTA), 30],
46	 [new GraphicsCommand.SetColor (Color.ORANGE), 32]
47]

Listing 14-6 Graphics definitions

The run method has some further properties that are shown in Listing 14-7, which include the constants
{48, 49} used to identify the selected alternative defined as controllerAlt {52}. The constants {54–56}
define the GraphicsCommand that can be used to colour a square as indicated by their name. Finally,
variables that tally the number of hits and possible hits are defined {58, 59} together with a timer {60}
that is used to control the time the display stays static at the end of a cycle.

48	 def CHANGE = 1
49	 def BARRIER = 0
50	 def TIMED_OUT = 0
51	 def HIT = 1
52	 def controllerAlt = new ALT ([finalBarrier, stateChange])
53
54	 def whiteSquare = new GraphicsCommand.SetColor(Color.WHITE)
55	 def blackSquare = new GraphicsCommand.SetColor(Color.BLACK)
56	 def graySquare = new GraphicsCommand.SetColor(Color.GRAY)
57
58	 def totalHits = 0
59	 def possibleTargets = 0
60	 def timer = new CSTimer()

Listing 14-7 Other Run Method Properties

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

208

Barriers and Buckets: Hand-Eye Co-ordination Test

The body of the run method is shown in Listing 14-8. Prior to the setUpBarrier synchronisation
{64} the displayList is initialised by a call to the set method {61} and the initial, zero, values of
totalHits and possibleHits are written to the Gallery {62, 63}.

The never ending loop of the run method is then entered {66–99}, which comprises some initialisation
prior to the goBarrier synchronisation {67–73} followed by the active part of the cycle {74–93} until
the finalBarrier is selected {89–90}.

61	 displayList.set (targetGraphics)
62	 hitsToGallery.write (" " + totalHits)
63	 possiblesToGallery.write (" " + possibleTargets)
64	 setUpBarrier.sync()
65
66	 while (true) {
67	 def active = true
68	 def runningTargets = activeTargets.read()
69	 possibleTargets = possibleTargets + runningTargets.size
70	 possiblesToGallery.write (" " + possibleTargets)
71	 for (t in runningTargets)
72	 displayList.change (targetColour[t][0], targetColour[t][1])
73	 goBarrier.sync()
74	 while (active) {
75	 switch (controllerAlt.priSelect()) {

Download free eBooks at bookboon.com

Click on the ad to read more

http://thecvagency.co.uk

Using Concurrency and
Parallelism Effectively – I

209

Barriers and Buckets: Hand-Eye Co-ordination Test

76	 case CHANGE:
77		 def modification = stateChange.read() // [tId, state]
78		 switch (modification[1]) {
79			 case HIT:
80				 displayList.change (whiteSquare, targetColour[modification[0]][1])
81				 totalHits = totalHits + 1
82				 hitsToGallery.write (" " + totalHits)
83			 break
84			 case TIMED_OUT:
85				 displayList.change (graySquare, targetColour[modification[0]][1])
86			 break
87		 } // end switch modification
88		 break
89	 case BARRIER:
90		 active = false
91		 break
92	 } // end switch controllerAlt
93	 } // end of while active
94	 timer.sleep(1500)
95	 for (tId in runningTargets)
96	 displayList.change (blackSquare, targetColour[tId][1])
97	 timer.sleep (500)
98	 } // end while true
99	 }
100	}

Listing 14 – 8 Run Method Definition

The process DisplayController is initialised by reading the identities of the running targets into
the list runningTargets from TargetManager using the channel activeTargets {68}. The size
of this list is then used to update the total number of possible targets in the Gallery {69–70}. The
members of the list are then used to change the displayList, which causes the targets to appear in
the Gallery {71–72}. The process then synchronises on the goBarrier {73}.

The process remains active {74} until the finalBarrier is selected {89–90}. It should be noted
that the order of the guards in controllerAlt is important, with priority given to inputs from
the TargetProcesses, so that all changes to the targets are completed before the finalBarrier is
selected. While the process is active, communications from the running TargetProcesses are
read from the channel stateChange {77} which are used to modify the state of the targets in the
Gallery by changing the displayList. The input from a TargetProcess is in the form of a list
comprising the identity of the target and the state to which it should be changed. Two state changes are
possible indicated by HIT, when the target’s image is changed to white {80} and the number of targets
hit is also updated {81–82} and TIMED_OUT when the square is coloured grey {85}.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

210

Barriers and Buckets: Hand-Eye Co-ordination Test

Once the finalBarrier has been selected {89, 90} the process sleeps for 1.5 seconds {94} to allow
the user to determine the final state of that cycle. The running targets, which are now all coloured either
white or grey are returned to the colour black {95–96}. The process sleeps for a further 0.5 seconds {97},
to provide the user a break between cycles of the system. It then resumes the main loop of the process,
which is initiated by reading the identities of the targets that have been flushed from the next Bucket.

14.6	 Gallery

The Gallery process shown in Listing 14-9 is similar to other user interface processes that have been
discussed previously. The only aspect of particular note is that a mouse event channel {15} is added to
the ActiveCanvas {39}. There is no need for the programmer to add anything further in terms of
listener or event handler methods. Any mouse event is communicated on the mouseEvent channel to
the MouseBuffer process. The components of the interface can be seen, by observation, to produce
that shown in Figure 14-1.

10	class Gallery implements CSProcess{
11
12	 def ActiveCanvas targetCanvas
13	 def ChannelInput hitsFromGallery
14	 def ChannelInput possiblesFromGallery
15	 def ChannelOutput mouseEvent
16	 def canvasSize = 450
17	
18	 void run() {
19	 def root = new ActiveClosingFrame ("Hand-Eye Co-ordination Test")
20	 def mainFrame = root.getActiveFrame()
21	 def m1 = new Label ("You Have Hit")
22	 def m2 = new Label ("Out Of")
23	 def hitLabel = new ActiveLabel (hitsFromGallery)
24	 def possLabel = new ActiveLabel (possiblesFromGallery)
25	 m1.setAlignment(Label.CENTER)
26	 m2.setAlignment(Label.CENTER)
27	 hitLabel.setAlignment(Label.CENTER)
28	 possLabel.setAlignment(Label.CENTER)
29	 m1.setFont(new Font("sans-serif", Font.BOLD, 14))
30	 m2.setFont(new Font("sans-serif", Font.BOLD, 14))
31	 hitLabel.setFont(new Font("sans-serif", Font.BOLD, 20))
32	 possLabel.setFont(new Font("sans-serif", Font.BOLD, 20))
33	 def message = new Container()
34	 message.setLayout (new GridLayout (1, 4))
35	 message.add (m1)
36	 message.add (hitLabel)
37	 message.add (m2)
38	 message.add (possLabel)
39	 targetCanvas.addMouseEventChannel (mouseEvent)

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

211

Barriers and Buckets: Hand-Eye Co-ordination Test

40	 mainFrame.setLayout(new BorderLayout())
41	 targetCanvas.setSize (canvasSize, canvasSize)
42	 mainFrame.add (targetCanvas, BorderLayout.CENTER)
43	 mainFrame.add (message, BorderLayout.SOUTH)
44	 mainFrame.pack()
45	 mainFrame.setVisible (true)
46	 def network = [root, targetCanvas, hitLabel, possLabel]
47	 new PAR (network).run()
48	 }
49	}

Listing 14-9 Gallery Process

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/elearningforkids

Using Concurrency and
Parallelism Effectively – I

212

Barriers and Buckets: Hand-Eye Co-ordination Test

14.7	 Mouse Buffer

The MouseBuffer, shown in Listing 14-10 process reads mouse events on its mouseEvent channel
{12}. Only when the event is a MOUSE_PRESSED event does it store the location of the click {35}
in the variable point. At this stage it modifies {34} the pre-condition on the process’ alternative,
mouseBufferAlt so as to be able to accept requests for a point {26}, which can then be transferred to
the MouseBufferPrompt process {28}, after which the pre-condition is again modified {29} so as not
to accept further prompt requests until another mouse click point has been received. This mechanism
was used previously in the Queue and Event Handling Systems and is an idiom or pattern used
to manage requests for external non-deterministic events. In this case we note that the mouseEvent
channel is always available to read events and thus does not block the Gallery process with its implicit
threads that are used to implement events and a canvas. This is further demonstrated by the mouseEvent
channel having a data store associated with it that enables the overwriting of the oldest member of the
associated buffer (see 14.10).

10	 class MouseBuffer implements CSProcess{
11
12	 def ChannelInput mouseEvent
13	 def ChannelInput getClick
14	 def ChannelOutput sendPoint
15
16	 void run() {
17	 def mouseBufferAlt = new ALT ([getClick, mouseEvent])
18	 def preCon = new boolean [2]
19	 def EVENT = 1
20	 def GET = 0
21	 preCon[EVENT]= true
22	 preCon[GET] = false
23	 def point
24	 while (true) {
25	 switch (mouseBufferAlt.select(preCon)) {
26	 case GET:
27		 getClick.read()
28		 sendPoint.write(point)
29		 preCon[GET] = false
30		 break
31	 case EVENT:
32		 def mEvent = mouseEvent.read()
33		 if (mEvent.getID() == MouseEvent.MOUSE_PRESSED) {
34			 preCon[GET] = true
35			 point = mEvent.getPoint()
36		 }
37		 break
38	 }
39	 }
40	 }
41	 }

Listing 14-10 Mouse Buffer Process

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

213

Barriers and Buckets: Hand-Eye Co-ordination Test

14.8	 Mouse Buffer Prompt

The MouseBufferPrompt process shown in Listing 14-11, simply writes a request to the getPoint
channel {20} and then waits to read a point on the receivePoint channel {21} which it then
writes to the TargetController process on the returnPoint channel {22}. The combination of
MouseBufferPrompt and MouseBuffer ensures that the MouseBuffer process is a pure server
in a client-server analysis and also has the effect of decoupling the generation of mouse events in the
Gallery from the process in which they are consumed, TargetController. Furthermore, any delay
in reading a point by the TargetController does not cause a delay that might cause the blocking
of the implicit event handling thread of Gallery.

10	 class MouseBufferPrompt implements CSProcess{
11		
12	 def ChannelOutput returnPoint
13	 def ChannelOutput getPoint
14	 def ChannelInput receivePoint
15	 def Barrier setUpBarrier
16
17	 void run () {
18	 setUpBarrier.sync()
19	 while (true) {
20	 getPoint.write(1)
21	 def point = receivePoint.read()
22	 returnPoint.write(point)
23	 }
24	 }
25	 }

Listing 14-11 Mouse Buffer Prompt Process

14.9	 Target Process

The TargetProcess is shown in Listings 14-12 to 14-14. The channel targetRunning {12} is used
by TargetProcess to inform the TargetManager process that it has been flushed from a Bucket
and has been made active. The channel stateToDC {13} is used to inform the DisplayController
of any change in state of this target that is, either hit or timed-out. The channel mousePoint {14} is
used to input the java.awt.Point at which the mouse has been pressed. The process is a member of
the setUp, init, go and timeAndHit barriers {15–18}. It also requires access to the array of buckets
{19}. The property targetId {20} is a unique integer identifying the instance of TargetProcess and
the values x {21} and y {22} are the pixel co-ordinates of the upper left corner of the target in the display
window. The property delay {23} specifies the minimum period for which the target will be displayed
before it times out. The target will be visible for a random time between delay and twice delay. The
method within {25–33} determines if a java.awt.Point p is within the target area. All targets are
square with a side of 100 pixels.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

214

Barriers and Buckets: Hand-Eye Co-ordination Test

10	 class TargetProcess implements CSProcess {
11
12	 def ChannelOutput targetRunning
13	 def ChannelOutput stateToDC
14	 def ChannelInput mousePoint
15	 def Barrier setUpBarrier
16	 def Barrier initBarrier
17	 def Barrier goBarrier
18	 def AltingBarrier timeAndHitBarrier
19	 def buckets
20	 def int targetId
21	 def int x
22	 def int y
23	 def delay = 2000
24	
25	 def boolean within (Point p, int x, int y) {
26	 def maxX = x + 100
27	 def maxY = y + 100
28	 if (p.x < x) return false
29	 if (p.y < y) return false
30	 if (p.x > maxX) return false
31	 if (p.y > maxY) return false
32	 return true
33	 }
34

Listing 14-12 The Properties and Within Method of target process

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/academictransfer

Using Concurrency and
Parallelism Effectively – I

215

Barriers and Buckets: Hand-Eye Co-ordination Test

The first part of the run method is executed during the setup phase of the system and is only executed
once, Listing 14-13. A Random number generator rng {36} is defined and then used to specify the
initial bucket, bucketId {38, 39} into which the TargetProcess will subsequently fall. Initially all
TargetProcesses will fall into a bucket in the first half of the array of buckets. A timer and some
constants are also defined {37, 40–44}.

Two alternatives are then defined. The alternative preTimeOutAlt {46} is used prior to the
TargetProcess being timed out and postTimeOutAlt {47} is used once a time out has occurred or
the target has been hit. The latter alternative includes the AltingBarrier timeAndHitBarrier. The
operation of such an AltingBarrier is straightforward. It must appear as a guard in an alternative.
Whenever any select method on the alternative is called a check is made to determine whether all the
other members of the AltingBarrier have also requested and are waiting on such a select. If they have,
then, the AltingBarrier as a whole can be selected. If one of the members of an AltingBarrier
accepts another guard in such an alternative then the AltingBarrier cannot be selected. Thus it is
possible for a process to offer an AltingBarrier guard and then withdraw from that guard if the
dynamics of the system cause that to happen.

The TargetProcess now resigns from timeAndHitBarrier {49}, which at first sight may seem
perverse. All TargetProcesses are initially enrolled on this barrier. However we only want running
targets to be counted as part of the barrier so we must first resign from the barrier and then enroll
only when the TargetProcess is executed.

The mechanism of enroll and resign can be applied to all types of barrier. A process that enrolls
on a barrier can now call the sync method (Barrier) or be a guard in an alternative and thus can be
selected (AltingBarrier). Similarly a process can resign which means that the process is no longer
part of the barrier. In the case of a Barrier resignation it also implies that if this is the last process to
synchronise on the Barrier then this is equivalent to all the processes having synchronised. A process
cannot resign if it is not enrolled. In the case of AltingBarriers this enrolment and resignation has to
be undertaken with care as no process can be running and selecting the barrier onto which it is intended
to either enrol or resign another process from. The associated documentation for JCSP specifies this
requirement more fully.

The TargetProcesses now synchronise on the setUpBarrier {50} and when this is achieved they
then fallInto the bucket with subscript bucketId {51}. This has the effect of stopping the process.
It will only be rescheduled when the TargetFlusher process causes the bucket into which the process
has fallen is flushed {Listing 14-4, 30}.

35	 void run() {
36	 def rng = new Random()
37	 def timer = new CSTimer()

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

216

Barriers and Buckets: Hand-Eye Co-ordination Test

38	 def int range = buckets.size() / 2
39	 def bucketId = rng.nextInt(range)
40	 def POINT= 1
41	 def TIMER = 0
42	 def BARRIER = 0
43	 def TIMED_OUT = 0
44	 def HIT = 1
45
46	 def preTimeOutAlt = new ALT ([timer, mousePoint])
47	 def postTimeOutAlt = new ALT ([timeAndHitBarrier, mousePoint])
48	
49	 timeAndHitBarrier.resign()
50	 setUpBarrier.sync()
51	 buckets[bucketId].fallInto()

Listing 14-13 Target process: The Setup Phase of Run

The remainder of the run method, Listing 14-14, only gets executed when the process has been flushed.
It comprises a never ending loop {52–94}, which as its final statement {93} causes itself to fall into another
bucket, prior to returning to the start of the loop. The loop itself has three phases comprising the phases
managed by initBarrier and then that managed by the goBarrier before finally running until either
the target is hit or times out which is managed by the timeAndHitBarrier.

In the initial phase, the process enrolls on the timeAndHitBarrier {53} and also the goBarrier
{54}. Enrolling on the timeAndHitBarrier causes no problem because at this stage no process
can be selecting a guard from an alternative in which timeAndHitBarrier is involved. Similarly,
enrolling on the goBarrier is an operation that can be undertaken dynamically because it is a
Barrier. The running process now writes its unique identity, targetId to its targetRunning
channel {55}. This communication means that the TargetManager now can determine {Listing 14-4,
27–30} which targets are active. It then synchronises on the initBarrier {56}. The number of running
TargetProcesses associated with the initBarrier is specified by TargetFlusher {Listing 14-3,
29} at a time when none of these processes can be running because they have yet to be flushed. Only the
running TargetProcesses are allowed to access the initBarrier and thus once the initBarrier
has synchronised we know that all the TargetProcesses are in the same state and that any dependent
processes such as DisplayController will be able to complete any further initialisation prior to the
goBarrier synchronisation. The Boolean running is initialised {57}, which will be used subsequently
to control the operation of the process. Similarly, the variable resultList is initialised {58} and will
be used to indicate the change of state that will occur in the target. The process can now synchronise
on the goBarrier by resigning from it {59}. The only permanent members of the goBarrier are
BarrierManager, TargetController and DisplayController, all of which simply call the
method sync() on the barrier . The goBarrier is augmented by the active TargetProcesses to
ensure that all the processes are in a state that will be suitable for the whole system to become active.

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

217

Barriers and Buckets: Hand-Eye Co-ordination Test

Once the process has synchronised on the goBarrier it determines the time for which the target will be
displayed and sets the timer alarm {60} which is a guard in the preTimeOutAlt (46}. Prior to the alarm
occurring only two things can occur, either the TIMER alarm does happen {63} or a mouse click POINT
is received {68}. In the former case, the value TIMED_OUT can be appended to the resultList {65}
and this list can be written to the DisplayController using the channel stateToDC {66}. Otherwise,
an input can be processed {69} which, if it is within the target area {70} causes the value HIT to be
appended to the resultList {72} and as before written to the DisplayController process {73}. If
the point is not within the target then the loop repeats until one of the above cases occurs. Once this
happens the value of running is set false {64} and the loop {61–79} terminates.

The process now has to take account of the case where other targets are still running; awaiting a time out
or a hit, and so mouse clicks and their associated point data will still be received by the TargetProcess.
Such point data can be ignored {87–89} and only when all the TargetProcesses are selecting the
timeAndHitBarrier, together with TargetController and BarrierManager processes can the
awaiting loop {81–91} terminate. this occurs the process When this occurs the process
resigns from the timeAndHitBarrier and causes the loop to exit.

Download free eBooks at bookboon.com

Click on the ad to read more

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

Using Concurrency and
Parallelism Effectively – I

218

Barriers and Buckets: Hand-Eye Co-ordination Test

The TargetProcess can now prepare itself for falling into another bucket by calculating {92} into which
bucket it will fall and then calling the fallInto method {93}. The chosen bucket is at least two further on
than the current bucket which means that it cannot be flushed in the next iteration of TargetFlusher,
unless the next bucket happens to be empty.

52	 while (true) {
53	 timeAndHitBarrier.enroll()
54	 goBarrier.enroll()
55	 targetRunning.write(targetId)
56	 initBarrier.sync() //ensures all targets have initialised
57	 def running = true
58	 def resultList = [targetId]
59	 goBarrier.resign()
60	 timer.setAlarm(timer.read() + delay + rng.nextInt(delay))
61	 while (running) {
62	 switch (preTimeOutAlt.priSelect()) {
63	 case TIMER:
64		 running = false
65		 resultList << TIMED_OUT
66		 stateToDC.write(resultList)
67		 break
68	 case POINT:
69		 def point = mousePoint.read()
70		 if (within(point, x, y)) {
71			 running = false
72			 resultList << HIT
73			 stateToDC.write(resultList)
74		 }
75		 else {
76		 }
77		 break
78	 }
79	 } // end while running
80	 def awaiting = true
81	 while (awaiting) {
82	 switch (postTimeOutAlt.priSelect()) {
83	 case BARRIER:
84		 awaiting = false
85		 timeAndHitBarrier.resign()
86		 break
87	 case POINT:
88		 mousePoint.read()
89		 break
90	 }
91	 } // end while awaiting
92	 bucketId = (bucketId + 2 + rng.nextInt(8)) % buckets.size()

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

219

Barriers and Buckets: Hand-Eye Co-ordination Test

93	 buckets[bucketId].fallInto()
94	 }// end while true
95	 }
96	}

Listing 14-14 Target Process: The Active Phase of the Run Method

14.10	 Running the System

Listing 14-15 gives the declarations of the channels, barriers and other data required to create the network
according to the process network diagrams given in Figures 14-2 to 14-6 and as such are not particularly
noteworthy apart from those described below. The Barriers are defined with the required number of
processes. Thus setUpBarrier {18} is defined with the number of targets plus five for the other
processes that use this barrier, see Figure 14-2. The initBarrier {19} is defined with no members
because only the running TargetProcesses use this barrier and the number is reset explicitly in
TargetFlusher, see Figure 14-3. Finally, the goBarrier {20} is defined has having three members,
which are the permanently attached processes as shown in Figure 14-4.

The AltingBarriers are defined as an array, with sufficient members such that every process that
accesses them may have a so-called ‘front-end’. The finalBarrier {23} only requires two front-ends
because only BarrierManager and DisplayController participate in this barrier. The barrier
timeAndHitBarrier {22} requires a front-end for each TargetProcess, the TargetController
and BarrierManager. Each process participating in an AltingBarrier needs to be allocated its
own front-end so that it can access the barrier during an alternative select() method call. Recall that
as a TargetProcess becomes active it specifically enrolls on the timeAndHitBarrier thereby
activating its membership of the barrier and when its turn is complete it resigns from it. Thus the
number of processes that are members of the timeAndHitBarrier is determined dynamically at run
time. The Buckets are defined by means of a create method call {25} and this could be any sensible
number to provide a wide variety of target initiations per cycle, too many buckets and we would get too
few running targets to make the challenge interesting!

10	� def delay = Ask.Int("Target visible period (2000 to 3500)? ", 2000, 3500)
11	
12	 def targets = 16
13	 def targetOrigins = [[10, 10],[120, 10],[230, 10],[340, 10],
14					 [10, 120],[120, 120],[230, 120],[340, 120],
15					 [10, 230],[120, 230],[230, 230],[340, 230],
16					 [10, 340],[120, 340],[230, 340],[340, 340]]
17	
18	 def setUpBarrier = new Barrier(targets + 5)
19	 def initBarrier = new Barrier()
20	 def goBarrier= new Barrier(3)
21
22	 def timeAndHitBarrier = AltingBarrier.create(targets+2)

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

220

Barriers and Buckets: Hand-Eye Co-ordination Test

23	 def finalBarrier = AltingBarrier.create(2)
24
25	 def buckets = Bucket.create(targets)
26
27	 def mouseEvent = Channel.one2one (new OverWriteOldestBuffer(20))
28	 def requestPoint = Channel.one2one()
29	 def receivePoint = Channel.one2one()
30	 def pointToTC = Channel.one2one(new OverWriteOldestBuffer(1))
31
32	 def targetsFlushed = Channel.one2one()
33	 def flushNextBucket = Channel.one2one()
34
35	 def targetsActivated = Channel.one2one()
36	 def targetsActivatedToDC = Channel.one2one()
37	 def getActiveTargets = Channel.one2one()
38
39	 def hitsToGallery = Channel.one2one()
40	 def possiblesToGallery = Channel.one2one()
41
42	 def targetIdToManager = Channel.any2one()
43	 def targetStateToDC = Channel.any2one()
44
45	 def mousePointToTP = Channel.one2oneArray(targets)

Download free eBooks at bookboon.com

Click on the ad to read more

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

Using Concurrency and
Parallelism Effectively – I

221

Barriers and Buckets: Hand-Eye Co-ordination Test

46	 def mousePoints = new ChannelOutputList (mousePointToTP)
47
48	 def imageList = new DisplayList()
49	 def targetCanvas = new ActiveCanvas ()
50	 targetCanvas.setPaintable (imageList)
51	

Listing 14-15 Running the System Property Definitions

The mouseEvent channel {27} must be defined with a data store of type OverWriteOldestBuffer
so that the event handling thread associated with the user interface does not block; see the JCSP
documentation for ActiveCanvas. Similarly the pointToTC channel also uses a one place
OverWriteOldestBuffer {30} so that if mouse clicks are received too quickly the system does not
block. Given the normal performance of a PC this is very unlikely to occur as the user time to move
the mouse to another target is relatively long.

The channels that connect TargetController to the TargetProcesses are defined as an array,
mousePointToTP {45}, the input end of which is passed directly to the TargetProcess. The output
ends are formed into a ChannelOutputList, mousePoints {46}, so that they can be written to in
parallel by a write method call by TargetController.

The DisplayList and ActiveCanvas components are defined {48–50} prior to being passed as
properties of the required processes.

Listing 14-16 shows the definition of the TargetProcesses and also of BarrierManager. The
other processes can be found in the accompanying software because they are very similar to the
definition of processes in other systems. It is a matter of tying together the property definition in
the process and the defined variable in the script that causes the system to execute. The barriers are
straightforward but the allocation of a timeAndHitBarrier requires that a specific front-end is
allocated to each TargetProcess {60} and also to BarrierManager {70}. The origin co-ordinates
of each TargetProcess {63, 64} for the associated display is obtained from the list targetOrigins.

52	 def targetList = (0 ..< targets).collect { i ->
53				 return new TargetProcess (
54					 targetRunning: targetIdToManager.out(),
55					 stateToDC: targetStateToDC.out(),
56					 mousePoint: mousePointToTP[i].in(),
57					 setUpBarrier: setUpBarrier,
58					 initBarrier: initBarrier,
59					 goBarrier: goBarrier,
60					 timeAndHitBarrier: timeAndHitBarrier[i],
61					 buckets: buckets,
62					 targetId: i,

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

222

Barriers and Buckets: Hand-Eye Co-ordination Test

63					 x: targetOrigins[i][0],
64					 y: targetOrigins[i][1],
65					 delay: delay
66)
67				 }
68
69	 def barrierManager = new BarrierManager (
70					 timeAndHitBarrier: timeAndHitBarrier[targets],
71					 finalBarrier: finalBarrier[0] ,
72					 goBarrier: goBarrier,
73					 setUpBarrier: setUpBarrier
74)
75

Listing 14-16 Decalring the TargetProcesses and BarrierManager

14.11	 Summary

This chapter has introduced the concepts of buckets and barriers as a means of providing synchronisation
between processes that are executing on a single processor within a single JVM. It has been shown how
an AltingBarrier can be used to manage highly dynamic situations and to provide a high-level control
mechanism to manage complex interactions. A description of the implementation mechanism underlying
AltingBarrier is to be found in (Welch, et al., 2007) and a different use of AltingBarrier using a
syntactically different but conceptually identical formulation is to be found in (Ritson & Welch, 2007)

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

223

Index

Index
A
active AWT components, 143
active widget, 143, 158, 162
ALT, 62, 63, 64, 73, 83, 96, 107, 108, 117, 133, 138, 139,

154, 166, 169, 173, 177, 184, 200, 201, 202, 207,
212, 216

alternative, 29, 62, 64, 65, 69, 70, 74, 76, 79, 82, 83, 84,
97, 107, 108, 134, 137, 141, 143, 154, 166, 167, 169,
172, 176, 184, 196, 197, 199, 200, 202, 207, 212, 215,
216, 219

alternative pre-condition, 118, 137
alting barrier, 191, 200
any2any, 145
any2one, 143, 145, 149, 151, 152, 160, 176, 206, 220

B
barrier, 191, 192, 193, 199, 200, 203, 215, 216, 219
BarrierManager, 193, 199, 200, 203, 216, 217, 219, 221, 222
bucket, 191, 192, 193, 194, 198, 203, 210, 213, 215, 216,

218, 220
Butler, 166, 169, 170

C
Canteen, 171, 172, 173, 174, 176, 178
channel, 27
ChannelInput, 31
ChannelInputList, 55, 56, 58, 59, 61, 106, 107, 108, 109,

110, 128, 129, 166, 167, 169, 183, 187
ChannelOutput, 31
ChannelOutputList, 56, 106, 107, 108, 109, 110, 183, 187,

194, 198, 201, 203, 221
chef, 171, 172, 176, 178
client template, 103
client-server design pattern, 101, 132
concurrent, 17, 78
Concurrent Read Exclusive Write, 180
copy(), 78, 118, 119, 120, 125, 138, 147, 149
CREW, 179, 180, 184, 190
CrewMap, 180, 181, 182, 183, 184, 185, 190
cross coupled servers, 93
CSMux, 106, 107, 108, 109, 111, 112, 113

CSTimer, 56, 57, 72, 73, 80, 81, 88, 124, 148, 149, 165,
172, 173, 175, 177, 186, 187, 207, 215

D
deadlock, 24, 91, 93, 100, 101, 103, 105, 106, 108, 112,

114, 116, 132, 135, 142, 163, 193
Dining Philosophers, 163
DisplayController, 193, 194, 195, 198, 199, 203, 206, 209,

213, 216, 217, 219
DisplayList, 150, 152, 153, 157, 162, 206, 221

E
EventGenerator, 122
EventHandler, 121
EventOverWritingBuffer, 116
EventOWBuffer, 117
EventPrompter, 116, 118, 119, 120, 121, 122
EventReceiver, 118
EventStream, 124
External event handling, 114
Extra Ring Element, 133
F
Fibonacci sequence, 48
Fork, 165, 166, 168
G
Gallery, 210
GConsole, 36, 66, 68, 69, 131, 135, 136, 143, 175, 186,

188, 189
GConsoleStringToInteger, 66
GIntegrate, 47
GNumbers, 41, 42, 43, 44, 47, 55, 58, 59, 62, 63, 71, 78
GParPrint, 55, 56, 58, 59, 61
GPCopy, 40, 41, 42, 43, 45, 46, 49, 50, 52, 53, 58, 59, 61, 65
GPlus, 44, 45, 46, 51, 52, 53, 60
GPrefix, 39, 41, 42, 43, 46, 48, 49, 50, 58, 59, 60, 63, 65, 69
GPrint, 43, 44, 47, 50, 54, 61, 71, 77, 79, 122, 125, 128
GroovyTestCase, 85, 86, 87, 90, 113
GSquares, 55
GStatePairs, 48
GSuccessor, 39, 40, 41, 42, 43, 65, 69
GTail, 52, 53, 61

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

224

Index

guard, 29, 62, 64, 65, 74, 82, 97, 191, 199, 200, 202, 203,
215, 216, 217

guarded command, 62, 64, 65

I
InstantCanteen, 173
interrupt, 114

J
JCSPCopy, 78, 119, 120, 136, 147, 148, 184
JUnit, 85

K
Kitchen, 172, 176

L
LazyButler, 166, 167, 169
livelock, 24, 91, 93, 101, 103, 108, 112, 116, 163, 193

M
Mouse Event Buffer, 23
MouseBuffer, 212
MouseBufferPrompt, 213
multiplexer, 106

N
node, 132, 135, 136, 137, 139, 141, 142
non-determinism, 62
O
one2any, 143, 145, 146, 149, 152, 160, 176

P
Pairs Game, 19
PAR, 26, 30, 33, 36, 40, 41, 43, 44, 45, 46, 47, 49, 50, 53,

55, 56, 59, 65, 68, 79, 87, 89, 90, 98, 111, 112, 121,
123, 125, 127, 128, 129, 151, 159, 160, 168, 176, 183,
188, 211

parallel, 17
Particle, 144, 145, 146, 147, 148, 149, 150, 152, 156,

157, 159, 160
particle motion system, 144
ParticleInterface, 145, 146, 147, 149, 150, 151, 160
ParticleManager, 146, 150, 151, 152, 153, 154, 156, 157,

162
Philosopher, 164, 165, 168, 170, 174, 175, 176
pre-condition array, 82

priSelect, 63, 65, 74, 75, 76, 82, 83, 117, 133, 155, 202,
208, 218

process, 26
ProcessRead, 45
ProcessWrite, 40
Producer – Consumer, 30
pure clients, 178
pure server, 114, 116, 178, 186, 197, 213

Q
QConsumer, 79, 80, 81, 82, 83, 84, 87, 89, 102, 103
QProducer, 79, 80, 81, 82, 84, 87, 88, 89, 102
queue, 79, 87
QueuingCollege, 177
R
ReadClerk, 183, 184, 185
ResetPrefix, 63
Ring Element, 132, 133, 134, 135, 136, 137, 138, 140, 142
run, 31

S
scaling device, 71
server template, 104

T
TargetController, 194, 195, 197, 198, 200, 201, 203, 213,

216, 217, 219, 221
TargetFlusher, 193, 194, 203, 204, 215, 216, 218, 219
TargetManager, 203
TargetProcess, 193, 197, 209, 213, 214, 215, 217, 218,

219, 221
TCP/IP, 17, 26
TCP/IP network, 17, 26
the Java AWT, 143
timer, 28, 29, 38, 56, 57, 69, 70, 72, 73, 74, 75, 76, 80, 81,

88, 124, 125, 148, 149, 164, 165, 172, 174, 186, 187,
196, 207, 209, 215, 216, 217, 218

timer alarm, 70, 74
U
UniformlyDistributedDelay, 124

W
WriteClerk, 183, 185, 186

Download free eBooks at bookboon.com

To see Part II download
Using Concurrency and Parallelism Effectively – II

Download free eBooks at bookboon.com

	_Ref137029192
	_Ref137029182
	Preface
	Background
	Why Java and Groovy and Eclipse?
	Example Presentation
	Organisation of the Book
	Supporting Materials
	Acknowledgements

	1	A Challenge – Thinking Parallel
	1.1	Concurrency and Parallelism
	1.2	Why Parallel?
	1.3	A Multi-player Game Scenario
	1.4	The Basic Concepts
	1.5	Summary

	2	�Producer Consumer: A Fundamental Design Pattern
	2.1	A Parallel Hello World
	2.2	Hello Name
	2.3	Processing Simple Streams of Data
	2.4	Summary
	2.5	Exercises

	3	�Process Networks: Build It Like Lego
	3.1	Prefix Process
	3.2	Successor Process
	3.3	Parallel Copy
	3.4	Generating a Sequence of Integers
	3.5	Testing GNumbers
	3.6	Creating a Running Sum
	3.7	Generating the Fibonacci Sequence
	3.8	Generating Squares of Numbers
	3.9	Printing in Parallel
	3.10	Summary
	3.11	Exercises

	4	�Parallel Processes: Non Deterministic Input
	4.1	Reset Numbers
	4.2	Exercising ResetNumbers
	4.3	Summary
	4.4	Exercises

	5	�Extending the Alternative: A Scaling Device and Queues
	5.1	The Scaling Device Definition
	5.2	Managing A Circular Queue Using Alternative Pre-conditions
	5.3	Summary
	5.4	Exercises

	6	�Testing Parallel Systems: First Steps
	6.1	Testing Hello World
	6.2	Testing the Queue Process
	6.3	The Queue Test Script
	6.4	Summary
	6.5	Exercises

	7	Deadlock: An Introduction
	7.1	Deadlocking Producer and Consumer
	7.2	Multiple Network Servers
	7.3	Summary
	7.4	Exercises

	8	�Client-Server: Deadlock Avoidance by Design
	8.1	Analysing the Queue Accessing System
	8.2	Client and Server Design Patterns
	8.3	Analysing the Crossed Servers Network
	8.4	Deadlock Free Multi-Client and Servers Interactions
	8.5	Summary
	8.6	Exercises

	9	�External Events: Handling Data Sources
	9.1	An Event Handling Design Pattern
	9.2	Utilising the Event Handing Pattern
	9.3	Analysing Performance Bounds
	9.4	Simple Demonstration of the Event Handling System
	9.5	Processing Multiple Event Streams
	9.6	Summary
	9.7	Exercises

	10	�Deadlock Revisited: Circular Structures
	10.1	A First Sensible Attempt
	10.2	An Improvement
	10.3	A Final Resolution
	10.4	Summary

	11	�Graphical User Interfaces: Brownian Motion
	11.1	Active AWT Widgets
	11.2	The Particle System – Brownian Motion
	11.3	Summary
	11.4	Exercises

	12	�Dining Philosophers: A Classic Problem
	12.1	Naïve Management
	12.2	Proactive Management
	12.3	A More Sophisticated Canteen
	12.4	Summary

	13	�Accessing Shared Resources: CREW
	13.1	CrewMap
	13.2	The DataBase Process
	13.3	The Read Clerk Process
	13.4	The Write Clerk Process
	13.5	The Read Process
	13.6	The Write Process
	13.7	Creating the System
	13.8	Summary
	13.9	Challenge

	14	�Barriers and Buckets: Hand-Eye Co-ordination Test
	14.1	Barrier Manager
	14.2	Target Controller
	14.3	Target Manager
	14.4	Target Flusher
	14.5	Display Controller
	14.6	Gallery
	14.7	Mouse Buffer
	14.8	Mouse Buffer Prompt
	14.9	Target Process
	14.10	 Running the System
	14.11	Summary

