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Preface

Preface

Game theory is a mathematical theory that can be used to model and study
both conflicts and cooperations. The different models are called games with
the participating parties as players. Games are classified as non-cooperative
games or cooperative games depending on whether the focus is on what a
player can achieve alone without cooperation with other players or what
groups of players can achieve by cooperation.

A non-cooperative game is said to have strategic form if each player makes
his choice of action once and for all and independently of the choices of his
opponents. A typical example of a game that satisfies this is stone-paper-
scissors. Extensive games model situations where players can consider and
modify their plans of action as the situation develops. Chess and bridge are
two typical examples of such games, but they differ in that chess players have
always perfect information about the current position of the game, while a
bridge player, who is in turn to bid or play a card, has only incomplete
information about the current situation.

In games, there are generally no outcomes that are perceived as the best
by all players. A main task in game theory is therefore to identify solutions
that in some sense can be regarded as acceptable to all players, and to pro-
vide conditions for such solutions to exist. In non-cooperative games, such
a solution is provided by the Nash equilibrium which is an outcome with
the property that no player benefits from unilaterally changing his choice of
action. In cooperative games, where the main problem is to allocate a result
in such a way that no player or group of players feel aggrieved, there are a
number of proposed solutions, and we will study three of these in volume II,
namely the core, the nucleolus and the Shapley solution.

Game theoretical concepts and results are used in several scientific areas,
perhaps primarily in economics, biology, and computer science. For example,
the competition between companies in a market can be modeled as a game
with equilibrium prices corresponding to Nash equilibria. In biology, game
theory can be used to analyze evolutionary stable phenomena; the players
in an evolutionary game are genes with biologically and hereditary encoded
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strategies, and evolutionarily stable phenomena, such as sex ratio, can be
seen as special Nash equilibria.

Game theory is an unobjectionable mathematical theory, but the use of
game theory predictions in a concrete conflict situation requires, of course,
that there is a good match between model and reality. The models assume
that the players are rational and that they know the rules of the game,
which among other things includes that they know how the opponents value
all possible outcomes. In complex situations, this is of course impossible, but
game theoretical reasoning can often explain afterwards why it happened as
it happened.

This book in two volumes is intended to give an introduction to Game
Theory, and volume I treats, as indicated by the title, the non-cooperative
theory. The presentation is elementary in the sense that no advanced knowl-
edge of Mathematics is required. One semester of university studies of Math-
ematics should be enough to fully understand the text apart from a few sec-
tions whose proofs can be skipped without loss of context. You must master
the sum and the product symbols, the function concept and the usual set
operations (union, intersection, set membership), and know what is meant
by probabilities (on a finite sample space). But above all, you must not be
afraid of mathematical reasoning, which includes defining abstract concepts
and introducing new symbols. The most advanced reasoning in this volume
occurs in Sections 1.5, 2.3, 4.2, 7.1, 7.2 and 9.3.

Lars-Åke Lindahl

1

Corrections to Non-Cooperative Games –

Part I

Misprints

Page Line Replace With
9 4 transivitivity transitivity
13 14 om A. on A.
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54 1 sequal sequel
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135 -6 the the game the game
138 -12 apply hold
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143 9 och and
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160 mid number pair pair number pair

Additions

Page vi: Add the following two paragraphs at the end of the preface:

Volume II on Cooperative Game Theory is essentially independent of this
volume I and can therefore very well be read and studied before volume I.

A basic course on game theory could consist of Chapters 1.1–1.4, 2.1–2.2,
2.4–2.5, 3, 5, 6, 8, and 9.1–9.2 in volume I and Chapters 10.1–10.4, 11, and
12.1–12.2 in volume II.
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Notation

Notation

The mathematical symbols used in this volume are, with few exceptions,
standard notation, and those who are not will be explained as they are in-
troduced. Thus, R denotes the set of all real numbers, while R+ is the set
of all non-negative real numbers. We write f : X → R to indicate that the
real-valued function f is defined on the set X.

Cartesian product is a central concept; the product A1 ×A2 of two arbi-
trary sets A1 and A2 consists of all ordered pairs (a1, a2) that can be formed
by choosing the element a1 from the set A1 and the element a2 from the set
A2.

The product of more than two sets is defined analogously. Given n sets
A1, A2, . . . , An, A1×A2×· · ·×An, or more briefly

∏n
j=1 Aj, denotes the set of

all ordered n-tuples (a1, a2, . . . , an) that can be formed by choosing a1 ∈ A1,
a2 ∈ A2, . . . , an ∈ An. Ordered n-tuples will also be called vectors.

We will use the following convention for naming n-tuples. If the members
of an n-tuple are given as a1, a2, . . . , an, we use the same letter a as the name
of the n-tuple. We write, for example, a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn)
and x = (x1, x2, . . . , xn). We use the same convention for Cartesian products
so that A = A1 × A2 × · · · × An, etc.

Very often we need to consider the (n− 1)-tuple that is formed when the
element at location i in an n-tuple is deleted. If a = (a1, a2, . . . , an) we use
a−i to denote the (n− 1)-tuple (a1, . . . , ai−1, ai+1, . . . , an).

Thus, in the case n = 3, a−1 = (a2, a3), a−2 = (a1, a3), and a−3 = (a1, a2).
We use an analogous notation for product sets; if A = A1×A2×· · ·×An,

then A−i denotes the product set with n−1 factors that is formed by deleting
the ith factor Ai.

Given an n-tuple a = (a1, a2, . . . , an), we also need a simple way to denote
the n-tuple that is obtained by replacing the element ai at location i with an
arbitrary element b. We write (a−i, b) for this n-tuple, which means that

(a−i, b) = (a1, . . . , ai−1, b, ai+1, . . . , an).

Thus, in the case n = 3, (a−1, b) = (b, a2, a3), (a−2, b) = (a1, b, a3), and
(a−3, b) = (a1, a2, b). Of course, (a−i, ai) = a for all n-tuples a.

1
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We use an analogous writing for product sets, so that

(A−i, B) = A1 × · · · × Ai−1 × B × Ai+1 × · · · × An.
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Chapter 1

Utility Theory

Classical utility theory deals with the analysis of situations where individuals
must make decisions and seeks to explain their choices of actions in terms of
preferences, utility and expectations.

1.1 Preference relations and utility functions

We meet daily situations where we have to choose between different actions:
Blazer or sweater? Tea or coffee? Car or bus to work?, and so on. Most
of our choices are made by habit, unknowingly or without reflecting more
closely on the matter, but in a new situation or if it is an important decision,
we try to choose the best option. A prerequisite for doing so is that we
are able to evaluate and rank the different alternatives. It is such decision
problems that we will study in this chapter.

A decision problem consists of a set A of possible actions and a preference
relation � on the set A, where a � b should be interpreted as ”the action a
is better than or just as good as the action b”. Instead of a � b we also write
b � a.

A relation on A has to meet certain minimum requirements in order to
work as a preference relation, and they are given in the following definition.

Definition 1.1.1 A preference relation � on a set A is a relation satisfying
the following two axioms:

Axiom 1 (Completeness) For all a, b ∈ A, a � b or b � a.

Axiom 2 (Transitivity) If a � b and b � c, then a � c.

Completeness means that all alternatives in A can be compared with each
other. In particular, a � a for all a ∈ A.

3
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We say that the alternatives a and b are equivalent and write a ∼ b, if
a � b and b � a. We also say that the decision-maker is indifferent to such
alternatives. The relation ∼ is an equivalence relation on the set A.

We write a � b and say that ”a is better than b”, if a � b and a �∼ b,

Definition 1.1.2 Let � be a preference relation on the set A. An element
a∗ ∈ A is called maximal (with respect to the preference relation) if a∗ � a
for all a ∈ A (and minimal if a � a∗ for all a ∈ A).

If B is a subset of A, a∗ ∈ B and a∗ � b for all b ∈ B, then we say that
the element a∗ is maximal in B with respect to the given preference relation.

If a∗ is maximal in B, then there is in other words no better alternative
in B.

It is now easy to define what should be meant by a rational decision-
maker. A rational decision-maker is a person who, knowing his set of avail-
able actions and his preferences, chooses the maximum action.

It is easy to give examples of preference relations without maximal ele-
ments and of preference relations with more than one maximal element.

If the set A is finite, which will often be the case in the future, there is
always a maximal element, because it follows from Axioms 1 and 2 that the
elements of A can be arranged in a finite chain a1 � a2 � a3 · · · � an, and
a1 is then a maximal element.

Example 1.1.1 A person’s preference for the five dishes on a restaurant’s
menu on a given day looks like this:

Cod � Entrecote ∼ Veal � Salmon ∼ Pasta.

The unique optimal choice is Cod.

A common way to specify preferences is to put points on the various
alternatives; the better alternative, the higher the score. This leads to the
concept of utility function.

Definition 1.1.3 Let � be a preference relation on the set A. The function
u : A → R represents the preference relation and is called a corresponding
(ordinal) utility function if

a � b ⇔ u(a) ≥ u(b).

Example 1.1.2 Consider the menu in Example 1.1.1. We get a correspond-
ing utility function u by defining

u(Cod) = 3, u(Entrecote) = u(Veal) = 2,

u(Salmon) = u(Pasta) = 1.
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1.1 Preference relations and utility functions 5

Can Example 1.1.2 be generalized, i.e. is every preference relation rep-
resented by a utility function? The answer is obviously yes for preference
relations on finite sets, but for infinite sets additional topological conditions,
to be discussed in the next section, are needed.

Proposition 1.1.1 Every preference relation on a finite set is represented
by a utility function.

Proof. Arrange the elements of the finite set in increasing order

a1 � a2 � · · · � an,

and define the function u inductively by setting u(a1) = 1 and

u(ak) =

{
u(ak−1) if ak ∼ ak−1,

u(ak−1) + 1 if ak � ak−1

for k = 2, 3, . . . , n. The function u obviously represents the preference
relation.

A utility function u is not uniquely determined by its preference relation,
because it is only the order between the function values that matters, not
the values themselves.
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Proposition 1.1.2 Two utility functions u and v represent the same pref-
erence relation if and only if v = f ◦ u for some strictly increasing function
f (defined on the range of u).

Proof. Suppose that the preference relation � is represented by the utility
function u and that v = f ◦u, where the function f is strictly increasing. By
monotonicity, we then have

u(a) ≥ u(b) ⇔ v(a) = f(u(a)) ≥ f(u(b)) = v(b),

which shows that the function v also represents the preference relation �.

Conversely, suppose that the functions u and v both represent the pref-
erence relation �. In particular, we then have

u(a) = u(b) ⇔ a ∼ b ⇔ v(a) = v(b),

which means that we obtain a function f on the range of u by defining

f(u(a)) = v(a)

for all a ∈ A. Then v = f ◦u by definition, and it follows from the definition
of utility functions that

u(a) ≥ u(b) ⇔ a � b ⇔ v(a) ≥ v(b) ⇔ f(u(a)) ≥ f(u(b)).

The above equivalences imply that f is strictly increasing.

A common way of defining a preference relation � on a set A is to start
from a function u : A → R and then define � by the equivalence

a � b ⇔ u(a) ≥ u(b).

The relation � thus defined is obviously complete and transitive, that is
a preference relation. The preference relation � is said to be induced by
the function u, and u is by definition a utility function that represents the
preference relation.

Example 1.1.3 Most people are greedy in the sense that they prefer more
money to less, which means that their preference for wealth, the difference
between assets and debts measured in dollars, say, is given by the usual order
≥ on the set R of real numbers, and every strictly increasing function on R
is a corresponding ordinal utility function.

However, the preference relation gives us no clue as to how persons value
various changes of the wealth. A salary increase of 1 000 dollars per month
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is probably valued more by a person with a monthly salary of 10 000 dollars
than by a person with 100 000 dollars per month, but in order to describe
this we need to assign our utility functions additional properties. The values
u(x) of the utility function has to describe the benefit of x in such a way
that it makes sense to compare the utility change when x is changed from a
to b with the utility change when x is changed from c to d by comparing the
differences u(b) − u(a) and u(d) − u(c). Utility functions with this feature
are called cardinal utility functions .

Let us, as an example, compare the following two conceivable cardinal
utility functions: u(x) = x and v(x) = ln x. Persons with the first mentioned
utility function value a salary increase of 1 000 dollars equally regardless of
the salary before the increase, because u(a + 1000)− u(a) = 1 000 for every
a.

For persons with v as utility function, the value of a salary increase is
larger at the lower of the two monthly incomes, since v(11 000)−v(10 000) =
ln 1.1 ≈ 0.095 and v(101 000)− v(100 000) = ln 1.01 ≈ 0.010.

Exercises

1.1 Show that the indifference relation ∼ is an equivalence relation, i.e. that

(i) a ∼ a for all a ∈ A
(ii) a ∼ b ⇒ b ∼ a
(iii) a ∼ b & b ∼ c ⇒ a ∼ c.

1.2 The lexicographic order � on R2 is defined by (x1, x2) � (y1, y2) if and only
if either x1 > y1 or x1 = y1 and x2 ≥ y2. Show that the lexicographic order is
a preference relation.

1.3 Define a relation ≥ on R2 by

(x1, x2) ≥ (y1, y2) ⇔ x1 ≥ y1 & x2 ≥ y2.

Is ≥ a preference relation?

1.4 Alice, Bella and Clara are football fans, and they are trying to agree on which
is the best of the three London clubs Arsenal FC, Chelsea FC and West Ham
United FC. This is not easy, because their individual preferences are quite
different. Alice ranks the team in the order Arsenal, Chelsea, West Ham, Bella
ranks them in the order West Ham, Arsenal, Chelsea, and Clara in the order
Chelsea, West Ham, Arsenal. Our three football friends decide, therefore, to
determine the preferences of the group by majority decisions. In the vote
between Arsenal and Chelsea, Chelsea wins by two votes to one (Alice and
Bella voting for Arsenal), so Arsenal � Chelsea according to the preferences of
the group.
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a) Which of the teams Arsenal and West Ham and which of the teams Chelsea
and West Ham is the best team according to our group of football fans?

b) Is the resulting relation a preference relation?

c) Can the relation be described by a utility function?

1.5 A cardinal utility function u with respect to wealth is called risk averse if it is
increasing and strictly concave (which holds if u′(x) > 0 and u′′(x) < 0 for all
x). The utility function is called risk neutral if it is of the form u(x) = ax+ b
with a > 0.

a) Show that a risk averse person (i.e. a person with a risk averse utility
function) values the increase in wealth with 1 000 dollars higher if the original
wealth is 10 000 dollars than if it is 1 million dollars.

b) How does a risk neutral person react in the same situation?

c) Generalize a) by formulating how an increase with h affects a risk averse
person’s utility if the original wealth is a and b, respectively.

1.6 What increase in income is required for a person with 30 000 SEK in monthly
salary and u(x) = lnx as cardinal utility function for her to feel the same
satisfaction as 1 000 SEK more in monthly salary gave her when her monthly
salary was 10 000 SEK?
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1.2 Continuous preference relations

In order to be able to say something interesting about preference relations
on infinite sets, additional properties are needed in addition to the defining
properties completeness and transitivity. Continuity is such a property and
is defined as follows for preference relations on subsets of Rn.

Definition 1.2.1 A preference relation � on a subset X of Rn is called
continuous if the following condition is fulfilled:

For all convergent sequences (xk)
∞
k=1 and (yk)

∞
k=1 of points in X such that

xk � yk for all k and whose limits x = lim
k→∞

xk and y = lim
k→∞

yk belong to X,
we have x � y.

A subset of Rn is closed if and only if it contains the limit of every
convergent sequence of points from the set. The following proposition is
therefore an immediate consequence of the above continuity definition.

Proposition 1.2.1 If X is a closed subset of Rn, � is a continuous prefer-
ence relation on X and a is an arbitrary element of X, then {x ∈ X | x � a}
is a closed set.

Proof. If (xk)
∞
k=1 is an arbitrary convergent sequence of elements in the set

F = {x ∈ X | x � a} with limit x, then x belongs to the set X since it is
closed. By applying the continuity definition with yk = a for all k, we then
conclude that x � a, which means that the limit x lies in F . The set F is
thus closed.

A preference relation, which is induced by a continuous function, is nec-
essarily continuous because of the following proposition.

Proposition 1.2.2 A preference relation � on X, which is represented by a
continuous utility function u : X → R, is continuous.

Proof. Assume xk � yk for all k, where (xk)
∞
k=1 and (yk)

∞
k=1 are convergent

sequences in X with limits x and y, respectively, in X. Since u(xk) ≥ u(yk)
for all k, and u is continuous, we obtain the inequality u(x) ≥ u(y) by passing
to the limit. Hence x � y, and this proves that the preference relation is
continuous.

The converse of Proposition 1.2.2 is not true; a utility function represent-
ing a continuous preference relation is not necessarily continuous, because if
the preference relation is represented by u, it is also represented by the com-
position f ◦ u for every strictly increasing function f , whether continuous or
not. However, the following kind of converse holds.
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Proposition 1.2.3 Suppose X is a connected subset of Rn. Every continu-
ous preference relation on X is then represented by some continuous utility
function.

We will not use Proposition 1.2.3, so we omit its proof which is somewhat
complicated.

An important property of continuous preference relations on compact sets
is the existence of maximal elements. (Recall that a subset of Rn is compact
if it is closed and bounded.)

Proposition 1.2.4 Every continuous preference relation � on a compact set
X has a maximal element.

Proof. Let Fa = {x ∈ X | x � a}. The set Fa is a closed subset of X for
every a ∈ X, according to Proposition 1.2.1.

Now consider the intersection
⋂

a∈X Fa of all the sets Fa. An element
b ∈ X belongs to this intersection if and only if b belongs to each Fa, i.e. if
and only if b � a for all a ∈ X, i.e. if and only if b is a maximal element.
Therefore, all we need to prove is that the intersection

⋂
a∈X Fa is nonempty.

We do so by contradiction, assuming that the intersection is empty. Ac-
cording to a standard theorem in Topology, compact sets are characterized
by the property that for every family of closed subsets with an empty in-
tersection there is a finite subfamily of sets with empty intersection. In our
case, this means that there are finitely many elements a1, a2, . . . , am such that⋂m

j=1 Faj = ∅, and we may assume, of course, that the elements are indexed
so that a1 � a2 � · · · � am. But then a1 ∈ Faj for all j, and we conclude
that the element a1 belongs to the intersection

⋂m
j=1 Faj , which therefore has

to be nonempty. This is a contradiction and proves that there has to be a
maximal element.

Exercises

1.7 Is the lexicographic order on R2 (see Exercise 1.2) a continuous preference
relation?

1.8 Prove that a preference relation � on X is continuous if and only if the fol-
lowing condition is met: For all convergent sequences (xk)

∞
k=1 in X with limit

x = lim
k→∞

xk in X and all a ∈ X,

xk � a for all k ⇒ x � a and xk � a for all k ⇒ x � a.
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1.3 Lotteries

For a rational person, the decision is easy once the alternatives are identified
and ranked. For example, assume that Charlie is allowed to choose one of
three objects a, b and c, and that his preference order is a � b � c. Then
he chooses a, of course. But what is best for Charlie if the choice is between
getting the object b and participating in a lottery with 50% chance of getting
the object a and equal chance of getting the object c? A rational choice seems
to presume that Charlie has an idea of how good b is compared to a and to
c, and also to depend on his attitude towards risk. His preference relation
gives no clue about this.

We conclude that it is sometimes necessary to make decisions and choose
alternatives that in one way or another depend on chance. No advanced
probabilistic arguments will be used in this book, however, so it is enough to
be familiar with the most basic probability concepts, and we will only work
with finite sample spaces. We will adhere to the usual game theory tradition
by calling probability distributions ”lotteries”.

Definition 1.3.1 Let A be a finite set. A lottery p over A is a probability
distribution on A, i.e. a function p : A → [0, 1] such that

∑
a∈A p(a) = 1.

The set of all lotteries over A will be denoted by L(A).

Example 1.3.1 Suppose that the set A consists of three elements b, c and
n, which stand for the alternatives of getting a bike, a car and nothing,
respectively. We obtain a lottery over A by defining p(b) = 0.005, p(c) =
0.0001, and p(n) = 0.9949.

The comparison between receiving a bike for sure and participating in
the lottery p, with probability of winning a bike equal to 0.005, can be seen
as a comparison between the two lotteries q and p, where q(b) = 1 and
q(c) = q(n) = 0.

For lotteries with an absolutely certain outcome, like the lottery q in the
example above, we use the following notation.

Definition 1.3.2 For each a ∈ A, δa is the lottery on A defined

δa(x) =

{
1 if x = a,

0 if x �= a.

The event a is the only possible outcome of the lottery δa, and for that
reason we will often identify the lottery δa with the event a, and thus regard
the set A as a subset of the lottery set L(A).
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If p and q are two lotteries over A and α and β are two non-negative
numbers with sum equal to 1, then the function αp + βq is also a lottery
over A. The set L(A) of all lotteries is, in other words, a convex set. More
generally, any convex sum of lotteries is a lottery, i.e. the sum

∑m
i=1 αipi is

a lottery if p1, p2, . . . , pm are lotteries and α1, α2, . . . , αm are non-negative
numbers with sum 1.

We can realize the lottery p =
∑m

i=1 αipi in two steps. Let L be a lottery
with m different outcomes, where outcome no. i occurs with probability αi

and is a ticket to the lottery pi. The lottery p is then the combined effect of
executing lottery L and then, depending on the outcome i, proceeding with
lottery pi.

Every lottery p over A is a convex combination of lotteries with absolutely
certain outcomes since

p =
∑
a∈A

p(a)δa.

A lottery p over A = {a1, a2, . . . , an} is completely determined by the n-
tuple (p(a1), p(a2), . . . , p(an)). The map p �→ (p(a1), p(a2), . . . , p(an)) is thus
a bijection between the set L(A) of all lotteries over A and the compact,
convex subset {(x1, x2, . . . , xn) | x1, x2, . . . , xn ≥ 0, x1+x2+ · · ·+xn = 1} of
Rn, which for n = 2 is the line segment between the points (1, 0) and (0, 1),
and for n = 3 is the triangle with vertices at (1, 0, 0), (0, 1, 0) and (0, 0, 1).
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The vertices of the image set correspond to the certain lotteries δai , that is
to the events ai.

Example 1.3.2 The lottery set L(A) in Example 1.3.1 can be identified
with the triangle

{(x1, x2, x3) | x1 + x2 + x3 = 1, x1, x2, x3 ≥ 0},

with the given lottery p corresponding to the point (0.005, 0.0001, 0.9949).
The vertex (1, 0, 0) corresponds to the lottery δb with a bike as a sure win.

Definition 1.3.3 Let u : A → R be a function defined on A, and let p be
an arbitrary lottery over A. The sum

ũ(p) =
∑
a∈A

u(a)p(a)

is called the expected value of u with respect to the lottery p.
By varying p we get a function p �→ ũ(p), which is defined on the lottery

set L(A). The function ũ : L(A) → R is called the expected utility function
associated with u, when u is a utility function on A.

The function ũ : L(A) → R is affine on its domain of definition, that is

ũ(αp+ βq) = αũ(p) + βũ(q).

for all lotteries p and q and all nonnegative real numbers α, β with sum
equal to 1. The function is obviously continuous; ũ(p) is simply a first degree
polynomial in the variables p(a1), p(a2), . . . , p(an). Writing xi = p(ai) and
ci = u(ai), we have ũ(p) = c1x1 + c2x2 + · · ·+ cnxn.

The expected value of u with respect to a lottery δa, which results in the
outcome a with certainty, is of course equal to u(a). Thus, by identifying the
lottery δa with a, we get

ũ(a) = ũ(δa) = u(a).

Suppose for example that u(a) is the financial value of the outcome a of
the lottery p. By the law of large numbers, the average of the values obtained
when the lottery is repeated a large number of times should come close to
the expected value ũ(p).

Example 1.3.3 Consider again the lottery in Example 1.3.1, and assume
that the bike is worth 5 100 SEK, the car is worth 200 100 SEK, and the
lottery ticket costs 100 SEK. Let the function u give the value of the outcomes
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reduced by the ticket price so that u(b) = 5 000, u(c) = 200 000, and u(n) =
−100. The expected value of u with respect to the explicit lottery p of
Example 1.3.1 is then

ũ(p) = 5 000 · 0.005 + 200 000 · 0.0001− 100 · 0.9949 = −54.49 SEK.

1.4 Expected utility

Let us return to Charlie, who has to choose between the object b and a
lottery p with 50% chance of getting the object a and equal chance of getting
the object c. His preference order is a � b � c. With a randomly selected
corresponding utility function u, i.e. function with u(a) > u(b) > u(c), a
possible way to evaluate the lottery option would be to use the expected
value of u with respect to the lottery, i.e. ũ(p) = 1

2
u(a) + 1

2
u(c), and to

choose the lottery if ũ(p) > u(b), and to be indifferent between the two
alternatives if ũ(p) = u(b).

The problem with this approach is that the outcome is not uniquely
determined by his preferences but depends on the utility function used to
represent them. With u(a) = 5, u(b) = 2 and u(c) = 1, he obtains ũ(p) =
1
2
(5+1) = 3 > u(b) with the conclusion that he should choose the lottery. But

with u(a) = 5, u(b) = 4 and u(c) = 1, he instead obtains ũ(p) = 3 < u(b),
and now object b is his best choice.

To evaluate lotteries, i.e. outcomes that depend on chance, using expected
values of utility functions, it is not enough to use the functions’ ordinal
properties. We have to use their numerical values, and we say that we have
selected a cardinal utility function when we have fixed a utility function and
in addition to its ordinal properties also use its values to form expected
values.

A natural problem in this context is to determine the relationship between
cardinal functions on a set A that give rise to the same evaluation of the
lotteries over A, i.e. induce the same preference relation on the lottery set
L(A). The simple answer is given by our next proposition.

Proposition 1.4.1 Let u and v be two functions on a (finite) set A. The
two expected utility functions ũ and ṽ induce the same preference relation �
on the lottery set L(A) if and only if there exist two real constants C > 0
and D such that

(1) v(a) = Cu(a) +D

for all a ∈ A.

Download free eBooks at bookboon.com



NON-COOPERATIVE GAMES: AN 
INTRODUCTION TO GAME THEORY – PART I

15

Utility Theory

15

1.4 Expected utility 15

Remark. A function f : R → R is called affine if f(x) = Cx+D, where C and
D are constants. The function is order preserving, i.e. x > y ⇔ f(x) > f(y),
if C > 0.

Proposition 1.4.1 means, in other words, that ũ and ṽ induce the same
preference relation on L(A) if and only if v(x) = f(u(x)) for some order
preserving affine function f .

Proof. First suppose that v(a) = Cu(a) +D with C > 0, and denote by �u

and �v the two preference relations on the lottery set L(A) induced by ũ
and ṽ, respectively. By the definition of expected values,

ṽ(p) =
∑
a∈A

v(a)p(a) =
∑
a∈A

(Cu(a) +D)p(a)

= C
∑
a∈A

u(a)p(a) +D
∑
a∈A

p(a) = Cũ(p) +D

for all lotteries p, and this implies that

p �v q ⇔ ṽ(p) ≥ ṽ(q) ⇔ Cũ(p) +D ≥ Cũ(q) +D

⇔ ũ(p) ≥ ũ(q) ⇔ p �u q,

which proves that the two preference relations �v and �u are identical.
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Conversely, assume that ũ and ṽ induce the same preference relation �
on the lottery set. In particular, we then have the equivalences

ũ(p) = ũ(q) ⇔ p ∼ q ⇔ ṽ(p) = ṽ(q),

which describe indifference.
Let now b and c be two elements of A such that

u(c) ≥ u(a) ≥ u(b)

for all a ∈ A, i.e. c is a maximum point and b is a minimum point of u. We
have to treat two cases.

Case 1, u(c) = u(b).

This is a trivial case and implies that u(a) = u(b) for all a ∈ A, i.e. the
function u is constant. Consequently,

ũ(δa) = u(a) = u(b) = ũ(δb),

i.e. δa ∼ δb for all a ∈ A. Thus, all lotteries with a sure outcome are
equivalent, and it follows that the function v is constant, too, since

v(a) = ṽ(δa) = ṽ(δb) = v(b)

for all a. We conclude that v(a) − v(b) = u(a) − u(b) (= 0) for all a, which
proves the relationship (1) with C = 1 and D = v(b)− u(b).

Case 2, u(c) > u(b).

Fix an element a ∈ A and let us compare the lottery δa with the lotteries
p = αδc + (1 − α)δb for different values of α ∈ [0, 1]. We have equivalence
δa ∼ p for exactly one value of α, because equivalence holds if and only if

ũ(δa) = ũ(p) = αũ(δc) + (1− α)ũ(δb),

i.e. if and only if
u(a) = αu(c) + (1− α)u(b),

which gives us the unique solution

α =
u(a)− u(b)

u(c)− u(b)
.

Note that the solution α really satisfies the condition 0 ≤ α ≤ 1 and that

1− α =
u(c)− u(a)

u(c)− u(b)
.
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By assumption, ṽ induces the same preference relation as ũ, and this
implies that the indifference condition δa ∼ p can also be expressed using the
function ṽ. It follows that

v(a) = ṽ(δa) = ṽ(p) = αv(c) + (1− α)v(b)

=
u(a)− u(b)

u(c)− u(b)
v(c) +

u(c)− u(a)

u(c)− u(b)
v(b)

=
v(c)− v(b)

u(c)− u(b)
u(a) +

u(c)v(b)− u(b)v(c)

u(c)− u(b)
.

This proves the relationship (1) between u and v with

C =
v(c)− v(b)

u(c)− u(b)
> 0 and D =

u(c)v(b)− u(b)v(c)

u(c)− u(b)
,

and concludes the proof.

In order to be able to express Proposition 1.4.1 in a simple way, we make
the following definition.

Definition 1.4.1 Two cardinal utility functions u and v on a set are called
equivalent if they are related by an order preserving affine function, i.e. if the
relationship is given by equation (1).

Using this definition, we can formulate Proposition 1.4.1 as follows:
Two cardinal utility functions on a set induce via their expected utilities

the same preference relation on the lottery set if and only if they are equiva-
lent.

Exercise

1.9 Anne has been hired as the CEO of a company with the following remunera-
tion: a fixed annual salary of 2 million SEK and a variable bonus. The size of
the bonus will depend on the company’s profit, which in any given year may
be poor, mediocre, good or very good with a probability that is estimated to
be 0.1, 0.4, 0.3, and 0.2, respectively. The bonus is set to be 0, 0.5, 1, and 2
million SEK, respectively.

a) Calculate Anne’s expected annual remuneration.

b) Calculate Anne’s expected utility if u(x) = lnx is her cardinal utility func-
tion.

c) Suppose Anne as an alternative is offered a fixed annual salary of 2 850 000
SEK with no bonus. Should she accept this offer?

d) What is the minimum annual salary without bonus that Anna is willing to
accept?
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1.5 von Neumann–Morgenstern preferences

We have seen that in order to prioritize in situations that depend on chance,
we need to know our preferences for different lotteries, and that the concept
of expected utility gives rise to preference relations on the lottery set. But
to calculate the expected utility function, we need a cardinal utility function
on the set A of original options, and it is doubtful, to say the least, whether
we have access to such a function in real life situations. Maybe the decision-
maker is instead able to rank lotteries intuitively without having to start
from the utility of the different options in the set A.

A natural question in this context is then whether there are any natural
preference relations on the lottery set, other than those generated by cardinal
utility functions. John von Neumann and Oskar Morgenstern showed in their
groundbreaking work Theory of Games and Economic Behavior that the
answer is no, if by a natural preference relation is meant a preference relation
that satisfies some natural additional requirements beyond completeness and
transitivity. Decision and game theory is therefore usually based on the
concept of expected utility.

In this section, we present a variant of von Neumann–Morgenstern’s re-
sults.
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Definition 1.5.1 Let A be a finite set. A preference relation � on the lottery
set L(A) is called a von Neumann–Morgenstern preference, abbreviated vNM-
preference, if it satisfies the following two axioms:

Axiom 3 (Continuity axiom) For all lotteries p, q, r ∈ L(A) and all conver-
gent sequences (αn)

∞
1 of real numbers in the interval [0, 1] with limαn = α,

αnp+ (1− αn)q � r for all n ⇒ αp+ (1− α)q � r

and

αnp+ (1− αn)q � r for all n ⇒ αp+ (1− α)q � r.

Axiom 4 (Independence of irrelevant alternatives) For all p, q ∈ L(A) such
that p ∼ q and all r ∈ L(A), 1

2
p+ 1

2
r ∼ 1

2
q + 1

2
r.

It follows in particular from the independence axiom that a person, who
is indifferent between two alternatives a and a′, for each alternative b also
has to be indifferent between the options V and V ′, where V represents a
50–50 chance of getting a or b, and V ′ represents a 50–50 chance of getting
a′ or b.

The independence axiom is formulated to be as weak as possible, and
there is nothing special about the weight 1

2
. As we will see below, it follows

from Axioms 3 and 4 that αp + (1 − α)r ∼ αq + (1 − α)r for all numbers
α ∈ [0, 1] and all lotteries r whenever p ∼ q.

The axiom of independence of irrelevant alternatives may appear harm-
less, but sometimes decision-makers act in a way that is not consistent with
the axiom. Consider the following choice between two lotteries:

• Lottery p1 promises 100 000 dollars with certainty.

• Lottery p2 promises 125 000 dollars with probability 0.8, and nothing
with probability 0.2.

Most test persons seem to prefer p1 to p2. Now consider the choice between
the following two lotteries:

• Lottery q1 promises 100 000 dollars with probability 0.05.

• Lottery q2 promises 125 000 dollars with probability 0.04.

In this situation, most people tend to prefer lottery q2 to q1. But the lotteries
qi can be formed from the lotteries pi by mixing them with an irrelevant
alternative r in the same proportions. If r is the lottery which gives nothing
with probability 1, then qi = 0.05pi + 0.95r. This psychological paradox is
called Allais’ paradox.

Our next proposition shows, however, that it might be reasonable to
require that the properties of Axioms 3 and 4 are fulfilled.
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Proposition 1.5.1 Preference relations induced by expected utility functions
are vNM-preferences.

Proof. Suppose that the preference relation � is induced by the expected
utility function ũ.

To prove that � satisfies the first implication of the continuity axiom, we
assume that αnp+(1−αn)q � r for a convergent sequence (αn)

∞
1 of numbers

in the interval [0, 1] with limit α. Then

αnũ(p) + (1− αn)ũ(q) = ũ(αnp+ (1− αn)q) ≥ ũ(r).

By letting n go to infinity in the inequality between the extreme ends, we
obtain the following inequality

ũ(αp+ (1− α)q) = αũ(p) + (1− α)ũ(q) ≥ ũ(r),

which shows that αp+ (1− α)q � r.
The second implication is proven analogously.

To prove that the independency axiom is satisfied, assume that p ∼ q,
i.e. that ũ(p) = ũ(q), and let r be an arbitrary lottery. It follows that

ũ(1
2
p+ 1

2
r) = 1

2
ũ(p) + 1

2
ũ(r) = 1

2
ũ(q) + 1

2
ũ(r) = ũ(1

2
q + 1

2
r),

that is 1
2
p+ 1

2
r ∼ 1

2
q + 1

2
r.

Hence, Axioms 3 and 4 are satisfied, which means that � is a vNM-
preference.

That a person should be aware of his preferences on a cardinal scale is a
strong assumption, but we still need it in order to use the concept of expected
utility. A cineast may prefer movie X to movie Y and movie Y to movie Z,
but can he say meaningfully that his pleasure of watching movie X instead
of movie Y is for example three times as great as his pleasure of watching
movie Y instead of movie Z? Probably not.

One way of trying to determine our cineast’s preferences on a cardinal
scale would be to let him choose beween a cinema ticket to movie Y and a
lottery ticket that with probability α gives him a ticket to movie X and with
probability 1 − α a ticket to movie Z. For α = 1 he will surely prefer the
lottery ticket, because he will then with certainty get a ticket to the movie
he prefers, i.e. X. Now let us lower the probability α. If α = 0.75, he may
still prefer the lottery ticket to the cinema ticket to Y , because the odds for
him to get the X-ticket are still high enough. But for α = 0, he will certainly
prefer the movie ticket to Y , because in this case the lottery ticket means a
ticket to movie Z. Somewhere in the range between 0 and 1 there should be
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a probability that makes him indifferent between the cinema ticket to movie
Y and the lottery ticket; let us assume that this probability is α = 0.25.

Since cardinal utility functions are equivalent under order preserving
affine transformations, we are allowed to fix our cineast’s utility values at
X and Z so that u(X) = 1 and u(Z) = 0. The expected utility of the lottery
ticket when α = 0.25 is

0.25u(X) + 0.75u(Z) = 0.25,

and since he is indifferent between the lottery ticket and the cinema ticket
to Y, his utility of this movie is now determined to be u(Y) = 0.25.

The movie example suggests that it should always be possible to construct
cardinal utility functions for decision-makers, who know how to rank lotteries
in a consistent way.

This is really true for vNM-preferences and is the gist of the following
proposition, which is the converse of Proposition 1.5.1. As already men-
tioned, the result was first proven by von Neumann och Morgenstern with
slightly different assumptions.
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Proposition 1.5.2 Let � be a vNM-preference on the lottery set L(A) of a
finite set A.

(a) The preference relation � is then induced by an affine utility function U
on L(A), and the utility function U is uniquely determined up to order
preserving affine transformations.

(b) There exists a cardinal utility function u on A such that U = ũ, i.e. such
that

U(p) =
∑
a∈A

u(a)p(a)

for all lotteries p.

By combining Propositions 1.5.1 and 1.5.2, we get the following immedi-
ate corollary.

Corollary 1.5.3 A preference relation on a lottery set L(A) is a vNM-
preference if and only if it is induced by the expected utility function of a
cardinal utility function on the set A.

Cardinal utility functions, whose expected values are used to represent
vNM-preferences for lotteries like the function u in Proposition 1.5.2, are
called Bernoulli utility functions in honor of Daniel Bernoulli, who used
utility functions with decreasing marginal utility in a treatise in 1738.

Proof of Proposition 1.5.2. The proof of part (a) is elementary but long, so
we start by proving that assertion (b) follows easily from assertion (a). Let U
be the utility function given by (a), and define a function u on A by setting

u(a) = U(δa)

for all a ∈ A. Each lottery p is a convex combination p =
∑

a∈A p(a)δa of the
lotteries δa, and since U is an affine function, it follows that

U(p) =
∑
a∈A

p(a)U(δa) =
∑
a∈A

p(a)u(a) = ũ(p),

which proves assertion (b).
The proof of assertion (a) rests on a series of lemmas.

Lemma 1.5.4 Let p1, p2, q1, q2 be lotteries in L(A), let (λn)
∞
1 and (µn)

∞
1 be

two convergent sequences of numbers in the interval [0, 1] with limits λ and
µ, and suppose that

λnp1 + (1− λn)p2 ∼ µnq1 + (1− µn)q2

for all n. Then
λp1 + (1− λ)p2 ∼ µq1 + (1− µ)q2.
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Proof. Write p = λp1+(1−λ)p2 and q = µq1+(1−µ)q2. By the definition of
∼ in terms of �, it is for symmetry reasons enough to prove the implication

λnp1 + (1− λn)p2 � µnq1 + (1− µn)q2 for all n ⇒ p � q.

Suppose this implication is false, i.e. that

λnp1 + (1− λn)p2 � µnq1 + (1− µn)q2

for all n but p ≺ q. We will show that this assumption results in a contra-
diction.

First assume that there exists an element r in the lottery set L(A) such
that p ≺ r ≺ q. We then have µnq1 + (1 − µn)q2 � r for all but finitely
many indices n, because otherwise µnk

q1 + (1− µnk
)q2 � r for some infinite

subsequence (nk), and it follows from Axiom 3 that q � r, which contradicts
our assumption r ≺ q.

Using transitivity, we conclude that

λnp1 + (1− λn)p2 � r

for all but finitely many indices n, and using Axiom 3 we now obtain the
conclusion p � r, which is a contradiction.

So there is no element r such that p ≺ r ≺ q, and we conclude that
µnq1 + (1 − µn)q2 � q for all but finitely many indices n, because otherwise
there exists an infinite subsequence (nk) such that µnk

q1 + (1 − µnk
)q2 ≺ q,

which means that µnk
q1 + (1 − µnk

)q2 � p, and Axiom 3 now implies that
q � p, which contradics our assumption p ≺ q.

This completes our proof by contradiction of the lemma.

We are now able to generalize the axiom of independence of irrelevant
alternatives.

Lemma 1.5.5 The implication

p ∼ q ⇒ λp+ (1− λ)r ∼ λq + (1− λ)r

is valid for all lotteries p, q, r ∈ L(A) and all numbers λ ∈ [0, 1].

Proof. We start by proving the implication for all scalars λ of the form

(2) λ =
n∑

k=1

εk2
−k,

where εk = 0 or = 1, using induction over n.
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The case n = 1, ε1 = 0 is trivial, since 0p + 1r = 0q + 1r = r, and the
case n = 1, ε1 = 1 is Axiom 4.

Therefore, assume that the implication in the lemma is valid for all num-
bers λ of the form (2) with n − 1 instead of n, and write the number λ
occurring in (2) as λ = ε1/2 + λ′/2 with λ′ =

∑n−1
k=1 εk+12

−k. Due to the
induction assumption,

(3) λ′p+ (1− λ′)r ∼ λ′q + (1− λ′)r.

Using equation (3) and Axiom 4 we obtain the following equivalence in the
case ε1 = 0:

λp+ (1− λ)r = 1
2
λ′p+ (1− 1

2
λ′)r

= 1
2

(
λ′p+ (1− λ′)r

)
+ 1

2
r ∼ 1

2

(
λ′q + (1− λ′)r

)
+ 1

2
r

= 1
2
λ′q + (1− 1

2
λ′)r = λq + (1− λ)r;

and the following equivalence in the case ε1 = 1:

λp+ (1− λ)r = (1
2
+ 1

2
λ′)p+ (1

2
− 1

2
λ′)r

= 1
2
p+ 1

2

(
λ′p+ (1− λ′)r

)
∼ 1

2
p+ 1

2

(
λ′q + (1− λ′)r

)

∼ 1
2
q + 1

2
(λ′q + (1− λ′)r) = (1

2
+ 1

2
λ′)q + (1

2
− 1

2
λ′)r

= λq + (1− λ)r.
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This completes the induction step, and the lemma is proven for all num-
bers λ of the special form (2).

If λ is an arbitrary number in the interval [0, 1], we choose a sequence
(λn)

∞
1 of numbers of the special form (2) and which converges to λ as n → ∞.

Then λnp + (1 − λn)r ∼ λnq + (1 − λn)r for all n, and it now follows from
Lemma 1.5.4 that λp+ (1− λ)r ∼ λq + (1− λ)r.

Lemma 1.5.6 Suppose that q ≺ p and let x be an element of the lottery
set such that q � x � p. Then there exists a number µ ∈ [0, 1] such that
x ∼ µp+ (1− µ)q.

Proof. The set Λ = {λ ∈ [0, 1] | λp + (1 − λ)q � x} is bounded below and
nonempty, since it contains 1. Let µ = inf Λ, and choose a sequence (µn)

∞
1

of numbers in Λ that converges to µ. Since µnp+ (1− µn)q � x for all n, it
follows from the continuity axiom that µp+ (1− µ)q � x.

We will prove that the converse relation µp+(1−µ)q � x also holds. This
is obvious in the case µ = 0, because then µp+ (1−µ)q = q � x. So assume
that µ > 0, and choose a sequence (µn)

∞
1 of numbers from the interval [0, µ[

that converges to µ. It follows from the infimum definition that µn /∈ Λ, i.e.
that µnp + (1 − µn)q ≺ x, for all n, and Axiom 3 now yields the conclusion
µp+ (1− µ)q � x.

Lemma 1.5.7 Suppose that q ≺ p and 0 < λ < 1. Then

q ≺ λp+ (1− λ)q ≺ p.

Proof. We prove the lemma by contradiction assuming that

(4) p � λp+ (1− λ)q.

It follows from Lemma 1.5.6 and the assumption (4) that there is a number
µ ∈ [0, 1] such that

p ∼ µ(λp+ (1− λ)q) + (1− µ)q = µλp+ (1− µλ)q,

and we will prove using induction that

(5) p ∼ µnλnp+ (1− µnλn)q

for all positive integers n. The case n = 1 is already done, so assume that (5)
holds for a certain positive integer n. By combining this induction hypothesis
with Lemma 1.5.5, we conclude that

p ∼ µλp+ (1− µλ)q ∼ µλ
(
µnλnp+ (1− µnλn)q

)
+ (1− µλ)q

= µn+1λn+1p+ (1− µn+1λn+1).
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This proves (5) with n replaced by n+ 1 and completes the induction step.
Since µnλn → 0 as n → ∞, it now follows from (5) and Lemma 1.5.4 that

p ∼ 0p+ 1q = q,

which is a contradiction and proves that λp+ (1− λ)q ≺ p.
The other half q ≺ λp+(1−λ)q of the lemma is proven using an analogous

proof by contradiction.

Lemma 1.5.8 Suppose that q ≺ p and 0 ≤ µ < λ ≤ 1. Then

µp+ (1− µ)q ≺ λp+ (1− λ)q.

Proof. The assertion is a special case of Lemma 1.5.7 if µ = 0 or λ = 1, so
assume that 0 < µ < λ < 1. Then 0 < µ/λ < 1, and using Lemma 1.5.7 we
first obtain the relation

λp+ (1− λ)q � q,

and then the asserted relation

λp+ (1− λ)q � µ

λ

(
λp+ (1− λ)q

)
+ (1− µ

λ
)q

= µp+ (1− µ)q.

Lemma 1.5.9 Let p and q be lotteries on a finite set satisfying q ≺ p.

(i) For each lottery x such that q � x � p, there exists a unique real number
µ = µq,p(x) in the interval [0, 1] such that x ∼ µp+ (1− µ)q.

(ii) For all lotteries x, y satisfying q � x � p and q � y � p, and for all
scalars λ ∈ [0, 1],

x � y ⇔ µq,p(x) ≥ µq,p(y)(6)

and

µq,p(λx+ (1− λ)y) = λµq,p(x) + (1− λ)µq,p(y).(7)

Proof. By Lemma 1.5.6, there is a number µ ∈ [0, 1] such that

x ∼ µp+ (1− µ)q,

and Lemma 1.5.8 implies that the number µ is unique and satisfies equiva-
lence (6).

If x ∼ µ1p+(1−µ1)q and y ∼ µ2p+(1−µ2)q, then, by applying Lemma
1.5.5 twice, we obtain

λx+ (1− λ)y ∼ λ(µ1p+ (1− µ1)q) + (1− λ)y

∼ λ(µ1p+ (1− µ1)q) + (1− λ)(µ2p+ (1− µ2)q)

=
(
λµ1 + (1− λ)µ2

)
p+

(
1− (λµ1 + (1− λ)µ2)

)
q,

and this proves equation (7).

Download free eBooks at bookboon.com



NON-COOPERATIVE GAMES: AN 
INTRODUCTION TO GAME THEORY – PART I

27

Utility Theory

27

1.5 von Neumann–Morgenstern preferences 27

From now on we assume that there exist at least two non-equivalent
lotteries in L(A), because the preference relation is obviously represented
by every constant function on L(A) in the trivial case when p ∼ q for all
p, q ∈ L(A), and every representing utility function has to be constant.

If the lottery set has a least element q and a greatest element p (and
q ≺ p), then Lemma 1.5.9 provides us with an affine utility function U
that represents the preference relation, namely the function U = µq,p. The
uniqueness part of Proposition 1.5.2 follows from our next lemma, which will
also be needed to extend our existence result to the general case.

Lemma 1.5.10 Suppose that U and V are two affine utility functions on
L(A), both representing the preference relation �. Then there exist two real
numbers C > 0 and D such that V = CU +D.

Proof. Fix two elements p and q in L(A) such that q ≺ p. Since U(p) �= U(q),
there exist uniquely determined real numbers C andD such that CU(p)+D =
V (p) and CU(q) +D = V (q), and C is a positive number since U(p) > U(q)
and V (p) > V (q).

Let x ∈ L(A) be arbitrary. Then, either q � x � p, q ≺ p ≺ x or
x ≺ q ≺ p.
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In the first mentioned case, there exists a number µ ∈ [0, 1] such that
x ∼ µp+ (1− µ)q, and it follows that

V (x) = V (µp+ (1− µ)q) = µV (p) + (1− µ)V (q)

= µ(CU(p) +D) + (1− µ)(CU(q) +D)

= C(µU(p) + (1− µ)U(q)) +D = C U(µp+ (1− µ)q) +D

= CU(x) +D.

In the second case, there is instead a number µ such that 0 < µ < 1 and
p ∼ µx+ (1− µ)q, and it now follows that U(p) = µU(x) + (1− µ)U(q) and
V (p) = µV (x) + (1− µ)V (q). Thus,

V (x) =
1

µ
(V (p)− V (q)) + V (q) =

1

µ
(CU(p)− CU(q)) + CU(q) +D

= CU(x) +D.

Analogously, V (x) = CU(x) +D also in the third case.

Lemma 1.5.9 shows how to define an affine utility function µq,p that rep-
resents � on the subinterval {x ∈ L(A) | q � x � p} of the lottery set. What
remains is to show how to join these functions to an affine utility function U
on all of L(A).

To this end, fix two elements p0, p1 ∈ L(A) with p0 ≺ p1, and let p, q
be two arbitrary elements in L(A) such that q � p0 ≺ p1 � p. Define the
function Uq,p on the interval {x ∈ L(A) | q � x � p} by

Uq,p(x) =
µq,p(x)− µq,p(p0)

µq,p(p1)− µq,p(p0)
.

Then Uq,p is an affine function which represents � on the given interval, and
Uq,p(p0) = 0 and Uq,p(p1) = 1.

If p′, q′ are two other elements of L(A) with q′ � p0 ≺ p1 � p′, then
of course Uq′,p′(p0) = 0 and Uq′,p′(p1) = 1, whence it follows from Lemma
1.5.10 that Uq,p(x) = Uq′,p′(x) for all x belonging to the intersection of the
two intervals {x ∈ L(A) | q � x � p} and {x ∈ L(A) | q′ � x � p′}.

Therefore, we obtain a uniquely defined function U by for each given
x ∈ L(A) first choosing p � q such that the interval {x ∈ L(A) | q � x � p}
contains x as well as p0 och p1, and then defining

U(x) = Uq,p(x).

The function U is order preserving and affine, since it has those properties
on each subinterval of the lottery set, and U is therefore a utility function
that represents � on the whole of the lottery set L(A).

This completes the proof of Proposition 1.5.2.
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Exercises

1.10 Prove that the following property, known as Archimedean property, follows
from the continuity axiom: For all lotteries p, q, r ∈ L(A) such that p � q � r,
there exist numbers α, β in the interval ]0, 1[ such that αp+ (1− α)r � q and
q � βp+ (1− β)r.

1.11 Give an example of a preference relation on L(A) that is not a vNM-preference.
[Hint: Two elements in A are sufficient.]
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Chapter 2

Strategic Games

Strategic games serve as models of interactive decision making in which each
decision-maker chooses his action once and for all, independently and without
knowlege of the other participants’ choices. The model consists of a finite set
of players and for each player a set of actions. The players’ combined choices
of actions is called an outcome, and the preferences of each player is defined
on the set of all possible outcomes. This distinguishes strategic games from
pure decision problems since each player has to take into account the possible
actions of the other players when making his own choice. There is therefore
in general no best choice of action for a given player. So game theory seldom
has an answer to the question how to play in a specific game when played
once. Instead, the focus is on describing different equilibrium solutions, i.e.
outcomes with the property that no player profits by unilaterally deviating
from his choice of action.

2.1 Definition and examples

We now give the formal definition of a strategic game.

Definition 2.1.1 A strategic game 〈N, (Ai), (�i)〉 consists of
• a finite set N of players − the number of players is assumed to be at
least two, and we will number them 1,2, . . . , n, which means that we
identify N with the set {1, 2, 3, . . . , n};

• for each player i ∈ N a set Ai of possible actions ;

• for each player i a preference relation �i on the product set

A = A1 × A2 × · · · × An.

The game is called finite if A is a finite set (i.e. if all action sets Ai are
finite).

30
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The preference relations �i i are often defined by utility functions ui,
usually called payoff functions, and we then use the notation 〈N, (Ai), (ui)〉
for the game 〈N, (Ai), (�i)〉.

The product set A = A1 × A2 × · · · × An consists by definition of all
n-tiples a = (a1, a2, . . . , an) of the different players’ actions ai ∈ Ai. Such
n-tiples of actions are called outcomes of the game. The product set A thus
consists of all possible outcomes. If the sets Ai consist of νi possible actions,
then there are of course ν1ν2 · · · νn possible outcomes .

The third property in the definition of a strategic game means that a
player’s preference relation (or payoff function) should be defined on the set
of outcomes. Since a player can only control his own actions, it is in general
impossible for him to achieve the outcome which is optimal for him. What
should be meant by an optimal solution is therefore different for strategic
games than for pure decision problems where the decision-maker has full
control over the situation. So one of the main tasks in game theory is to
identify solutions that in some sense can be considered as optimal or stable.

We will mainly study finite strategic games and mostly exemplify with
two-person games. To define a finite game 〈{1, 2}, (Ai), (ui)〉 with two play-
ers we have to specify the two action sets A1 = {r1, r2, . . . , rm} and A2 =
{c1, c2, . . . , cn}, and the payoffs αij = u1(ri, cj) and βij = u2(ri, cj) for all
outcomes (ri, cj). This is easily done using payoff tables as follows:

c1 c2 · · · · · · cn

r1 (α11, β11) (α12, β12) · · · · · · (α1n, β1n)

r2 (α21, β21) (α22, β22) · · · · · · (α2n, β2n)

...

rm (αm1, βm1) (αm2, βm2) · · · · · · (αmn, βmn)

Player 1 is thus always the player who chooses a row and we will often
call him the row player, player 2 being the column player. The specific names
of the elements in the sets A1 and A2 are irrelevant, of couse, so the game is
entirely determined by the two m×n -matrices [αij] and [βij], which contain
all information about the two players’ payoff functions.

The matrix [αij] is the row player’s payoff matrix , and [βij] is the column
player’s payoff matrix.

We now illustrate the strategic game concept with some classical exam-
ples.
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Example 2.1.1 (Prisoner’s dilemma) Our first example is intended to il-
lustrate a situation where cooperation would be profitable but where lack of
trust may induce a party to abandon the most profitable action.

Two members of a criminal gang, both suspected of a serious crime, are
arrested and imprisoned without possibility to communicate with each other.
There are sufficient evidence to convict each of them for a lesser crime but
not enough evidence to convict them for the principal charge, unless at least
one of the prisoners confesses and can be used as a witness against the other.
So the prosecutor offers each prisoner a bargain. If both deny, then they will
both receive a sentence of one year in prison for the minor crime. If only one
of them confesses, he will be freed and used as a witness against the other,
who will receive a sentence of five years. And if both prisoners confess, each
will be sentenced to three years in prison.

We can model the situation as a strategic game as follows. The players are
the two prisoners, and both have the same action set, viz. {Deny,Confess}.
This means that there are four outcomes, ranked as follows by prisoner 1:

(Confess,Deny) �1 (Deny,Deny) �1 (Confess,Confess) �1 (Deny,Confess)

since he prefers shortest possible imprisonment. Analogously, prisoner 2 has
the following preferences

(Deny,Confess) �2 (Deny,Deny) �2 (Confess,Confess) �2 (Confess,Deny).

A utility function u1, which represents the preferences of prisoner 1, has
to satisfy

u1(Confess,Deny) > u1(Deny,Deny) > u1(Confess,Confess)

> u1(Deny,Confess),

and such a function is given by for instance

u1(Confess,Deny) = 0, u1(Deny,Deny) = −1,

u1(Confess,Confess) = −3, u1(Deny,Confess) = −5.

Similarly, we define for prisoner 2

u2(Deny,Confess) = 0, u2(Deny,Deny) = −1,

u2(Confess,Confess) = −3, u2(Confess,Deny) = −5.

The game can now be represented in a compact way by the following payoff
table:
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Deny Confess

Deny (−1,−1) (−5, 0)

Confess (0,−5) (−3,−3)

How should prisoner 1 reason in this situation? Best for him if he confesses
and prisoner 2 denies, because he will then be released. But what if prisoner
2 also confesses; then he must stay in prison for three years. Maybe, it is
better for him to deny, hoping that prisoner 2 will deny, too, because that
means just one year in prison. But can he really trust prisoner 2 who faces
the risk of five years in prison by denying. So prisoner 2 may confess and
then he, instead, will have to serve five years in prison by denying instead of
confessing. Both players face the same dilemma, of course.

Our next example models situations in which persons with conflicting
interests would benefit from coordinating their behavior, but where due to
lack of communication they run the risk of ending up in a highly unfavorable
outcome.

Example 2.1.2 (Battle of Sexes) A couple has agreed to meet after work
but both of them have forgotten whether they decided to go to the concert
hall or to the football stadium. The wife (player 1) would prefer attending
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the concert whereas her husband (player 2) would rather watch the football
match. Both would prefer to be together at the same event rather than to
go to different places, but if they end up in different places, they are both
indifferent between attending the concert or watching football. If they cannot
communicate, where should they go?

Their dilemma can be modeled as a strategic game, where both players
have {Concert,Football} as their sets of action and with payoffs given by the
following table:

Concert Football

Concert (2, 1) (0, 0)

Football (0, 0) (1, 2)

If the parties were allowed to communicate and negotiate, they would cer-
tainly agree to attend the same event, but without such possibilities there is
no guarantee that they do not end up in an outcome that both like least.

Example 2.1.3 (Matching Pennies) Each of two persons chooses simulta-
neously one side of a coin, i.e. Head or Tail. If their choices coincide, person 1
gets a dollar from person 2, and if they differ, person 1 pays a dollar to per-
son 2. Both persons only care about the amount of money they receive, which
means that their preferences are given by the following utility functions:

u1(Head,Head) = u1(Tail,Tail) = 1, u1(Head,Tail) = u1(Tail,Head) = −1

u2(Head,Head) = u2(Tail,Tail) = −1, u2(Head,Tail) = u2(Tail,Head) = 1.

The game is now given by the following table

Head Tail

Head (1,−1) (−1, 1)

Tail (−1, 1) (1,−1)

The interests of the players are diametrically opposed in this game. Player
1 wants to choose the same alternative as player 2, while player 2 wants to
choose the opposite alternative.

Example 2.1.4 (Hawk–Dove) Two animals are fighting over a prey. Both
animals can behave aggressively (hawkish) or passively (dovish). Each animal
prefers to act hawkish if its opponent is dowish and to act dovish if its
opponent is hawkish, and each animal, whether being hawkish or not, prefers
that its opponent behaves like a dove.
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The situation can be modeled as a strategic game with the two combatants
as players and with payoffs satisfying

u1(H,D) > u1(D,D) > u1(D,H) > u1(H,H)

u2(D,H) > u1(D,D) > u1(H,D) > u1(H,H),

and an example of payoffs satisfying this is given by the following table:

Hawk Dove

Hawk (0, 0) (3, 1)

Dove (1, 3) (2, 2)

The philosopher Jean-Jaques Rousseau has described the conflict between
individual safety and social cooperation using the following example.

Example 2.1.5 (Stag Hunt) A hunting party goes hunting in a forest with
plenty of hares and a stately stag. Each hunter can individually choose
to hunt the stag or to hunt a hare, and each hunter must make his choice
without knowing the choices of the others. If everyone in the team is focused
on stag hunting, then they will manage to shoot the stag that is shared
equally between the hunters, but the stag escapes if any of the hunters is
engaged in hare hunting. Each hunter engaged in hare hunting also manages
to shoot a hare which he may keep for himself. Each hunter prefers, however,
a portion of the deer to their own hare.

The hunt can be modeled as a strategic game with the n hunters as
players and with {Stag,Hare} as set of actions for each player. Every hunter
prefers that all hunters take part in the stag hunt in front of any other
option and is indifferent between what the others do if he chooses to shoot a
hare. Every hunter also prefers shooting a hare to participating in the stag
hunt if somebody else should choose to shoot a hare. Finally, every hunter
is indifferent between all alternatives where he partipates in the stag hunt
and somebody else does not (because he gets no prey in these cases). The
preferences of player 1 are thus given as follows:

(Stag, Stag, . . . , Stag) �1 (Hare, X2, . . . , Xn) ∼1 (Hare, Y2, . . . , Yn)

�1 (Stag, Z2, . . . , Zn) ∼1 (Stag,W2, . . . ,Wn).

where the letters Xi, Yi, Zi and Wi stand for Stag or Hare with not all of
Z2, . . . , Zn and not all of W2, . . . ,Wn being equal to Stag .

The payoff table for the stag hunt with just two players has the following
form:
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Stag Hare

Stag (2, 2) (0, 1)

Hare (1, 0) (1, 1)

The Stag Hunt is, like the Prisoner’s Dilemma, an example of a situation
where cooperation would be profitable, but where lack of trust may force a
party to secure what he can achieve on his own and in this way abandon a
better alternative.

2.2 Nash equilibrium

What action should a player of a specific strategic game choose under the
assumption that he wants to maximize his utility? The problem, of course,
is that what is best for a player depends on the other players’ choices. So
a player who wants to maximize his utility must have an idea about how
the other players are going to play. And that is not included in the rules of
the game, which only assume that the action sets and the preferences of all
players are common knowledge.

So game theory provides no general answers to the question how to play a
strategic game when played a single time. However, what game theory does
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is to single out outcomes with special features, for instance outcomes that
are stable in the sense that no player has anything to gain by unilaterally
deviating from the action contained in the outcome. This stable outcome is
the celebrated Nash equilibrium, that we are now going to define formally.

Definition 2.2.1 Let 〈N, (Ai), (�i)〉 be a strategic game with n players. An
outcome a∗ = (a∗1, . . . , a

∗
n) is called a Nash equilibrium or Nash solution if no

player benifits from unilaterally replacing his action in the outcome a∗ with
any other action, i.e. if for every player i and every action ai ∈ Ai we have

a∗ = (a∗−i, a
∗
i ) �i (a

∗
−i, ai).

As shown in the examples below there are strategic games without any
Nash equilibrium and games with multiple Nash equilibria.

Example 2.2.1 (Prisoner’s Dilemma) The outcome (Confess,Confess) is
a Nash solution of the game

Deny Confess

Deny (−1,−1)) (−5, 0)

Confess (0,−5) (−3,−3)

because

u1(Confess,Confess) = −3 > −5 = u1(Deny,Confess) and

u2(Confess,Confess) = −3 > −5 = u2(Confess,Deny),

i.e. no player benefits from unilaterally changing from confessing to denying.
The Nash solution is unique, because an outcome where at least one of the

players denies is worse for that player then the outcome where he confesses
and the other player’s action remains unchanged.

The Prisoner’s Dilemma game is an illustration of the fact that a Nash
solution is not necessarily the collectively best outcome. Here, the alternative
(Deny,Deny), giving both of them one year in prison, is obviously better than
the Nash solution, which results in three years inprisonment each. If the
prisoners were allowed to cooperate, they would choose the first mentioned
alternative, of course.

Example 2.2.2 (Battle of Sexes) The game

Concert Football

Concert (2, 1) (0, 0)

Football (0, 0) (1, 2)
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has two Nash solutions, namely (Concert,Concert) and (Football,Football).
The first mentioned Nash solution is the row player’s best solution and the
second mentioned Nash solution is the column player’s best solution. More-
over, both Nash solutions are better for both players than the remaining two
outcomes. Both players are of course well aware of this fact but without ad-
ditional information it is still impossible for them to coordinate their actions
so that they end up in one of the two Nash solutions. Similar problems often
arise in games with more than one Nash solution.

Example 2.2.3 (Matching Pennies) The game

Head Tail

Head (1,−1) (−1, 1)

Tail (−1, 1) (1,−1)

has no Nash equilibrium. The outcome (Head,Head) is not a Nash equi-
librium since player 2 profits from exchanging Head for Tail, the outcome
(Head,Tail) is not a Nash equilibrium since player 1 now profits from ex-
changing Head for Tail, the outcome (Tail,Tail) is not a Nash equilibrium,
since player 2 profits from exchanging Tail for Head, and nor is the outcome
(Tail,Head) a Nash solution since player 1 profits from exchanging Tail for
Head.

Example 2.2.4 (Stag Hunt) The stag hunt game in Example 2.1.5 (with n
hunters) has two Nash solutions, viz. (Stag, Stag, . . . , Stag), when all hunters
are engaged in the stag hunting, and (Hare,Hare, . . . ,Hare), when all hunters
shoot hares. Obviously, no hunter profits by unilaterally deviating from the
first mentioned solution since he will then lose a part of the deer, nor does
anyone profit by unilaterally deviating from the second solution, since this
means getting nothing instead of a hare.

It is also easy to see that there are no other Nash solutions. An outcome
of the form (X1, . . . , Xi−1, Stag, Xi+1, . . . , Xn), where hunter no. i is a stag
hunter and at least one of the remaining persons is hunting hares (i.e. some
Xk = Hare) can not be a Nash solution, because hunter i gets nothing and
profits by exchanging stag hunting for hare hunting.

We will now give a useful alternative characterization of Nash equilibria.
If all players except player i announce their choices of action in advance,
player i faces a pure decision problem. His best response, given that the other
players have chosen a−i, is to choose an action in Ai that is maximal with
respect to the restriction of his preference relation �i to the set {a−i} × Ai.
This motivates the following concept.
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Definition 2.2.2 Let a−i be a vector of actions for all players except player i
in a strategic game 〈N, (Ai), (�i)〉. The set

Bi(a−i) = {xi ∈ Ai | (a−i, xi) �i (a−i, yi) for all yi ∈ Ai}

is called the best-responce set of player i given the other players’ choices a−i.
The set valued function Bi, with A−i as domain of definition, is called the
best-response function of player i.

In other words, player i’s best-response set Bi(a−i) consists of the actions
xi ∈ Ai that make the outcome (a−i, xi) to a maximal element in the set
{a−i} × Ai with respect to the the player’s preference relation �i.

All best-response sets are obviously nonempty if the game is finite, and it
follows from Proposition 1.2.4 that all best-response sets are nonempty if the
action sets Ai are compact and the preference relations �i are continuous.

Using best-response functions we can reformulate the Nash equilibrium
definition as follows.

Proposition 2.2.1 An outcome a∗ in a strategic game is a Nash equilibrium
if and only if a∗i ∈ Bi(a

∗
−i) for every player i.
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Proof. The action a∗i in a Nash equilibrium a∗ is optimal for player i given
that the other players have chosen a∗−i.

Example 2.2.5 (Hawk–Dove) The game with payoff table

Hawk Dove

Hawk (0, 0) (3, 1)

Dove (1, 3) (2, 2)

has the following best-response sets:

B1(Hawk) = {Dove}, B1(Dove) = {Hawk}
B2(Hawk) = {Dove}, B2(Dove) = {Hawk}.

The outcome (Dove,Hawk) is a Nash solution since

Dove ∈ B1(Hawk) and Hawk ∈ B2(Dove).

Analogously, (Hawk,Dove) is a Nash solution. The outcome (Hawk,Hawk)
is not a Nash solution, because Hawk /∈ B1(Hawk).

So in a Nash equilibrium one of the combatants should be hawkish and
the other should be dowish and withdraw from the battle. Just like in the
game Battle of Sexes, it seems unclear how this balance will be achieved. In
nature, this tends to be resolved automatically, however. After some fights,
the pecking order is established, and the combatants know who should behave
hawkish and who should behave dovish.

The characterization in Proposition 2.2.1 gives rise to a simple algorithm
for calculating Nash equilibria in finite two-person games. An example clar-
ifies the situation.

Example 2.2.6 Consider the game

k1 k2 k3 k4 k5 k6
r1 (2, 1) (4, 3) (7, 2) (7, 4) (0, 5) (3, 2)

r2 (4, 0) (5, 4) (1, 6) (0, 4) (0, 3) (5, 1)

r3 (1, 3) (5, 3) (3, 2) (4, 1) (1, 0) (4, 3)

r4 (4, 3) (2, 5) (4, 0) (1, 0) (1, 5) (2, 1)

The row player’s best response to the column player’s action k1 is r2 or r4. We
mark this in the table by putting an asterisk after u1(r2, k1) and u1(r4, k1),
i.e. after the maximum fours. The row player’s best response if the column
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player chooses action k2 is r2 or r3, so we put asterisks after the corresponding
payoffs u1(r2, k2) and u1(r3, k2) in column number 2, etc.

Similarly, k5 is the best response of the column player if the row player
chooses action r1, because k5 maximizes the function y �→ u2(r1, y). We
therefore put an asterisk after u2(r1, k5), i.e. after the five in row 1 and
column 5, etc. Our algorithm results in the following table:

k1 k2 k3 k4 k5 k6
r1 (2, 1) (4, 3) (7∗, 2) (7∗, 4) (0, 5∗) (3, 2)

r2 (4∗, 0) (5∗, 4) (1, 6∗) (0, 4) (0, 3) (5∗, 1)

r3 (1, 3∗) (5∗, 3∗) (3, 2) (4, 1) (1∗, 0) (4, 3∗)

r4 (4∗, 3) (2, 5∗) (4, 0) (1, 0) (1∗, 5∗) (2, 1)

When we are done, we note that there are two pairs of payoffs with double
asterisks, namely (5, 3) and (1, 5). The double asterisks at (5, 3) means that
r3 is the best response of the row player if the column player chooses action
k2, and k2 is the best response of the column player if the row player chooses
action r3. Hence, (r3, k2) is a Nash solution. Analogously, (r4, k5) is a Nash
solution, too, and there are no other Nash solutions.

Example 2.2.7 (Splitting money) Two persons are bargaining how to split
$10 and agree to use the following procedure. Each of them announces the
amount he wants to receive by naming an integer in the interval [0, 10]. If
the sum of these integers does not exceed 10, then they receive the amounts
that they named and the remainder is destroyed. If the sum is greater than
10 and the numbers are different, then the person who named the smaller
amount gets it and the other person gets the remainder. If the sum exceeds
10 and the numbers are equal, than both get $5.

The best-response functions B1 and B2 of the two players are identical
and given by

Bi(0) = {10}, Bi(1) = {9, 10}, Bi(2) = {8, 9, 10}, Bi(3) = {7, 8, 9, 10},
Bi(4) = {6, 7, 8, 9, 10}, Bi(5) = {5, 6, 7, 8, 9, 10},
Bi(6) = {5, 6}, Bi(7) = {6}, Bi(8) = {7}, Bi(9) = {8}, Bi(10) = {9}.

The graphs of the two best-response functions B2 and B1 are shown in the left
and the middle panel of Figure 2.1. The right panel contains boths graphs
and shows that the intersection of the two consists of the four points (5, 5),
(5, 6), (6, 5) and (6, 6). Since a point (x1, x2) belongs to the intersection of
the two graphs if and only if x1 ∈ B1(x2) and x2 ∈ B2(x1), this means that
(5, 5), (5, 6), (6, 5) and (6, 6) are the four Nash equilibria of the game.
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Figure 2.1. The left panel shows the graph of the best-response function of
person 2, the middle panel shows the graph of the best-response function of person
1, and the right panel shows both graphs.

Exercises

2.1 Two children play the game Rock–paper–scissors. (Paper beats rock, rock
beats scissors and scissors beat paper.) Formulate the game as a strategic
game and determine if there are any Nash equilibria.
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2.2 Determine the best-response functions of the players in the games Prisoner’s
Dilemma, Matching Pennies and Stag Hunt, and verify that the Nash solutions
of the games are the ones computed in the examples above.

2.3 Find the Nash equilibria of the following game:

k1 k2 k3 k4

r1 (−3,−4) (2,−1) (0, 6) (1, 1)

r2 (2, 0) (2, 2) (−3, 0) (1,−2)

r3 (2,−3) (−5, 1) (−1,−1) (1,−3)

r4 (−4, 3) (2,−5) (1, 2) (−3, 1)

2.4 An outcome a∗ = (a∗1, . . . , a
∗
n) is called a strict Nash equilibrium of the game

〈N, (Ai), (�i)〉 if
(a∗−i, a

∗
i ) �i (a

∗
−i, ai).

for each player i and each action ai ∈ Ai such that ai �= a∗i . Calculate the Nash
equilibria of the game

L M R

T (1, 1) (1, 0) (0, 0)

B (1, 0) (0, 1) (1, 2)

Is any of them a strict Nash equilibrium?

2.5 Guess 2/3 of the average is a game where each of n players selects a real
number from the interval [0, 100], and a cash prize is split evenly among the
players whose numbers are closest to 2/3 of the average of the n numbers
chosen. Show that the game’s unique Nash solution consists of all players
choosing the number 0.

2.6 Calculate the Nash equilibria in the Guess 2/3 of the average game if the
players are only allowed to choose integers in the interval [0, 100].

2.3 Existence of Nash equilibria

Matching Pennies is an example of a finite strategic game with no Nash
equilibrium, and finite games without Nash equilibria are not uncommon.
There are, however, important classes of finite games that always have Nash
equilibria and an example of such a class is given by the so called finite
extensive games with perfect information that we will study in Chapter 8.

In this section, we present an existence theorem of Nash. The theorem
is not directly applicable to finite games because the action sets in Nash’s
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theorem are assumed to be convex, and finite sets are of course not convex
unless they are singleton sets. Nash’s theorem may, however, be applied to
the so-called mixed extension of a finite game. The action sets in the mixed
extension of a finite game are lottery sets, and these sets are convex and
compact. Mixed extensions of games will be the theme of the next chapter.

In order to formulate Nash’s theorem we will need some convexity notions.
First recall that a subset X of Rn is called convex if, for each pair of points
in the set, the set contains the entire segment between the points, i.e. if

x, y ∈ X, 0 < α < 1 ⇒ αx+ (1− α)y ∈ X.

Definition 2.3.1 Let X be a convex subset of Rn. A function f : X → R
is called quasiconcave if the sets

{x ∈ X | f(x) ≥ t}

are convex for all t ∈ R.
A preference relation � on X is called quasiconcave if the sets

{x ∈ X | x � a}

are convex for all a ∈ X.

Proposition 2.3.1 Preference relations � with quasiconcave utility func-
tions u are quasiconcave.

Proof. The asssertion is a direct consequence of the quasiconcavity definitions
and the relationship

{x ∈ X | x � a} = {x ∈ X | u(x) ≥ u(a)}.

........................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

............................................................................................................................................................................................................ ..................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..................

...........

x1

x2

•
a

{x | x � a}

.............................................................................................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 2.2. A preference relation �
is quasiconcave if the sets {x | x � a}
are convex for all a.
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{x | f(x) ≥ t}

Figure 2.3. The graph of a quasi-
concave one-variable function f . The
sets {x | f(x) ≥ t} are intervals or
empty for all t.

Download free eBooks at bookboon.com



NON-COOPERATIVE GAMES: AN 
INTRODUCTION TO GAME THEORY – PART I

45

Strategic Games

45

2.3 Existence of Nash equilibria 45

Proposition 2.3.2 Suppose that X is a convex and compact subset of Rn

and that � is a continuous and quasiconcave preference relation on X. The
set of maximal elements of the preference relation is then nonempty, convex
and compact.

Proof. The set M of maximal elements is nonempty according to Proposition
1.2.4, and if m is a maximal element, then M = {x ∈ X | x � m}. Hence,
M is convex by Definition 2.3.1 and closed by Proposition 1.2.1. A closed
subset of a compact set i compact.

Proposition 2.3.3 (Nash’s theorem) A strategic game 〈N, (Ai), (�i)〉 has
a Nash equilibrium if the following conditions are fulfilled for every player
i ∈ N :

• The action set Ai is a convex compact subset of some Rni.

• The preference relation �i is continuous.

• The restriction of the preference relation �i to the set {a−i} × Ai is
quasiconcave for each outcome a ∈ A.

Remark. The last condition of the theorem means that the sets

{(a−i, xi ∈ A) | (a−i, xi) �i a}
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are convex subsets of {a−i} × Ai for every outcome a, and this holds if and
only if the sets {xi ∈ Ai | (a−i, xi) �i a} are convex subsets of Ai for each
a ∈ A.

Proof. It follows from Proposition 2.3.2 that the set M of all maximal ele-
ments (a−i,mi) in {a−i} × Ai of the preference relation �i is a nonempty,
convex and compact subset of {a−i} × Ai. The best-response set Bi(a−i) of
player i, which equals the projection of M on the ith factorAi, is therefore
nonempty, convex and compact, too.

Let A = A1 ×A2 × · · · ×An, and define a map φ from A to the set P(A)
of all subsets of A by putting

φ(a) = B1(a−1)× B2(a−2)× · · · ×Bn(a−n).

A Nash equilibrium is by Proposition 2.2.1 a point a∗ ∈ A with the
property a∗ ∈ φ(a∗), and such a point is called a fixed-point of the map φ. To
prove the existence of a fixed-point of φ we will use Kakutani’s fixed-point
theorem which is stated below.

To this end, we note that

1. A is a nonempty, compact and convex subset of Rm for some m.

2. For each a ∈ A, φ(a) is a nonempty, convex subset of A.

3. The graph

G = {(a, b) | a ∈ A and b ∈ φ(a)}

of the map φ is a closed set.

Assertion 1 follows from the assumption that each factor Ai is compact
and convex, and assertion 2 follows from the fact that each factor Bi(a−i) in
the definition of φ(a) is nonempty and convex.

A set is closed if and only if the limit point of every convergent sequence
of points in the set belongs to the set. So to prove assertion 3, we assume
that

(
(ak, bk)

)∞
1

is a convergent sequence of points in the graph G with limit

point (a, b). This means that ak ∈ A and bk ∈ φ(ak) for all k, and that
ak → a and bk → b as k → ∞. Since A is a closed set, the limit a belongs
to A. Moreover, by definition bki belongs to the best-response set Bi(a

k
−i) of

player i for each i, which means that

(ak−i, b
k
i ) �i (a

k
−i, yi)

for all yi ∈ Ai. Now let k → ∞ in the above relation; by continuity

(a−i, bi) �i (a−i, yi)
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for all yi ∈ Ai, which shows that bi ∈ Bi(a−i) for all i, and that consequently
b ∈ φ(a). Hence, the limit point (a, b) lies in G, and this concludes the proof
of assertion 3.

The existence of a fixed-point of the map φ is now an immediate con-
sequence of Kakutani’s fixed-point theorem, which reads as follows and is
proven in Appendix 2 of Part II on cooperative games.

Theorem 2.3.4 (Kakutani’s fixed-point theorem) Let φ be a set-valued map
that is defined on a nonempty subset X of Rn, and suppose that the following
conditions are fulfilled:

• X is a compact and convex set;

• φ(x) is a nonempty, convex subset of X for each x ∈ X;

• φ has a closed graph.

Then φ has a fixed-point, i.e. there is a point x∗ ∈ X such that x∗ ∈ φ(x∗).

As a further application of Kakutani’s fixed-point theorem, we now prove
a result for symmetric games.

Definition 2.3.2 A strategic two-person game 〈{1, 2}, (Ai), (�i)〉 is sym-
metric if A1 = A2 and

(a1, a2) �1 (b1, b2) ⇔ (a2, a1) �2 (b2, b1)

for all (a1, a2), (b1, b2) ∈ A1 × A2.

In a symmetric game both players have the same action set, and player 1
values the outcome (a1, a2) in the same way as player 2 values the outcome
(a2, a1). If the preferences are given by the utility function u1 and u2, respec-
tively, we may therefore assume that u1(a1, a2) = u2(a2, a1) for all outcomes
(a1, a2). The best-response sets of the two players satisfy B1(x) = B2(x) for
all x ∈ A1.

Proposition 2.3.5 Consider a symmetric strategic two-person game, and
suppose that the common action set A of the two players is convex and com-
pact, that the preference relation �1 of player 1 is continuous and that the
restriction of �1 to the set A × {a} is quasiconcave for each a ∈ A. Then
the game has a symmetric Nash equilibrium, i.e. a Nash equilibrium of the
form (a∗, a∗).

Proof. Player 1’s best-response function B1 : A → P(A) meets the assump-
tions of Kakutani’s fixed-point theorem. Hence, B1 has a fixed-point a∗ ∈ A,
and since the game is symmetric, a∗ ∈ B1(a

∗) implies that the outcome
(a∗, a∗) is a Nash solution.
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Exercises

2.7 Is the lexicographic order on R2 quasiconcave?

2.8 Decide whether the following set-valued maps φ, defined on the interval [0, 1],
have closed graphs.

a) φ(x) = [0, x] b) φ(x) = [0, x[

c) φ(x) =

{
[0, x] if 0 ≤ x < 1,

{0} if x = 1
d) φ(x) =

{
[34 , 1] if 0 ≤ x < 1

2 ,

[x, 1] if 1
2 ≤ x ≤ 1

e) φ(x) =

{
[0, 1] if x = 0,

{sin 1
x} if 0 < x ≤ 1

f) φ(x) =

{
[−1, 1] if x = 0,

{sin 1
x} if 0 < x ≤ 1

2.4 Maxminimization

In every finite strategic game with preferences given by utility functions,
there is for each player a utility amount, the player’s safety level, that the
player can guarantee himself regardless of how the other players behave.

Example 2.4.1 Consider the game in Example 2.2.6 with the following
payoff table:
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k1 k2 k3 k4 k5 k6
r1 (2, 1) (4, 3) (7, 2) (7, 4) (0, 5) (3, 2)

r2 (4, 0) (5, 4) (1, 6) (0, 4) (0, 3) (5, 1)

r3 (1, 3) (5, 3) (3, 2) (4, 1) (1, 0) (4, 3)

r4 (4, 3) (2, 5) (4, 0) (1, 0) (1, 5) (2, 1)

Let us study how player 2 should play if he is extremely pessimistic and
assumes that whatever action he takes, the opponent always happens to
choose an action that is most unfavorable for him.

If player 2 chooses k1, then the worst payoff 0 is obtained when player 1
chooses r2. If he chooses k2, the worst payoff is 3, obtained if player 1 chooses
r1 or r3. The worst payoff the actions k3, k4 and k5 yield is 0, and the worst
payoff that action k6 yields is 1. So by choosing action k2, player 2 can at least
guarantee himself a payoff of 3 utility units, independently of his opponent’s
choice of action, and this is also the largest payoff he can guarantee himself.
Thus, 3 is his safety level, and the action k2, which guarantees him at least
this amount, is called his maxminimizing action. The action k2 maximizes
the function

f2(y) = min
x∈A1

u2(x, y).

Analogously, we find player 1’s safety level and maxminimizing action by
maximizing the function

f1(x) = min
y∈A2

u1(x, y)

over all x ∈ A1. Player 1 has two maxminimizing actions, namely r3 and r4,
which both guarantee him utility 1, the safety level of player 1.

The outcomes (r3, k2) and (r4, k2), which occur if both players choose
maxminimizing actions, result in the payoffs (5, 3) and (2, 5), respectively.
This happens to be better for player 1 than his safety level in both cases,
whereas player 2 exceeds his safety level only in the second case.

The reasoning in Example 2.4.1 can be generalized and leads to the fol-
lowing general definition.

Definition 2.4.1 Let 〈N, (Ai), (ui)〉 be a strategic game and define for each
player i a function fi on Ai by

fi(ai) = inf{ui(x−i, ai) | x−i ∈ A−i}.

The quantity
�i = sup{fi(ai) | ai ∈ Ai}
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is called the safety level of player i. If there is an action âi ∈ Ai such
that the supremum is attained, i.e. such that fi(âi) = �i, then we call âi a
maxminimizing action for player i.

If player i has a maxminimizing action, then we are of course allowed to
write �i = max{fi(ai) | ai ∈ Ai} instead of �i = sup{fi(ai) | ai ∈ Ai}.

A player’s safety level is not necessarily a finite number but could be
equal to +∞ or −∞, and finiteness does of course not guarantee that the
supremum is attained, i.e. that there exists a maxminimizing action. In any
case, given any number s < �i, player i has an action which guarantees him
a payoff greater than s, and if he has a maxminimizing action âi, then this
action will guarantee him a payoff that is greater than or equal to �i.

The games that interest us the most are either finite games or games with
compact action sets Ai and continuous utility functions ui. In these cases,
the infima and the suprema in the definitions of the functions fi and the
safety levels �i are of course attained, and we can replace inf with min and
sup with max everywhere, and each player certainly has a maxminimizing
action.

We have defined a player’s maxminimizing action âi using the player’s
utility function ui, but since the relation between two ordinal utility functions
that represent the same preference relation is given by a strictly increasing
transformation, the maxminimizing action âi will in fact only depend on the
underlying preference relation �i. The safety level will of course depend on
the choice of utility function − if u′

i = F ◦ ui and a player’s safetly level is
equal to �′i with respect to the utility function u′

i and equal to �i with respect
to the utility function ui, then �′i = F (�i).

Proposition 2.4.1 Assume that the strategic game 〈N, (Ai), (ui)〉 has a Nash
equilibrium a∗, and let �i be the safety level of player i. Then

ui(a
∗) ≥ �i.

A player’s payoff at a Nash equilibrium is in other words at least as large as
his safety level.

Proof. We have the inequality

fi(ai) = inf{ui(x−i, ai) | x−i ∈ A−i} ≤ ui(a
∗
−i, ai)

for each ai ∈ Ai, and this implies that

�i = sup{fi(ai) | ai ∈ Ai} ≤ sup{ui(a
∗
−i, ai) | ai ∈ Ai} = ui(a

∗
−i, a

∗
i ) = ui(a

∗).
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Example 2.4.2 The game in Exempel 2.4.1 has two Nash solutions (r3, k2)
and (r4, k5), at which the payoffs to the players are given by the pairs (5, 3)
and (1, 5), respectively. Both solutions give the two players payoffs that are
at least as large as their safety levels, which are equal to 1 and 3, respectively.

Exercises

2.9 Compute Nash solutions, maxminimizing actions and safety levels for the fol-
lowing game:

k1 k2 k3 k4

r1 (3, 4) (2, 1) (0, 6) (1, 4)

r2 (2, 0) (2, 2) (3, 0) (1, 2)

r3 (2, 3) (5, 1) (1, 1) (3, 3)

r4 (4, 3) (2, 5) (2, 2) (3, 2)

2.10 Calculate maxminimization actions and safety levels for the game Splitting
money in Example 2.2.7.

2.11 Prove that there is no Nash equilibrium in a game with a player whose safety
level is +∞.
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2.5 Strictly competitive games

The strategic game concept is too general to allow any interesting far-reaching
results about Nash solutions. To obtain such results we have to confine
ourselves to some smaller class of games, and such an important class consists
of games for two persons whose interests are diametrically opposed.

Definition 2.5.1 A strategic game 〈{1, 2}, (Ai), (�i)〉 with two players is
called strictly competitive if

(1) (a1, a2) �1 (b1, b2) ⇔ (b1, b2) �2 (a1, a2)

for all outcomes (a1, a2) and (b1, b2).

Example 2.5.1 The game Matching Pennies in Example 2.1.3 is strictly
competitive, because the preferences of the two players fulfill the following
conditions

(Kr,Kr) ∼1 (Kl,Kl) �1 (Kr,Kl) ∼1 (Kl,Kr)

(Kl,Kr) ∼2 (Kr,Kl) �2 (Kl,Kl) ∼2 (Kr,Kr)

which means that the condition (1) is satisfied.

Suppose that the preference relation �1 is represented by the utility func-
tion u1. It then follows from condition (1) that

(b1, b2) �2 (a1, a2) ⇔ u1(a1, a2) ≥ u1(b1, b2 ) ⇔ −u1(b1, b2) ≥ −u1(a1, a2),

which means that −u1 is a utility function representing �2. In a strictly
competitive game it is thus possible to choose the players’ ordinal utility
functions u1 and u2 so that u1 + u2 = 0.

Definition 2.5.2 A two-person strategic game 〈{1, 2}, (Ai), (ui)〉 with car-
dinal utility functions is called a zero-sum game if u1 + u2 = 0.

Zero-sum games are strictly competitive. Every outcome gives one player
the same amount of utility units as the other player loses. Thus, we can
regard the outcome as a transfer of utility from one player to the other; no
utility is supplied from the outside or disappears,

In zero-sum games it is obviously sufficient to specify the utility function
for one of the players. For finite zero-sum games we will do so by giving the
payoff matrix of player 1 (the row player), and we call this matrix the game’s
payoff matrix.

The Nash equilibria in a strictly competitive game are completely deter-
mined by the preferences of one of the players. It follows immediately from
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the definition of Nash equilibrium and the equivalence (1) that the outcome
(a∗1, a

∗
2) is a Nash equilibrium if and only if

(a∗1, a2) �1 (a
∗
1, a

∗
2) �1 (a1, a

∗
2)

for all (a1, a2) ∈ A1 × A2.
This condition can of course also be expressed in terms of utility functions;

if u1 is a utility function for player 1, then (a∗1, a
∗
2) is a Nash equilibrium if

and only if the saddle point inequality

(2) u1(a
∗
1, a2) ≥ u1(a

∗
1, a

∗
2) ≥ u1(a1, a

∗
2)

holds for all (a1, a2) ∈ A1 × A2.
In a strictly competitive game 〈{1, 2}, (Ai), (ui)〉, every Nash equilibrium

is in other words a saddle point of player 1’s utility function u1. Conversely,
every saddle point (a∗1, a

∗
2) of u1 with the property that a∗1 maximizes the

function u1(·, a∗2) and a∗2 minimizes the function u1(a
∗
1, ·), is a Nash equilib-

rium.
To verify the saddle point inequality it is of course enough to check that

u1(a
∗
1, a2) ≥ u1(a1, a

∗
2)

for all outcomes (a1, a2), because by taking a1 = a∗1 we get the left part and
by taking a2 = a∗2 we get the right part of inequality (2).

In a strictly competitive game 〈{1, 2}, (Ai), (ui)〉, the maxminimizing ac-
tions of both players are also completely determined by one player’s utility
function. A maxminimizing action for player 1 is by definition an action
â1 ∈ A1 such that

inf
a2∈A2

u1(â1, a2) = sup
a1∈A1

inf
a2∈A2

u1(a1, a2),

and a maxminimizing action for player 2 is similarly an action â2 ∈ A2 such
that

inf
a1∈A1

u2(a1, â2) = sup
a2∈A2

inf
a1∈A1

u2(a1, a2),

but we can replace the function u2 with the function −u1 in the last equality,
because −u1 is, as noted above, a utility function for player 2. Using the
general relation inf −f = − sup f between the supremum of a function f and
the infimum of its negative, we conclude that the maxminimizing action â2
is also obtained as the solution to the problem

sup
a1∈A1

u1(a1, â2) = inf
a2∈A2

sup
a1∈A1

u1(a1, a2).
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This is the equality to be used in the sequel in order to characterize the
maxminimizing actions of player 2 in strictly competitive games.

We now turn to the relation between Nash equilibria and maxminimizing
actions in strictly competitive games.

Proposition 2.5.1 Let â1 and â2 be maxminimizing actions of players 1 and
2, respectively, in a strictly competitive game 〈{1, 2}, (Ai), (ui)〉 and assume
that

inf
a2∈A2

u1(â1, a2) = sup
a1∈A1

u1(a1, â2).

The outcome (â1, â2) is then a Nash equilibrium.

Proof. Under the given assumptions we have

u1(â1, a2) ≥ inf
a2∈A2

u1(â1, a2) = sup
a1∈A1

u1(a1, â2) ≥ u1(a1, â2)

for all outcomes (a1, a2), and this implies that the saddle point inequality is
satisfied by the outcome (â1, â2).
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Proposition 2.5.2 Suppose that (a∗1, a
∗
2) is a Nash equilibrium in the strictly

competitive strategic game 〈{1, 2}, (Ai), (ui)〉. Then
(i) a∗1 and a∗2 are maxminimizing actions of players 1 and 2, respectively;

(ii) sup
a1∈A1

inf
a2∈A2

u1(a1, a2) = inf
a2∈A2

sup
a1∈A1

u1(a1, a2);

(iii) ui(a
∗
1, a

∗
2) is the safety level of player i for i = 1, 2.

Proof. We start by proving the inequality

(3) sup
a1∈A1

inf
a2∈A2

u1(a1, a2) ≤ inf
a2∈A2

sup
a1∈A1

u1(a1, a2),

for arbitrary functions u1 : A1×A2 → R. To this end, let a1 ∈ A1 be arbitrary
and take the greatest lower bound of the function u1(a1, ·). This results in
the inequality

inf
a2∈A2

u1(a1, a2) ≤ u1(a1, a2),

which holds for all a2 ∈ A2 and all a1 ∈ A1. By considering both sides of
this inequality as functions of a1 and comparing their least upper bounds,
we conclude that

sup
a1∈A1

inf
a2∈A2

u1(a1, a2) ≤ sup
a1∈A1

u1(a1, a2)

for all a2 ∈ A2. The right side of this inequality is a function of a2 and the
greatest lower bound of this function is by definition greater than or equal
to the the left side, which is exactly what inequaility (3) says.

Using the saddle point inequality (2) for the Nash equilibrium (a∗1, a
∗
2),

we obtain the following chain of inequalities

sup
a1∈A1

inf
a2∈A2

u1(a1, a2) ≥ inf
a2∈A2

u1(a
∗
1, a2) = u1(a

∗
1, a

∗
2)

= sup
a1∈A1

u1(a1, a
∗
2) ≥ inf

a2∈A2

sup
a1∈A1

u1(a1, a2).

Combining this inequality with the converse inequality (3) we conclude that
the extreme ends in the above inequality are equal. Hence, equality prevails
everywhere. Thus,

inf
a2∈A2

u1(a
∗
1, a2) = sup

a1∈A1

inf
a2∈A2

u1(a1, a2) = u1(a
∗
1, a

∗
2)

and

sup
a1∈A1

u1(a1, a
∗
2) = inf

a2∈A2

sup
a1∈A1

u1(a1, a2) = u1(a
∗
1, a

∗
2),

which proves statements (i) and (ii) and that u1(a
∗
1, a

∗
2) is the safety level

of player 1. For symmetry reasons, the safety level for player 2 is equal to
u2(a

∗
1, a

∗
2).
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Our next proposition is a corollary to the previous two propositions.

Proposition 2.5.3 The following holds for strictly competitive games with
at least one Nash equilibrium.

(i) An outcome (a∗1, a
∗
2) is a Nash equilibrium if and only if a∗1 and a∗2 are

maxminimizing actions of player 1 and player 2, respectively.

(ii) The payoff to a player is the same at all Nash equilibria of the game.

(iii) If (a∗1, a
∗
2) and (â1, â2) are two Nash equilibria, then the two outcomes

(a∗1, â2) and (â1, a
∗
2) are also Nash equilibria.

Proof. (i) The actions in a Nash equilibrium are maxminimizing actions of
the respective players according to Proposition 2.5.2 (i). Moreover, since
the game is assumed to have at least one Nash equilibrium, we know from
statement (ii) of the same proposition that

sup
a1∈A1

inf
a2∈A2

u1(a1, a2) = inf
a2∈A2

sup
a1∈A1

u1(a1, a2),

and this means that

inf
a2∈A2

u1(â1, a2) = sup
a1∈A1

u1(a1, â2),

whenever â1 is a maximizing action for player 1 and â2 is a maximizing action
for player 2. It now follows from Proposition 2.5.1 that each par (â1, â2) of
maxminimizing actions of the two players is a Nash equilibrium.

(ii) By Proposition 2.5.2, a player’s payoff at a Nash equilibrium is equal to
his safety level.

(iii) Let (a∗1, a
∗
2) and (â1, â2) be two Nash equilibria. Statement (i) tells us

that a∗1 and â1 are maxminimizing actions of player 1, and a∗2 and â2 are
maxminimizing actions of player 2, and that consequently the two outcomes
(a∗1, â2) and (â1, a

∗
2) are Nash equilibria.

Example 2.5.2 The two-person game G, given by the following payoff table

k1 k2 k3 k4
r1 (2,−2) (−5, 5) (7,−7) (−1, 1) −5

r2 (3,−3) (4,−4) (3,−3) (5,−5) 3

r3 (1,−1) (6,−6) (−3, 3) (2,−2) −3

3 6 7 5

is strictly competitive. The numbers in the rightmost column are the num-
bers minj u1(ri, kj) and the last row contains the numbers maxi u1(ri, kj).
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The largest of the numbers minj u1(ri, kj), i.e. 3, is equal to the smallest of
the numbers maxi u1(ri, kj). The row player’s maxminimizing action r2 and
column player’s maxminimizing action k1 thus satisfy the condition in Propo-
sition 2.5.1, and we conclude that (r2, k1) is the unique Nash equilibrium of
the game.

Assuming cardinal utilities, G is a zero-sum game with payoff matrix

U =



2 −5 7 −1
3 4 3 5
1 6 −3 2


 .

(Remember our convention for finite zero-sum games that the row player’s
payoff matrix is the game’s payoff matrix.) It is of course easy to compute
possible Nash equilibria by just looking at the payoff matrix. An outcome
(ri, kj) satisfying the saddle point inequality (2) corresponds to a location
(i, j) in the payoff matrix U where the element uij is largest in its column
and smallest in its row. Here, we see that the number 3 at location (2, 1)
satisfies this requirement. Hence, (r2, k1) is a Nash equilibrium and there are
no others.
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Exercises

2.12 Compute the Nash equilibria of the zero-sum games with the following payoff
matrices:

a)



1 2 4
3 1 3
5 3 7


 b)



1 2 4
3 3 1
2 2 3


.

2.13 Construct a competitive game with four Nash equilibria where both players
have three options each.
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Chapter 3

Two Models of Oligopoly

The competition between firms in a market can be modeled as a strategic
game. In this section, we study two models of oligopoly from the mid-1800s.
The first is due to the economist Augustin Cournot.

3.1 Cournot’s model of oligopoly

Oligopoly is a market form where a number of firms are in competition.
Normally, the number of firms is assumed to be relatively small, but this
limitation does not matter in our discussion. So consider a situation where
a homogeneous product is offered to the market by n firms. The cost of firm
i to manufacture, market and sell qi units of the product is Ci(qi), where Ci

is an increasing function. All products are sold for a single price, and the
price per unit P (Q) depends on the total output Q = q1 + q2 + · · ·+ qn. An
increased supply pushes the price down, so we assume that the function P ,
commonly called the inverse demand function, is decreasing.

The firms are assumed to be profit maximizing, but the catch is, of course,
that a firm’s profit depends not only on its own output but also on the output
of the other firms. The revenue for firm i, which produces and sells qi units,
is qiP (q1 + q2 + · · ·+ qn), and its profit is thus

Vi(q1, q2, . . . , qn) = qiP (q1 + q2 + · · ·+ qn)− Ci(qi).

The monopoly case n = 1 with just one firm in the market is special. A
monopolistic firm has full control of the situation, and its problem is simply
to maximize the one-variable function V (x) = xP (x)−C(x), where C is the
firm’s cost function.

An oligopoly with n ≥ 2 firms involved may be perceived as a strategic
game in which the players are the firms, the action set Ai of each firm i is the

59

Download free eBooks at bookboon.com



NON-COOPERATIVE GAMES: AN 
INTRODUCTION TO GAME THEORY – PART I

60

Two Models of Oligopoly
60 3 Two Models of Oligopoly

set of its possible outputs, and the payoff of each firm is its profit function
Vi. For simplicity, we assume that Ai = R+, the set of all non-negative real
numbers, for each firm i.

This strategic game has, under appropriate assumptions, a Nash solution,
and the Nash solution was identified by Cournot as a reasonable solution
to the firms’ problems of determining their optimal output quantities. Of
course, Cournot could not make use of any game theory terminology in his
analysis of the situtation. Nash seems, on the other hand, not to have known
Cournot’s economical works when he developed his theory around 1950.

We can determine possible Nash equilibria q∗ = (q∗1, q
∗
2, . . . , q

∗
n) in the

oligopoly game by utilizing the fact that q∗i is the best response of firm
i, given that the other firms have chosen the output quantities q∗−i. The
outcome q∗ is, in other words, a Nash equilibrium if and only if, for each
company i, q∗i maximizes the profit function

xi �→ Vi(q
∗
−i, xi) = xiP (q∗1 + · · ·+ xi + · · ·+ q∗n)− Ci(xi).

Let us assume that q∗i > 0 and that the functions P and Ci are differen-
tiable at the points Q∗ and q∗i , respectively, where Q∗ = q∗1 + · · · + q∗n. The
derivative of firm i’s profit function is then equal to zero at the maximum
point q∗i , so it follows after differentiation that the Nash equilibrium q∗ is a
solution to the following system of equations:

(1)




P (Q) + q1P
′(Q)= C ′

1(q1)
P (Q) + q2P

′(Q)= C ′
2(q2)

...
P (Q) + qnP

′(Q)= C ′
n(qn)

q1 + q2 + · · ·+ qn = Q

From now on we assume that the firms have identical linear cost functions,
i.e. that Ci(qi) = cqi for some positive constant c, and that P ′(Q∗) < 0. The
inverse demand function P is in particular strictly decreasing at the point
Q∗. Under these conditions, the Nash equilibrium q∗ has to be symmetric,
i.e. q∗1 = q∗2 = · · · = q∗n.

To prove this, we need only subtract the first equation of the system (1)
from equation number i, which results in the following equation for the Nash
equilibrium

(q∗i − q∗1)P
′(Q∗) = c− c = 0,

with the conclusion that q∗i − q∗1 = 0 for all firms i.
The firms’ total output at the Nash equilibrium is therefore Q∗ = nq∗1,

and we can now compute q∗1 by solving the equation

(2) P (nx) + xP ′(nx) = c,
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an equation in just one variable x.

Example 3.1.1 Let us determine the Nash equilibrium in Cournot’s oligo-
poly game when the firms have a common linear cost function C(qi) = cqi
and the inverse demand function is of the form

P (Q) =

{
a−Q if 0 ≤ Q ≤ a,

0 if Q > a.

We assume that a > c, for otherwise, all outputs are unprofitable.
All output vectors q = (q1, q2, . . . , qn) with total output Q > a − c are

nonprofitable for each firm i with a positive output qi, and such a firm can
improve the situation unilaterally by reducing its output to zero. Hence, the
total output Q∗ is less than a−c at a Nash equilibrium q∗, which means that
the inverse demand function has the form P (Q) = a−Q in a neighborhood
of the equilibrium point.

Let us first treat the monopoly case n = 1. The single firm’s profit when
Q = q1 ≤ a− c is now given by the expression

V1(q1) = q1(a− q1)− cq1 = q1(a− c− q1),

and the graph of the profit function is shown in Figure 3.1. V1(q1) is a
quadratic polynomial with maximum at the point qmon = 1

2
(a− c). This is
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Figure 3.1. The left panel shows the graph of the inverse demand function
P (Q) in Example 3.1.1. The righ panel shows the profit curve y = V1(q1) for a
monopolistic firm.

exactly the solution we get from equation (2), which for n = 1, P (Q) = a−Q
and C(q1) = cq1 has the form a−x−x = c. The monopolistic firm’s optimal
price P (qmon) is equal to

1
2
(a+ c) and the firm’s profit is 1

4
(a− c)2.

We now turn to the oligopoly case with n > 1 firms. (The duopoly case
n = 2 is illustrated by Figure 3.2.) Our initial analysis is valid because the
firms have identical cost functions. All coordinates q∗j are therefore equal at
a Nash equilibrium q∗, and they are obtained as solutions to equation (2),
which now reads as a − nx − x = c. Each firm’s output is therefore equal
to 1

n+1
(a− c) at the Nash equilibrium, the total output is Q∗ = n

n+1
(a− c),

the output price is P (Q∗) = 1
n+1

(a+ nc), and the total profit for all firms is
n

(n+1)2
(a− c)2.
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Figure 3.2. The left panel shows profit curves y = V1(q1, q2) for one of the
duopoly firms for different values of the competing firm’s output q2; the outermost
curve corresponds to q2 = 0 and the dashed curve to q2 = b. The righ panel
shows the best response functions of the two firms; the solid line shows firm 1’s
best response as a function of q2, the dashed line shows firm 2’s best response as
a function of q1. The two lines intersection is the Nash equilibrium.
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Note that the unit price P (Q∗) = 1
n+1

(a+nc) decreases when the number
n of firms increases, and that the price converges to c when the number of
firms tends to infinity. The total output converges to a − c, and the total
profit tends to 0. When the number of oligopoly firms becomes large, we
have a market situation that is close to perfect competition.

By comparing the monopolistic firm’s optimal price, output and profit
with the oligopolistic firms’ equilibrium price, total output and profit, we see
that oligopoly implies a lower unit price, a greater total output and a lower
total profit than what monopoly does. Oligopolists would, in other words,
profit from forming a cartel, which would allow them to charge the monopoly
price. That is why there are laws against cartels.

The conclusions in the preceding paragraph applies quite generally. We
have the following result.

Proposition 3.1.1 Consider a market, where the inverse demand function
P has a negative derivative and the revenue function x �→ xP (x) is concave.
Oligopolistic firms with identical linear cost functions have a total output at
the Nash equilibrium that is greater than the optimal output of a monopolistic
firm with the same cost function.

Proof. It follows from equation (2) that the total output Q∗ (= nq∗1) at
the Nash equilibrium of n oligopolistic firms is obtained as solution to the
equation

P (x) +
1

n
xP ′(x) = c,

and that the monopolistic firm’s optimal output qmon is a solution to the
same equation in the case n = 1, i.e. to the equation

P (x) + xP ′(x) = c.

The curve y = P (x) + xP ′(x) is decreasing, because the derivative of a
concave function is decreasing, and P (x) + xP ′(x) is the derivative of the
revenue function xP (x). Since P ′(x) < 0, we have xP ′(x) < 1

n
xP ′(x) for

x > 0, which implies that the decreasing curve y = P (x) + xP ′(x) lies below
the curve y = P (x)+ 1

n
xP ′(x). We conclude that the intersection between the

curve y = P (x)+xP ′(x) and the line y = c lies to the left of the intersection
between the curve y = P (x)+ 1

n
xP ′(x) and the same line. See figure 3.3. This

means that the output qmon from the monopolistic firm is less than the total
output Q∗ from the oligopolistic firms. The monopoly price is consequently
higher than the oligopoly price.
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y = P (x) + xP ′(x)

y = c

x

Figure 3.3. The output qmon from a monopolistic firm is less than the total
equilibrium output Q∗ from the firms in an oligopoly.

The outputs given by the Nash equilibrium q∗ are not necessarily the
most profitable ones for oligopolistic firms. Under quite general conditions,
all firms can in fact do better by slightly lowering their outputs.

Proposition 3.1.2 Consider an oligopolistic market with arbitrary differen-
tiable cost functions Ci, and suppose that q∗ is a Nash equilibrium with posi-
tive coordinates q∗i and that the derivative P ′ of the inverse demand function
is negative at the point Q∗ = q∗1 + · · · + q∗n. Then there exists a positive
number ε such that every firm i has a bigger profit at outputs qi satisfying
q∗i − ε < qi < q∗i than at the equilibrium output q∗i .

Proof. Consider the profit function for firm 1:

V1(q1, q2, . . . , qn) = q1P (q1 + q2 + · · ·+ qn)− C1(q1).

Since q∗ is a Nash equilibrium, the function q1 �→ V1(q1, q
∗
2, . . . , q

∗
n) has a

maximum when q1 = q∗1, and this implies that ∂V1

∂q1
(q∗) = 0. For i ≥ 2

∂V1

∂qi
(q∗) = q∗1P

′(Q∗) < 0, because of our assumptions concerning the sign of

P ′(Q∗). Hence, all the coordinates of the gradient ∇V1 = (∂V1

∂q1
, ∂V1

∂q2
, . . . , ∂V1

∂qn
)

of the profit function V1 are strictly negative at the Nash equilibrium q∗,
except for the first coordinate which is equal to 0.

Now, let w = (w1, w2, . . . , wn) be a vector in Rn, all of whose coordinates
are negative, and consider the function

g(t) = V1(q
∗ + tw) = V1(q

∗
1 + w1t, . . . , q

∗
n + wnt)

for t in a neighborhood of 0. (Compare with Figure 3.4.) By the chain rule,

g′(0) =
∂V1

∂q1
(q∗)w1 +

∂V1

∂q2
(q∗)w2 + · · ·+ ∂V1

∂qn
(q∗)wn = ∇V1(q

∗) · w.
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Figure 3.4. An illustration of how duopolistic firms profit from lowering their
outputs from the Nash equilibrium output q∗. The profit V1(q) for firm 1 is equal
to the firm’s Nash equilibrium profit v∗1 = V1(q

∗) along the solid curve, and it
is bigger below the curve. The profit V2(q) for firm 2 is equal to its equilibrium
profit v∗2 = V2(q∗) along the dashed curve, and it is bigger to the left of the curve.
Outputs in the shaded area give both firms bigger profits than the equilibrium
profits.

We conclude that g′(0) > 0, because all terms ∂V1

∂qj
wj in the sum except the

first are positive and the first is zero. The function g is therefore strictly
increasing at t = 0, and this implies that there exists a positive number t1
such that

V1(q
∗ + tw) > V1(q

∗)

for all t in the interval 0 < t < t1. The same, of course, applies to the
other profit functions Vi, and we conclude that all firms have bigger profits
by the output q∗ + tw than by the equilibrium output q∗, provided t > 0 is
a sufficiently small number.

Exercises

3.1 Find the Nash equilibrium of Cournot’s oligopoly model when the inverse
demand function is P (Q) = 2c(1 + Q)−1 and all firms have the same linear
cost function C(qi) = cqi

3.2 Find the Nash equilibrium of Cournot’s duopoly model if the inverse demand
function is

P (Q) =

{
1
4Q

2 − 5Q+ 26 when 0 ≤ Q ≤ 10,

1 when Q ≥ 10.

The cost of producing one unit is 1 for both firms.
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3.3 Find the Nash equilibrium of Cournot’s duopoly model when the inverse de-
mand function is

P (Q) =

{
a−Q if 0 ≤ Q ≤ a,

0 if Q > a

and the cost functions are:

a) Ci(qi) = ciqi, where 0 < c1 < c2 < a.

b) Ci(qi) =

{
0 if qi = 0,

b+ cqi if qi > 0,
where b > 0 and 0 < c < a.

3.2 Bertrand’s model of oligopoly

The output is the strategic variable in Cournot’s modell; each firm chooses an
output and the total output determines the price of the product. Bertrand
misunderstood Cournot on that point in a review in 1883 of Cournot’s book
by perceiving the price of the product as the competitive element. For this
reason, Bertrand’s name is usually associated with oligopoly models using
pricing as the firms’ decision variable.

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

https://inspiredbusinessmedia.co.uk/conferences/cmo-inspired-oct-2018/


NON-COOPERATIVE GAMES: AN 
INTRODUCTION TO GAME THEORY – PART I

67

Two Models of Oligopoly3.2 Bertrand’s model of oligopoly 67

In the Bertrand model we assume, as in the Cournot model, that n firms
produce an identical product, but the firms can now choose to price the
product differently. The consumer demand for the product is determined
entirely by the price of the product and the total demand at price p is equal
to D(p). The function D is called the demand function

Let pi denote the price set by firm i, and let pmin denote the lowest price.
If the firms set different prices, then all consumers buy the product from the
firm with the lowest price, which produces just enough output to meet the
demand. If more than one firm set the same lowest price, then all of those
share the demand at that price equally. A firm whose price is higher than
the lowest price sells nothing and produces no output.

We assume for simplicity that the cost of producing and selling a unit of
the product is the same and equal to c for all firms.

Firms with price higher than the lowest price have no sales nor any costs,
and firms with price equal to pmin share the total demand D(pmin) equally
without producing any surplus. The profit per unit is equal to pmin−c, which
of course is a loss if pmin < c. The profit Vi for firm i is thus given by the
formula

Vi(p1, p2, . . . , pn) =

{
0 if pi > pmin,
1
m
(pi − c)D(pi) if pi = pmin,

where m is the number of firms setting the same lowest price pmin.
We can view Bertrand’s model as a strategic game with the n firms as

players, the possible pricings as their action sets and the profit functions as
their utility functions. We assume that all positive real numbers can be used
as prices.

We can give a simple analysis of the Bertrand model under very general
assumptions on the demand function D; the only assumptions needed are
that it is positive and that the demand does not suddenly decrease drastically
when the price drops. More particularly, we assume that for every x > c there
exist a constant k > 1

2
and a number y < x arbitrarily close to x such that

D(y) > kD(x). This certainly holds if the demand function is decreasing,
which is a reasonable economic assumption, or if it is continuous. (We can
choose k = 3

4
in both cases.)

In Cournot’s model the Nash equilibrium depends in a rather complicated
way on the inverse demand function and the cost functions. In Bertrand’s
model, however, the picture is very simple:

The pricing p∗ = (p∗1, p
∗
2, . . . , p

∗
n) is a Nash equilibrium in Bertrand’s

oligopoly model if and only if p∗min = c and p∗i = c for at least two firms.
In a duopoly the pricing (c, c) is therefore the unique Nash equilibrium.

The result is not very encouraging for the firms; none of them makes a
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profit if they choose the pricing advocated by the Nash solution.

The proof of our claim about the Nash equilibrium p∗ is simple. Firstly,
the lowest price p∗min can not be less than c, because a firm charging a price
lower than c is losing money and profits from raising the price to c, which
under all circumstances transforms the loss to break even.

Secondly, the lowest price can not be greater than c. If p∗min > c and there
is a firm i with a price p∗i higher than p∗min, then this firm would profit from
lowering its price to a price pi in the interval ]c, p∗min[, because this action
would give the firm a monopoly on all sales and transform a zero result to a
positive result.

If there is no such firm, i.e. if all firms set the same lowest price p∗min > c,
any firm would profit from unilaterally lowering its price slightly, since it
would in this way obtain the total profit instead of having to share it with
all the other firms. (Here we need our assumption that the demand does not
decrease drastically when the price drops!)

Hence, p∗min = c. Moreover, at least two firms must have the same lowest
price, because if for example c = p∗1 < p∗i for i = 2, 3, . . . , n, then it is possible
for firm 1 to increase its profit from 0 to a positive number by raising the
price, but not more than that the new price p1 is still the lowest price.

All pricings p∗ with p∗min = c and where at least two firms have the same
lowest price are indeed Nash equilibria, because the profit is equal to zero for
all firms, and no firm can obtain a positive profit by unilaterally changing
its price.

Exercise

3.4 Consider Bertrand’s duopoly model with a demand functionD that is constant
on the interval [c, p0[ and makes a jump at the point p0 so that D(p0) = 2D(c).
(The assumption is not entirely unrealistic − if the price is below a certain
point, the consumers might think that the product is not good, but if the price
goes beyond this critical point, the demand rises sharply.) An example of such
a function could be

D(x) =

{
1 if 0 < x < p0,

2p0/x if x ≥ p0.

Show that (p0, p0) is now a Nash equilibrium in addition to (c, c).
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Chapter 4

Congestion Games and
Potential Games

4.1 Congestion games

Congestion games is a class of games having Nash equilibra that was intro-
duced and studied by Robert Rosenthal in 1973. We begin with an illustrative
example.

Example 4.1.1 Three persons, Alice, Bella and Clara, will move from point
P to point Q using the road network in Figure 4.1.
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1/2/5

Figure 4.1. A road network that is used by three persons.

The cost (in time, for example) of using a road depends on congestion,
i.e. the number of people using the road. The cost of using the road from P
to X is 2 units if one person uses it, 3 units per person if two persons use
it, and 5 units per person if three persons use it. We have marked this in
the figure by writing 2/3/5 next to the road. The costs of the other roads
PY , XY , XQ and Y Q are specified in a similar way in the figure. The total
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travel cost for a person is obtained by adding the person’s costs of the roads
she uses during her trip from P to Q.

Alice and Bella are allowed to use any road from P to Q (in the direction
of the arrows), but Clara has a vehicle that makes it impossible to use the
road PY . All of them are interested in obtaining the lowest possible cost.

We can regard their problem as a strategic game in which Alice has three
possibilities for action: the option x of using the roads PX and XQ, the
option y of using the roads PY and Y Q, and the option z of using the roads
PX, XY and Y Q. Bella has the same options x, y and z as Alice, but Clara
can only use the options x and z.

If for example Alice and Bella both use the option z and Clara uses the
option x, road PX will be used by three persons at a cost of 5 each, roads
XY and Y Q will be used by two persons at a cost of 2 and 4, respectively,
for each user, and road XQ will be used by just one person (Clara) at a
cost of 2 for her. Alice’s total cost is 5+2+4= 11, Bella has the same cost,
while Clara’s cost is 5+2=7. The cost vector corresponding to the outcome
(z, z, x) is thus equal to (11, 11, 7).

Suppose that Alice unilaterally changes her route to alternative y. The
cost vector will change to (8, 8, 5), which is better for Alice (and also for the
other two persons). Hence, the alternative (z, z, x) is not a Nash equilibrium.
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Nor is (y, z, x), because Bella profits from unilaterally changing from z to
x, as the outcome (y, x, x) results in the cost vector (5, 6, 6). It is easy to
verify that no one can now unilaterally improve the costs. Hence, (y, x, x)
is a Nash equilibrium, and for symmetry reasons (x, y, x) is also a Nash
equilibrium with corresponding cost vector (6, 5, 6).

We now give a general definition of congestion models like the one in
Example 4.1.1.

Definition 4.1.1 A congestion model M = 〈N,R, (Ai)i∈N , (κj)j∈R〉 consists
of

• a set N = {1, 2, . . . , n} of players;
• a finite set R of resources ;
• for each player i a nonempty set Ai of subsets of R;
• for each resource r ∈ R a vector κr = (κr(1), κr(2), . . . , κr(n)) consist-
ing of real numbers.

Example 4.1.2 The model in Example 4.1.1 is a congestion model with
• N = {1, 2, 3} = {Alice, Bella, Clara};
• R = {PX,XQ,XY, PY, Y Q};
• A1 = A2 = {{PX,XQ}, {PY, Y Q}, {PX,XY, Y Q}} and
A3 = {{PX,XQ}, {PX,XY, Y Q}}

• κPX = (2, 3, 5), κXQ = (2, 3, 6), κXY = (1, 2, 5), κPY = (4, 6, 8) and
κY Q = (1, 4, 6).

In the congestion model M = 〈N,R, (Ai)i∈N , (κj)j∈R〉, every element of
the set Ai is thus a set of resources, and we interpret a player’s choice of
alternative ai ∈ Ai as a choice to use the resources contained in ai

The number κr(k) should be interpreted as each player’s cost of using
the resource r when exactly k players use the resource, i.e. when r ∈ Ai for
exactly k players i.

For each outcome a = (a1, a2, . . . , an) ∈ A = A1×A2×· · ·×An and each
resource r ∈ R, we define

nr(a) = the number of i ∈ N such that r ∈ ai,

i.e. nr(a) is the number of players that use the resource r.
The outcome a comes with a total cost ci(a) for player i, which is obtained

by adding the costs of all the resources that player i uses so that

ci(a) =
∑
r∈ai

κr(nr(a)).

We assume that each player i tries to minimize his total cost ci(a), i.e.
maximize −ci(a), which he will try to do as a participant in the strategic
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game 〈N, (Ai)i∈N , (−ci)i∈N〉, which is called the congestion game associated
with the congestion model M .

The congestion game in Example 4.1.1 has a Nash equilibrium, and this
is not a coincidence, because we have the following general result.

Proposition 4.1.1 Every congestion game has a Nash equilibrium.

Proof. We use the notation in and after Definition 4.1.1, and we will prove
that there is an outcome a∗ such that

ci(a
∗
−i, ai) ≥ ci(a

∗)

for all players i and all actions ai ∈ Ai. We will do so by constructing a
function Φ: A → R such that

(1) ci(a−i, xi)− ci(a) = Φ(a−i, xi)− Φ(a)

for all players i, all a ∈ A and all xi ∈ Ai.
Assume for a moment that we have such a function Φ. Since its domain

of definition is finite, there exists a (not necessarily unique) minimum point
a∗ ∈ A. The outcome a∗ is a Nash equilibrium, because

ci(a
∗
−i, ai)− ci(a

∗) = Φ(a∗−i, ai)− Φ(a∗) ≥ 0

for all players i and all actions ai ∈ Ai according to equation (1).
It remains to define the function Φ, which we do for a ∈ A by letting

Φ(a) =
∑
r∈R

nr(a)∑
k=1

κr(k).

Thus, to compute Φ(a), for each resource r we first determine the number
nr(a) of players that use the resource r and then calculate the sum Sr of the
costs of using this resource 1, 2, . . . , nr(a) times. Finally, we have to add all
the sums Sr.

Let us now compare nr(a) = nr(a−i, ai) with nr(a−i, xi) when xi is an
arbitrary action in Ai. We recall that xi and ai are subsets of the resource
set R, and that nr(a−i, xi) is the number of players k ∈ N \ {i} that use the
resource r (i.e. the number of players k ∈ N \ {i} such that r ∈ ak), plus 1
if player i also uses the resource r. Therefore,

nr(a−i, xi) =




nr(a−i, ai) if r ∈ xi ∩ ai,

nr(a−i, ai) if r /∈ xi ∪ ai,

nr(a−i, ai) + 1 if r ∈ xi \ ai,
nr(a−i, ai)− 1 if r ∈ ai \ xi.
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It follows that

ci(a−i, xi)− ci(a−i, ai) =
∑
r∈xi

κr(nr(a−i, xi))−
∑
r∈ai

κr(nr(a−i, ai))

=
∑

r∈xi\ai

κr(nr(a−i, xi)) +
∑

r∈xi∩ai

κr(nr(a−i, xi))

−
∑

r∈ai\xi

κr(nr(a−i, ai))−
∑

r∈xi∩ai

κr(nr(a−i, ai))

=
∑

r∈xi\ai

κr(nr(a−i, ai) + 1)−
∑

r∈ai\xi

κr(nr(a−i, ai))

and that

Φ(a−i, xi)− Φ(a−i, ai) =
∑
r∈R

(nr(a−i,xi)∑
k=1

κr(k)−
nr(a−i,ai)∑

k=1

κr(k)
)

=
( ∑
r∈R\(xi∪ai)

+
∑

r∈xi\ai

+
∑

r∈ai\xi

+
∑

r∈xi∩ai

)(nr(a−i,xi)∑
k=1

κr(k)−
nr(a−i,ai)∑

k=1

κr(k)
)

=
∑

r∈xi\ai

κr(nr(a−i, ai) + 1)−
∑

r∈ai\xi

κr(nr(a−i, ai)).

Thus we have shown that

ci(a−i, xi)− ci(a−i, ai) = Φ(a−i, xi)− Φ(a−i, ai),

which is equation (1).

Example 4.1.3 The function Φ in the above proof is an example of a so
called potential function, functions to be studied in detail in the next sec-
tion, but let us end this part by computing the potential function Φ for the
congestion game in Example 4.1.1. The outcome a = (x, x, x), the case when
all players choose the roads PX and XQ, uses the resources r = PX and
r = XQ three times each, while the remaining resources are not used at all.
Hence,

Φ(x, x, x) =
3∑

k=1

κPX(k) +
3∑

k=1

κXQ(k) = (2 + 3 + 5) + (2 + 3 + 6) = 21.

The remaining 17 values of the potential function are computed in a similar
way, but we should of course use symmetry which implies that Φ(a′) = Φ(a′′)
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if a′ and a′′ are permutations of each other. We get the following table of the
function values.

a (x, x, x) (x, x, z) (x, y, x) (x, y, z) (x, z, x) (x, z, z)

Φ(a) 21 17 15 17 17 20

a (y, x, x) (y, x, z) (y, y, x) (y, y, z) (y, z, x) (y, z, z)

Φ(a) 15 17 19 24 17 23

a (z, x, x) (z, x, z) (z, y, x) (z, y, z) (z, z, x) (z, z, z)

Φ(a) 17 20 17 23 20 29

The potential function assumes it minimum value 15 at (x, y, x) and at
(y, x, x), the Nash equilibria of the game.
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Exercise

4.1 Consider the congestion game in Example 4.1.1, and assume that the third
player Clara can also use the road PY and thus has access to the same alter-
natives x, y and z as the other two players. Determine, under these conditions,
the minimum points of the potential function and thus the game’s Nash equi-
libria.

4.2 Potential games

The fact that every congestion game has a Nash equilibrium is, as shown
in the proof above, a direct consequence of the existence of a function Φ
that satisfies equation (1). This makes it possible to generalize the result
to all games with a similar potential function, which motivates the following
definition.

Definition 4.2.1 A function Φ: A → R on the set A = A1 ×A2 × · · · ×An

of all possible outcomes of a strategic game 〈N, (Ai), (ui)〉 is called an

• (exact) potential function if

ui(a−i, xi)− ui(a−i, ai) = Φ(a−i, xi)− Φ(a−i, ai)

for all players i ∈ N , all outcomes a ∈ A and all actions xi ∈ Ai;

• ordinal potential function if

ui(a−i, xi)− ui(a−i, ai) > 0 ⇔ Φ(a−i, xi)− Φ(a−i, ai) > 0

for all players i ∈ N , all outcomes a ∈ A and all actions xi ∈ Ai.

A strategic game that has an exact potential function is called a potential
game, and a strategic game that has an ordinal potential function is called
an ordinal potential game.

Potential games were introduced and studied by Dov Monderer and Lloyd
Shapley in 1996. Every potential game is obviously an ordinal potential
game, and the proof of Proposition 4.1.1 shows that every congestion game
is a potential game. Conversely, Monderer and Shapley have proved that
every potential game is equivalent to a congestion game.

Proposition 4.2.1 Every maximum point of the potential function of an
ordinal potential game is a Nash equilibrium of the game. Particularly, each
finite ordinal potential game has at least one Nash equilibrium.
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Proof. Let 〈N, (Ai), (ui)〉 be a strategic game with an ordinal potential func-
tion Φ, let a∗ be a maximum point of Φ, and assume that a∗ is not a Nash
equilibrium. Then there is a player i with an action xi ∈ Ai such that
ui(a

∗
−i, xi)−ui(a

∗
−i, a

∗
i ) > 0. But this implies that Φ(a∗−i, xi)−Φ(a∗−i, a

∗
i ) > 0,

which contradicts our assumption that a∗ = (a∗−i, a
∗
i ) is a maximum point of

Φ. Hence, a∗ must be a Nash equilibrium.

The ordinal potential function Φ of a finite game certainly has a maximum
point since its domain of definition is finite. Hence, finite ordinal games have
Nash equilibria.

Example 4.2.1 Prisoner’s dilemma, i.e. the game with payoff functions
given by the table

Deny Confess

Deny (−1,−1) (−5, 0)

Confess (0,−5) (−3,−3)

is a potential game. It is easy to verify that we get an exact potential function
Φ by defining Φ(Deny,Deny) = 0, Φ(Deny,Confess) = Φ(Confess,Deny) = 1
and Φ(Confess,Confess) = 3. The maximum point (Confess,Confess) is a
Nash equilibrium.

Example 4.2.2 Cournot’s model, which was studied in Section 3.1, consists
of n profit maximizing firms that compete with a product on a common
market. If each firm i produces qi units of the product, then it is possible to
sell all the products for the price of P (Q) per unit, where P is the inverse
demand function and Q = q1 + q2 + · · ·+ qn. The cost of producing one unit
of the product is assumed to be the same for all firms and equal to c, which
means that the profit of firm i is

Vi(q1, q2, . . . , qn) = qiP (Q)− cqi.

We assume that each firm i can produce any positive amount of the product,
i.e. its set Ai of possible actions is equal to ]0,+∞[.

The Cournot model is an ordinal potential game under these assumptions
with

Φ(q1, q2, . . . , qn) = q1q2 · · · qn(P (Q)− c)

as an ordinal potential function, because

Φ(q−i, xi)− Φ(q−i, qi) =
q1q2 · · · qn

qi

(
Vi(q−i, xi)− Vi(q−i, qi)

)
,
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which implies that

Vi(q−i, xi)− Vi(q−i, qi) > 0 ⇔ Φ(q−i, xi)− Φ(q−i, qi) > 0.

Now assume that the inverse demand function P is continuous, that
P (Q) > c for some output Q, and that P (Q) < c for all sufficiently large
outputs Q. The ordinal potential function Φ certainly has a maximum under
these very realistic assumptions, because Φ is negative outside a sufficiently
big hypercube [0, K]n, positive at some point within the hypercube, and con-
tinuous. All the coordinates of the maximum point q̄ = (q̄1, q̄2, . . . , q̄n) must
be equal, i.e. q̄1 = q̄2 = · · · = q̄n, because if follows from the inequality of
arithmetic and geometric means that

Φ(q̂, q̂, . . . , q̂) ≥ Φ(q̄1, q̄2, . . . , q̄n)

if q̂ = (q̄1 + q̄2 + · · ·+ q̄n)/n, with strict inequality if not all q̄i are equal.

We conclude that Cournot’s modell under our assumptions has a symmet-
ric Nash equilibrium q̄, and if the inverse demand function is differentiable,
we obtain q̄1 as a solution of the equation xP ′(nx) + P (nx) = c.
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Definition 4.2.2 Let 〈N, (Ai), (ui)〉 be an arbitrary strategic game and write
as usual A = A1×A2×· · ·×An. A path γ from a ∈ A to b ∈ A is a sequence
(a(0), a(1), . . . , a(m)) of outcomes in A with a(0) = a and a(m) = b and with the

property that the coordinates a
(k−1)
i and a

(k)
i of two consecutive outcomes

a(k−1) och a(k) are equal for all indices i but one, which we denote by ik. This
means that player ik is the only player who changes his action in the step
from outcome a(k−1) to outcome a(k).

The length of γ is m, i.e. equal to the number of outcomes in the path
minus 1.

The path is a cycle if it starts and ends in the same outcome, i.e. if a = b.

A path from a to b is simple if all outcomes in the path are different,
except possibly the starting point a and the endpoint b.

We allow paths of lenght 0. Such a path consists of just one outcome a
and is also a simple cycle. If a and b are two outcomes that differ in one
coordinate, then (a, b, a) is a simple cycle.

Given a path γ1 = (a(0), a(1), . . . , a(m)) from a to b and a path γ2 =
(b(0), b(1), . . . , b(k)) from b to c, where in particular a(m) = b = b(0), we denote
by γ1 + γ2 the path from a to c obtained by starting with the path γ1 and
continuing along the path γ2, i.e. the path (a(0), a(1), . . . , a(m), b(1), . . . , b(k))
from a to c.

The path −γ1 is of course the path γ1 traversed backwards from b to a,
i.e. the path (a(m), a(m−1), . . . , a(1), a(0)).

Definition 4.2.3 The path γ = (a(0), a(1), . . . , a(m)) is called an improvement
path if uik(a

(k)) > uik(a
(k−1)) for each k with 1 ≤ k ≤ m.

The utility increases along an improvement path for the player ik who
changes his action at the transition from outcome a(k−1) to outcome a(k).

It is obiously impossible to extend an improvement path from a to b with
one outcome to a longer improvement path if and only if the endpoint b is
a Nash equilibrium. Every not extendible improvement path must, in other
words, end in a Nash equilibrium.

Definition 4.2.4 A game is said to have the finite improvement path prop-
erty (FIP-property) if there does not exist any improvement path that can
be extended to improvement paths of arbitrary length.

Games with the FIP-property have Nash equilibria, because improvement
paths of maximal length must end in Nash equilibria.

Improvement paths give the players of a game with the FIP-property an
opportunity of finding a Nash equilibrium if the game is repeated a number
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of times, and each time one of the players is allowed to improve his utility
by changing his action. The game will eventually end in a Nash equilibrium.

Proposition 4.2.2 Every finite ordinal potential game has the FIP-property.

Proof. Let 〈N, (Ai), (ui)〉 be a game with an ordinal potential function Φ.
The sequence

(
Φ(a(k))

)m
k=0

is strictly increasing for each improvement path

(a(0), a(1), . . . , a(m)), since uik(a
(k)) > uik(a

(k−1)) implies Φ(a(k)) > Φ(a(k−1)).
The length of the improvement paths in a finite ordinal game is therefore

bounded by the number of elements in A, the domain of definition of Φ.

Example 4.2.3 The game Matching Pennies with payoff table

Head Tail

Head (1,−1) (−1, 1)

Tail (−1, 1) (1,−1)

does not have the FIP-property, because the improvement cycle

γ =
(
(Head,Head), (Head,Tail), (Tail,Tail), (Tail,Head), (Head,Head)

)

can be extended to an improvement cycle γ+ γ+ · · ·+ γ of arbitrary length.
Also, the game has no Nash equilibrium.

Definition 4.2.5 Let γ = (a(0), a(1), . . . , a(m)) be a path in a strategic game
〈N, (Ai), (ui)〉. The number

I(γ) =
m∑
k=1

(
uik(a

(k))− uik(a
(k−1))

)
,

where as before ik is the unique coordinate where the vectors a(k−1) and a(k)

are different, is called the index of the path.

The above sum is empty if the path is trivial, i.e. consists of just one
outcome a(0). An empty sum is interpreted as 0. The index of a trivial path
is therefore by definition equal to 0.

Obviously, I(−γ) = −I(γ), and I(γ1 + γ2) = I(γ1) + I(γ2) if the path γ1
ends where the path γ2 starts.

In games 〈N, (Ai), (ui)〉 with an exact potential function Φ,

uik(a
(k))− uik(a

(k−1)) = Φ(a(k))− Φ(a(k−1)),

which implies that the index of an arbitrary path γ = (a(0), a(1), . . . , a(m))
from a = a(0) to b = a(m) becomes

(2) I(γ) =
m∑
k=1

(
Φ(a(k))− Φ(a(k−1))

)
= Φ(b)− Φ(a).
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If a game has a potential function Φ, then Φ + C is also a potential
function for each constant C, and this is also the only way to create new
exact potential functions.

Proposition 4.2.3 Let Φ and Ψ be two exact potential functions in a strate-
gic game. Then there exists a constant C such that Ψ = Φ+ C.

Proof. Fix an outcome a ∈ A and choose given b ∈ A a path γb from a to b.
Then

Ψ(b)−Ψ(a) = I(γb) = Φ(b)− Φ(a),

due to equation (2), and hence Ψ(b) = Φ(b)+Ψ(a)−Φ(a), which means that
our claim is true with C = Ψ(a)− Φ(a).

Corollary 4.2.4 In a potential game there exists, for each outcome a, a
unique potential function Ψa such that Ψa(a) = 0, and Ψa(b) = I(γb) for
each path γb from a to b.

Proof. Let Φ be an arbitrary potential function in the game, and define
Ψa = Φ − Φ(a). Then, Ψa is also a potential function, Ψa(a) = 0, and
I(γb) = Ψa(b) − Ψa(a) = Ψa(b) if γb is a path from a to b according to
equation (2).
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Those who have studied physics should note the following analogy be-
tween path index and the physical concept of work. Let the set of possible
outcomes of the game correspond to the physical space, the utility vectors
(u1(a), u2(a), . . . , un(a)) correspond to forces, and the paths γ correspond to
space curves. The path index I(γ) will then correspond to the work done
by the force field along the corresponding space curve and, mathematically,
this work is given by a curve integral. If the force field is conservative, i.e.
if no work is done along closed curves, there exists a potential function by
which the work along any curve is equal to the difference of the values of the
potential function at the endpoint and the starting point. The next propo-
sition describes the corresponding game theoretical result, and the proof is
completely analogous to the proof of the physical result.

Proposition 4.2.5 The following four conditions are equivalent for strategic
games 〈N, (Ai), (ui)〉:
(i) The game is a potential game.

(ii) The index of each cycle is equal to 0.

(iii) The index of each simple cycle is equal to 0.

(iv) The index of each simple cycle of length 4 is equal to 0.

Proof. (i) ⇒ (ii): It follows immediately from equation (2) that I(γ) = 0 for
every cycle γ, if the game has a potential function Φ.

(ii) ⇒ (iii) and (iii) ⇒ (iv): Trivial implications.

(iv) ⇒ (i): Assume that every simple cycle of length 4 has index 0. Fix an
outcome a = (a1, a2, . . . , an) ∈ A, and let b = (b1, b2, . . . , bn) be an arbitrary
outcome.

Corollary 4.2.4 suggests that we should obtain a potential function Φ by
defining Φ(b) as the index of an arbitrary path from a to b. But there is a
problem − we have to convince ourselves that this defines Φ(b) uniquely, i.e.
that different paths γb and γ′

b from a to b always have the same index. If,
instead, we had started from assumption (ii), then our problem would have
been resolved, because γ′

b − γb is a cycle, and if all cycles have index 0, then
I(γ′

b)− I(γb) = I(γ′
b− γb) = 0. We can get around this difficulty by defining,

for each outcome b, a unique path from a to b, and then defining Φ(b) as the
index of this special path. Doing so, we will then be able to prove that Φ
is a potential function under the sole assumption that each simple cycle of
lenght 4 has index equal to 0.

To achieve this, we define recursively the outcomes b(k) for k = 0, 1, . . . , n
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by

b(k) =

{
a for k = 0,

(b
(k−1)
−k , bk) for k ≥ 1.

This means that b(1) = (b1, a2, . . . , an), b
(2) = (b1, b2, a3, . . . , an), . . . , b

(n) =
(b1, b2, . . . , bn) = b. The player who, if bk �= ak, changes his action in the step
from outcome b(k−1) to outcome b(k) is player k. (b(k) = b(k−1) if bk = ak.)

We now define the function Φ: A → R by putting

Φ(b) =
n∑

k=1

(
uk(b

(k))− uk(b
(k−1))

)
.

The function value Φ(b) is equal to the index I(Γb) of the uniquely defined
path Γb from a to b which is obtained from the sequence b(0), b(1), b(2), . . . , b(n)

by deleting any duplicates. Such duplicates occur if bk = ak for some k.

We now prove that Φ is a potential function. To this end, let xi be an
arbitrary action in Ai, write c = (b−i, xi) and note that

c(k) =

{
b(k) for k = 0, 1, . . . , i− 1,

(b
(k)
−i , xi) for k = i, i+ 1, . . . , n.

We have to show that

Φ(c)− Φ(b) = ui(c)− ui(b).

This is true, of course, if xi = bi, because then c = b. Suppose therefore
that xi �= bi. Then, for all indices k ≥ i + 1, b(k−1) �= c(k−1), b(k) �= c(k)

and b(k−1) �= c(k), because b
(k−1)
i = b

(k)
i = bi and c

(k−1)
i = c

(k)
i = xi. Since

b
(k−1)
k = c

(k−1)
k = ak and b

(k)
k = c

(k)
k = bk, it also follows that b(k−1) �= b(k) and

that c(k−1) �= c(k), provided that bk �= ak.

........................................................................ ......................................................................................................................................................
.......
.......
.......
.......
.......
.......
.......
.......
.......
...............................................................................................................................................................................

........................................................................ ...............................................................................
.......
.......
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.......
.......
..................................................................................................................................................

........
.......
.......
.......
..........
.............................................................

...................
....
.........
..

γk
....................................................................................... .......................................................................................

.......................................................................................

.......................................................................................

.......................................................................................

• • • • • • • •

• • • • •

a b(1) b(i−1) b(i) b(i+1) b(k−1) b(k) b

c(i) c(i+1) c(k−1) c(k) c

Figure 4.2. Illustration to the proof of Proposition 4.2.5. Φ(c) = I(Γc) and
Φ(b) = I(Γb), where Γc is the upper path from a to c, and Γb is the lower path
from a to b.
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The path γk = (b(k−1), c(k−1), c(k), b(k), b(k−1))) is therefore a simple cycle
of length 4 for all k ≥ i + 1 with bk �= ak. See Figure 4.2. The index of the
cycle is

I(γk) =
(
ui(c

(k−1))− ui(b
(k−1))

)
+
(
uk(c

(k))− uk(c
(k−1))

)

+
(
ui(b

(k))− ui(c
(k))

)
+
(
uk(b

(k−1))− uk(b
(k))

)
,

and since all simple cycles of lenght 4 have index 0, we conclude that I(γk) =
0 which after rewriting becomes

uk(c
(k))− uk(c

(k−1)) =
(
uk(b

(k))− uk(b
(k−1))

)
(3)

+
(
ui(c

(k))− ui(b
(k))

)
−

(
ui(c

(k−1))− ui(b
(k−1))

)
.

This holds for k ≥ i + 1 also in the case bk = ak, because then b(k−1) = b(k)

and c(k−1) = c(k).
By adding the equations (3) for k = i+1, i+2, . . . n, noting that c(n) = c

and b(n) = b, we obtain the following result:

n∑
k=i+1

(
uk(c

(k))− uk(c
(k−1))

)
=

n∑
k=i+1

(
uk(b

(k))− uk(b
(k−1))

)
+
(
ui(c)− ui(b)

)

−
(
ui(c

(i))− ui(b
(i))

)
.
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Since c(k) = b(k) when k < i, we also have the following equality

i−1∑
k=1

(
uk(c

(k))− uk(c
(k−1))

)
=

i−1∑
k=1

(
uk(b

(k))− uk(b
(k−1))

)
.

Now add the two sums above, from 1 to i − 1 and from i + 1 to n,
respectively, and also add the missing term

(
ui(c

(i)) − ui(c
(i−1))

)
, and note

that c(i−1) = b(i−1). This gives us the following result

Φ(c) =
n∑

k=1

(
uk(c

(k))− uk(c
(k−1))

)

=
n∑

k=1

(
uk(b

(k))− uk(b
(k−1))

)
+
(
ui(c)− ui(b)

)
−

(
ui(c

(i))− ui(b
(i))

)

+
(
ui(c

(i))− ui(c
(i−1))

)
−

(
ui(b

(i))− ui(b
(i−1))

)

= Φ(b) + ui(c)− ui(b),

which implies that Φ(c)−Φ(b) = ui(c)− ui(b) and proves that Φ is indeed a
potential function.

Example 4.2.4 In Section 2.1, we discussed the game Stag Hunt. It is a
strategic game with n players, where each player has two options, Hare: to
hunt a hare, and Stag : to hunt the stag. Each player prefers that all players
hunt the stag, but it is better for every player to hunt a hare than to hunt
the stag if not everyone takes part in the stag hunting. The preferences of
player i are described by the following utility function ui:

ui(a1, a2, . . . , an) =




2 if aj = Stag for all players j,

1 if ai = Hare,

0 if ai = Stag and aj = Hare for at least one player j.

In a simple cycle of lenght 4, only two players are actively involved and
they alternate between the alternatives Stag and Hare. We may, without
loss of generality, assume that players 1 and 2 are the players involved, that
the cycle starts with both of them hunting stag, and that it is player 1 who
begins to change. This means that the cycle γ has the following form:

(
(Stag, Stag, b), (Hare, Stag, b), (Hare,Hare, b), (Stag,Hare, b), (Stag, Stag, b)

)
,

where b is an arbitrary action vector for the remaining n − 2 players. De-
pending on whether the b vector only contains the Stag-option or contains
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at least one Hare, the index of the cycle is I(γ) = −1 + 1 − 1 + 1 = 0 or
I(γ) = 1 + 1− 1− 1 = 0.

Hence, all simple cycles of length 4 have index 0, which implies that
Stag Hunt is a potential game, and we get a potential function Φ by defin-
ing Φ(a) = I(γa), where γa is an arbitrary path from the outcome aStag =
(Stag, Stag, . . . , Stag) to a = (a1, a2, . . . , an).

If ai = Hare for exactly k players i, where 1 ≤ k ≤ n, then it is possible
to reach a from aStag using a path γa of lenght k, where each step consists of
a new player changing action from Stag to Hare, which increases the utility
by 1 at all steps except the first one, when the utility instead decreases by 1.
The path index I(γa) is therefore equal to −1 + (k − 1), i.e. I(γa) = k − 2.
This gives us the following potential function

Φ(a1, a2, . . . , an) =

{
0 if ai = Stag for all players i,

k − 2 if ai = Hare for k ≥ 1 players i.

Exercises

4.2 Are the following games in Section 2.1 potential games? If appropriate, deter-
mine a potential function.

a) The game Battle of Sexes, Example 2.1.2.

b) The game Hawk or Dove, Example 2.1.4.

4.3 Prove that the game with the following payoff table

L R

T (1, 0) (2, 0)

B (2, 0) (0, 1)

is not an ordinal potential game but that it has the FIP-property.
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Mixed Strategies

Consider the game Rock-paper-scissors with payoff table

rock scissors paper

rock (0, 0) (1,−1) (−1, 1)

scissors (−1, 1) (0, 0) (1,−1)

paper (1,−1) (−1, 1) (0, 0)

It goes without saying that if you play this game several times, you should
change alternatives from time to time, because otherwise your opponent im-
mediately learns how to win every time. Both players should thus choose
their alternatives randomly.

Suppose that the row player chooses the alternatives rock, scissors, paper
randomly with probabilities α1, α2, α3, and that the column player chooses
the same alternatives randomly and independently of the row player with
probabilities β1, β2, β3. The probability that they will choose (rock, rock)
will then become α1β1, the probability of (rock, scissors) becomes α1β2, etc.
The expected payout (average payout if the game is repeated many times)
to the row player will be

ũ1(α, β) = α1β2 − α1β3 − α2β1 + α2β3 + α3β1 − α3β2.

The game is a strictly competitive game; the column player’s expected payoff
is ũ2(α, β) = −ũ1(α, β).

If, for example, α = (1
2
, 0, 1

2
) and β = (1

2
, 1
2
, 0) then

ũ1(α, β) =
1
4
+ 1

4
− 1

4
= 1

4

and ũ2(α, β) = −1
4
, which is good for the row player, who can expect to win

an average of 1
4
if the game is played several times, and consequently not so

86
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good for the column player. Of course, there are better strategies for the
column player.

The game Rock-paper-scissors serves as a motivation to study games
where the players choose their actions randomly according to some prob-
ability distribution or, in other words, where the players choose lotteries.

5.1 Mixed strategies

We recall that a lottery over a finite set A is a probability distribution on
A, and that the set L(A) of all lotteries over A is a compact and convex set
that can be identified with the subset

M = {(x1, x2, . . . , xn) ∈ Rn
+ | x1 + x2 + · · ·+ xn = 1}

of Rn, if n is the number of elements in A.
The n vertices (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1) of the set M

correspond to the lotteries δa in L(A) that result in the outcome a ∈ A with
probability one. As already mentioned in Section1.3, we will identify the
lottery δa with the element a and denote it by a, except in cases where we
need to be particularly pedantic. Thus, we perceive A as a subset of the set
L(A) of lotteries.
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Definition 5.1.1 A mixed strategy of a player i of a finite strategic game
〈N, (Ai), (ui)〉 is a lottery over the set Ai. The set of all mixed strategies of
player i, that is the set of all lotteries over Ai, is denoted by L(Ai).

The lotteries δai in L(Ai) that result in an outcome ai ∈ Ai with proba-
bility one, are called pure strategies of player i.

Suppose that the players of the game 〈N, (Ai), (ui)〉 choose their actions
in the sets Ai independently of each other by using the outcomes of the
lotteries pi ∈ L(Ai). The probability that the action vector

a = (a1, a2, . . . , an)

will be chosen will then be equal to

P (a) = p1(a1)p2(a2) · · · pn(an).

The function P is a probability measure, that is in our terminology a
lottery, on the Cartesian product A = A1 × A2 × · · · × An, and we call this
lottery the product lottery of the given lotteries and write

P = p1 × p2 × · · · × pn.

Note that the product δa1 ×δa2 ×· · ·×δan of pure strategies δai is equal to
the lottery δa over A, which has a = (a1, a2, . . . , an) ∈ A as certain outcome.

Given a function u on the product set A, we may of course form the
expected value of u with respect to the product lottery p1 × p2 × · · · × pn.
This expected value is denoted ũ(p1, p2, . . . , pn), and according to the general
definition of expected value,

ũ(p1, p2, . . . , pn) =
∑
a1∈A1

∑
a2∈A2

. . .
∑

an∈An

u(a1, a2, . . . , an)p1(a1)p2(a2) · · · pn(an).

The function (p1, p2, . . . , pn) �→ ũ(p1, p2, . . . , pn) is defined on the Carte-
sian product L(A1)× · · · ×L(An), which can be perceived as a convex, com-
pact subset of Rm for a suitable m. The function is continuous and affine in
each variable, i.e.

ũ(p−i, αpi + βqi) = αũ(p−i, pi) + βũ(p−i, qi)

if α and β are nonnegative numbers with sum equal to 1.
The expected value ũ(δa1 , . . . , δan) is of course equal to u(a1, . . . , an), so

using our convention to identify lotteries with certain outcomes with the
corresponding actions, we have

ũ(a1, a2, . . . , an) = u(a1, a2, . . . , an).
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A strategy combination, that we will sometimes consider, is the one where
player i chooses a mixed strategy pi while all other players k choose pure
strategies ak. The expected value ũ(a−i, pi) of the function u is now

ũ(a−i, pi) =
∑
ai∈Ai

u(a−i, ai)pi(ai),

and we can express the expected value ũ(q−i, pi) for an arbitrary vector q−i

of mixed strategies in terms of these expected values as

ũ(q−i, pi) =
∑

a−i∈A−i

ũ(a−i, pi)q1(a1) · · · q̂i(ai) · · · qn(an),

where the circumflux above qi(ai) indicates that this term in the product
should be omitted. The expected value ũ(q−i, pi) is in other words a weighted
average of all expected values ũ(a−i, pi) that are obtained by letting a−i run
through A−i, and this implies that

(1) ũ(q−i, pi) ≥ min
a−i∈A−i

ũ(a−i, pi)

for all mixed strategy vectors q−i.

5.2 The mixed extension of a game

Definition 5.2.1 Let G = 〈N, (Ai), (ui)〉 be a finite strategic game with

cardinal utility functions ui. The game G̃ = 〈N, (L(Ai)), (ũi)〉
• with the same set N of players;

• for each player i ∈ N , the set L(Ai) of lotteries over Ai as set of actions;

• for each player i ∈ N , the expected utility ũi as utility function

is called the mixed extension of the game G.

We thus assume, here and in the future, that the utility functions ui in
the original game G are cardinal, because otherwise it is not very meaningful
to form expected values.

Using the mixed extension, we can now immediately generalize a number
of concepts and results for actions in strategic games to apply to mixed
strategies, which are nothing but actions in the extension G̃.

Definition 5.2.2 A Nash equilibrium p∗ = (p∗1, p
∗
2, . . . , p

∗
n) of the mixed ex-

tension G̃ = 〈N, (L(Ai)), (ũi)〉 of a finite strategic game G = 〈N, (Ai), (ui)〉
is called a mixed Nash equilibrium of the game G.

A mixed Nash equilibrium that only consists of pure strategies is called
a pure Nash equilibrium.
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Mixed Nash equilibria can of course be characterized using best-response
sets in G̃. Given a vector p−i of mixed strategies for all players except player
i, we define player i’s best-response set B̃i(p−i) of mixed strategies as the
player’s best-response set in the mixed extension, i.e.

B̃i(p−i) = {qi ∈ L(Ai) | ũi(p−i, qi) ≥ ũi(p−i, ri) for all ri ∈ L(Ai)}.

It follows immediately from Proposition 2.2.1 that a vector p∗ of mixed
strategies of the game G = 〈N, (Ai), (ui)〉 is a mixed Nash equilibrium if and

only if p∗i ∈ B̃i(p
∗
−i) for all players i.

The following theorem, due to John Nash, is the fundamental theorem of
strategic game theory

Proposition 5.2.1 Every finite strategic game has a mixed Nash equilibrium.

Proof. The proposition is a corollary to Proposition 2.3.3, because the mixed
extension of a game 〈N, (Ai), (ui)〉 meets the conditions of the proposition:
the sets L(Ai) are convex and compact and the expected utility functions ũi

are continuous and affine in the ith variable and consequently quasiconcave.
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We will now illustrate Nash’s theorem by determining all mixed Nash
equilibria of some simple two-player strategic games. We will use the char-
acterization of the Nash equilibrium in terms of best-response functions. In
cases where both players have two action options, there is a simple graphical
solution.

Example 5.2.1 Consider the following two-person game

L R

T (3, 3) (0, 2)

B (2, 1) (5, 5)

The game has two Nash equilibria, viz. (T, L) and (B,R). To determine all
mixed Nash equilibria, we let p1 = (α, 1 − α) and p2 = (β, 1 − β) be two
arbitrary mixed strategies for the row and the column player respectively.
The corresponding expected utility functions are

ũ1(p1, p2) = 3αβ + 2(1− α)β + 5(1− α)(1− β) = 5− 3β + (6β − 5)α

and

ũ2(p1, p2) = 3αβ + 2α(1− β) + (1− α)β + 5(1− α)(1− β)

= 5− 3α + (5α− 4)β.

The best-response set B̃1(p2) consists of the lotteries p1 that maximize
the function ũ1(p1, p2), and ũ1(p1, p2) = 5 − 3β + (6β − 5)α is obviously
maximized by α = 1 if β > 5

6
, by all numbers 0 ≤ α ≤ 1 if β = 5

6
, and by

α = 0 if β < 5
6
. This means that

B̃1(β, 1− β) =




{(0, 1)} if β < 5
6
,

{(α, 1− α) | 0 ≤ α ≤ 1} if β = 5
6
,

{(1, 0)} if β > 5
6
.

Analogously we get

B̃2(α, 1− α) =




{(0, 1)} if α < 4
5
,

{(β, 1− β) | 0 ≤ β ≤ 1} if α = 4
5
,

{(1, 0)} if α > 4
5
.

In a coordinate system we now draw the two curves

{(α, β) | (α, 1− α) ∈ B̃1(β, 1− β)}
and

{(α, β) | (β, 1− β) ∈ B̃2(α, 1− α)}.

Download free eBooks at bookboon.com



NON-COOPERATIVE GAMES: AN 
INTRODUCTION TO GAME THEORY – PART I

92

Mixed Strategies

92 5 Mixed Strategies


......
......
.

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

................

...........

............................................................................................................................................................................................................................................................................ ...........................

................

................

................

................

................

................

................

................

................

................

......................................................................................................................................................................................................................................
...............
....................

............. ............. ............. ............. ............. ............. ........................
..
.............
.............
.............
.............
.............
.............
.............
............. ............. ..

4
5

α

β

1

1
5
6

Figure 5.1. Best-response sets in Example 5.2.1.

In figure 5.1, the first curve is solid and the second curve is dashed.
The two curves’ intersections (α, β) correspond to mixed strategies p1 =

(α, 1− α) and p2 = (β, 1− β) such that p1 ∈ B̃1(p2) and p2 ∈ B̃2(p1), i.e. to
the mixed Nash equilibria.

In the present example, the two curves intersect in three points, namely
(α, β) = (0, 0), (1, 1) and (4

5
, 5
6
). There are thus three mixed Nash equilibria,(

(0, 1), (0, 1)
)
,
(
(1, 0), (1, 0)

)
and

(
(4
5
, 1
5
), (5

6
, 1
6
)
)
. The first two Nash equilib-

ria are comprised of pure strategies, namely (δB, δR) and (δT , δL), meaning
that the players should select the action vector (B,R) and the action vector
(T, L), respectively.

The pure Nash equilibria give the players the following expected utilities:

ũ1(B,R) = u1(B,R) = 5 and ũ2(B,R) = u2(B,R) = 5,

ũ1(T, L) = u1(T, L) = 3 and ũ2(T, L) = u2(T, L) = 3.

In the mixed Nash equilibrium (p∗1, p
∗
2) =

(
(4
5
, 1
5
), (5

6
, 1
6
)
)
, the expected utilities

are
ũ1(p

∗
1, p

∗
2) =

5
2

and ũ2(p
∗
1, p

∗
2) =

13
5
.

Both players’ expected utility is thus less in the mixed Nash equilibrium than
in the pure Nash equilibria.

In the example above, the original game’s two Nash equilibria survived
as pure Nash equilibria in the mixed extension of the game. This is no
coincidence, because we have the following general result.

Proposition 5.2.2 The outcome a∗ = (a∗1, a
∗
2, . . . , a

∗
n) is a Nash equilib-

rium of a finite strategic game, if and only if the corresponding outcome
(δa∗1 , δa∗2 , . . . , δa∗n) is a pure Nash equilibrium of the game’s mixed extension.

Proof. In the future, we use the same notation (a1, a2, . . . , an) for an outcome
in the original game G and for the outcome (δa1 , δa2 , . . . , δan) in the game’s
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mixed extension G̃. Thus, we also write ũi(a1, a2, . . . , an), or shorter ũi(a),
instead of ũi(δa1 , δa2 , . . . , δan).

Suppose first that a∗ is a pure Nash equilibrium of the mixed extension.
Then by definition,

ui(a
∗) = ũi(a

∗
−i, a

∗
i ) ≥ ũi(a

∗
−i, pi)

for all players i and all lotteries pi ∈ L(Ai), and in particular this holds for
all certain lotteries of the typ p = δai , which means that

(2) ui(a
∗) ≥ ũi(a

∗
−i, ai) = ui(a

∗
−i, ai)

for all ai ∈ Ai. This proves that the outcome a∗ is a Nash equilibrium of the
original game.

Conversely, suppose that the outcome a∗ is a Nash equilibrium of G, i.e.
that inequality (2) holds for all players i and all actions ai ∈ Ai. Let pi
be an arbitrary mixed strategy of player i, i.e. an arbitrary lottery over Ai.
By multiplying the inequality (2) with pi(ai) and adding the inequalities so
obtained as ai runs through the set Ai, we get the following inequality:

(3)
∑
ai∈Ai

ũi(a
∗)pi(ai) ≥

∑
ai∈Ai

ũi(a
∗
−i, ai)pi(ai) =

∑
ai∈Ai

ũi(a
∗
−i, δai)pi(ai).
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Now ∑
ai∈Ai

ũi(a
∗)pi(ai) = ũi(a

∗)
∑
ai∈Ai

pi(ai) = ũi(a
∗)

and ∑
ai∈Ai

ũi(a
∗
−i, δai)pi(ai) = ũi

(
a∗−i,

∑
ai∈Ai

pi(ai)δai
)
= ũi(a

∗
−i, pi),

so inequality (3) means that ũi(a
∗
−i, a

∗
i ) ≥ ũi(a

∗
−i, pi) for all lotteries pi in the

lottery set L(Ai). This shows that the outcome a∗ is a pure Nash equilibrium
of the mixed extension of the game G.

Exercises

5.1 Find all mixed Nash equilibria of the game Prisoner’s Dilemma.

5.2 Find all mixed Nash equilibria of the game Battle of Sexes.

5.3 Find all mixed Nash equilibria of the following game:

L R

T (2, 2) (0, 2)

B (2, 1) (6, 6)

5.3 The indifference principle

In Example 5.2.1 we computed the Nash equilibria of the game

L R

T (3, 3) (0, 2)

B (2, 1) (5, 5)

and found that in addition to the two pure Nash equilibria (T, L) and (B,R),
there is also a mixed Nash equilibrium p∗ with p∗1 = (4

5
, 1
5
) and p∗2 = (5

6
, 1
6
).

If player 2 chooses his Nash strategy p∗2, player 1 will receive the same
expected utility, regardless of whether he chooses the action T or the action
B, because

3 · 5
6
+ 0 · 1

6
= 2 · 5

6
+ 5 · 1

6
= 5

2
.

Similarly, player 2 gets the same expected utility when player 1 chooses
his Nash strategy, regardless of whether player 2 chooses L or R, because

3 · 4
5
+ 1 · 1

5
= 2 · 4

5
+ 5 · 1

5
= 13

5
.

This is no coincidence because of the following universal indifference principle
for Nash equilibria.
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Proposition 5.3.1 (The indifference principle) Let p∗ = (p∗1, p
∗
2, . . . , p

∗
n) be a

vector of mixed strategies for the players in a finite game 〈N, (Ai), (ui)〉.
(i) If p∗ is a mixed Nash equilibrium, then for each player i and each action

ai ∈ Ai

p∗i (ai) > 0 ⇒ ũi(p
∗
−i, ai) = ũi(p

∗).

Thus, all actions that occur with positive probability in the player’s equi-
librium strategy give him the same expected utility.

(ii) Conversely, p∗ is a mixed Nash equilibrium if, for each player i, there
is a constant ci such that

(4)

{
p∗i (ai) > 0 ⇒ ũi(p

∗
−i, ai) = ci

p∗i (ai) = 0 ⇒ ũi(p
∗
−i, ai) ≤ ci.

Proof. (i) Let Bi = {ai ∈ Ai | p∗i (ai) > 0}. Then
∑
ai∈Bi

p∗i (ai) = 1 and p∗i =
∑
ai∈Ai

p∗i (ai)δai =
∑
ai∈Bi

p∗i (ai)δai ,

and using linearity, we obtain

(5) ũi(p
∗) = ũi(p

∗
−i, p

∗
i ) =

∑
ai∈Bi

ũi(p
∗
−i, δai)p

∗
i (ai) =

∑
ai∈Bi

ũi(p
∗
−i, ai)p

∗
i (ai).

Since p∗ is a mixed Nash equilibrium, ũi(p
∗
−i, ai) ≤ ũi(p

∗) for all ai ∈ Bi,
and if there is an ai such that strict inequality prevails, then it follows by
insertion into equation (5) that

ũi(p
∗) <

∑
ai∈Bi

ũi(p
∗)p∗i (ai) = ũi(p

∗)
∑
ai∈Bi

p∗i (ai) = ũi(p
∗),

which is a contradiction. Hence, ũi(p
∗
−i, ai) = ũi(p

∗) for all ai ∈ Bi.

(ii) Conversely, assume that the condition of (ii) is satisfied, and consider
player i. Since ũi(p

∗
−i, ai) ≤ ci for each action ai of player i, it follows that

ũi(p
∗
−i, ai)qi(ai) ≤ ciqi(ai)

for each mixed strategy qi and each ai ∈ Ai. Moreover, for the particular
mixed strategy p∗i it follows from the implications in (4) that

ũi(p
∗
−i, ai)p

∗
i (ai) = cip

∗
i (ai)
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for all ai ∈ Ai. By summing the above two inequalities and equalities over
Ai, we get the following inequality

ũi(p
∗
−i, qi) =

∑
ai∈Ai

ũi(p
∗
−i, ai)qi(ai) ≤

∑
ai∈Ai

ciqi(ai) = ci

=
∑
ai∈Ai

cip
∗
i (ai) =

∑
ai∈Ai

ũi(p
∗
−i, ai)p

∗
i (a) = ũi(p

∗),

which shows that p∗ is a mixed Nash equilibrium.

Example 5.3.1 Let us use the indifference principle to determine the Nash
equilibria of the game

L R

T (3, 1) (1, 2)

B (2, 4) (4, 3)

We first note that there are no pure Nash equilibria. Because of the
indifference principle, there is also no Nash equilibrium with exactly one
pure strategy. For example, (T, p2) is not a Nash equilibrium for any choice
of mixed strategy p2 for player 2, because u2(T, L) = 1 �= 2 = u2(T,R), and
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the other three options with one pure strategy are excluded for similar rea-
sons.

So let (p∗1, p
∗
2) be a Nash equilibrium, and write p∗1 = (α, 1 − α) and

p∗2 = (β, 1− β) with 0 < α < 1 and 0 < β < 1. According to the indifference
principle, ũ1(T, p

∗
2) = ũ1(B, p∗2) and ũ2(p

∗
1, L) = ũ2(p

∗
1, R), which gives us the

system

3β + (1− β) = 2β + 4(1− β)

α + 4(1− α) = 2α + 3(1− α)

with the solution α = 1
2
and β = 3

4
. We conclude that the game has a unique

mixed Nash equilibrium, namely
(
(1
2
, 1
2
), (3

4
, 1
4
)
)
.

Exercises

5.4 Consider the game

k1 k2 k3

r1 (2, ∗) (1, ∗) (5, ∗)
r2 (1, ∗) (3, ∗) (4, ∗)
r3 (4, ∗) (0, ∗) (2, ∗)

where the column player’s payoffs have been lost. On the other hand, it is
known that the mixed strategy p∗1 = (13 ,

1
6 ,

1
2) is a Nash equilibrium strategy

for the row player. Use this information to determine a mixed strategy p∗2 for
the column player that makes (p∗1, p

∗
2) to a Nash equilibrium.

5.5 The same question as in the previous exercise if you instead know that p∗1 =
(12 , 0,

1
2) is a Nash equilibrium strategy for the row player.

5.4 Dominance

It is sometimes possible for a player to rule out an action option because
there are other options that give him a larger payoff regardless of how the
opponents play.

Example 5.4.1 Consider the game

k1 k2 k3
r1 (2, ∗) (1, ∗) (2, ∗)
r2 (3, ∗) (4, ∗) (1, ∗)
r3 (3, ∗) (2, ∗) (3, ∗)
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where the column player’s payoffs are omitted because they do not matter
for the reasoning. Here, u1(r3, ki) > u1(r1, ki) for each ki, so no matter what
action the column player chooses, the r3 option is better for the row player
than the r1 option. We express this by saying that the r1 action is strictly
dominated by the r3 action.

A rational player would never choose a strictly dominated action, and such
an action can not, as we will show later, be a part of any Nash equilibrium.

Example 5.4.2 In the game with the payoff matrix

k1 k2 k3
r1 (2, ∗) (1, ∗) (3, ∗)
r2 (1, ∗) (3, ∗) (4, ∗)
r3 (4, ∗) (0, ∗) (3, ∗)

none of the row player’s actions is strictly dominated by any other action.
But

(6) u1(r1, ki) <
1
2
u1(r2, ki) +

1
2
u1(r3, ki)

for each of the column player’s three options k1, k2, k3, since 2 < 1
2
(1 + 4),

1 < 1
2
(3 + 0) and 3 < 1

2
(4 + 3).

Let p̂1 be the row player’s mixed strategy defined by p̂1(r1) = 0, p̂1(r2) =
p̂1(r3) =

1
2
, and consider the row players expected utility function ũ1. Since

ũ1(p̂1, ki) =
1
2
u1(r2, ki) +

1
2
u1(r3, ki), inequality (6) tells us that

u1(r1, ki) < ũ1(p̂1, ki)

for all pure strategies ki of the column player. However, each mixed strategy
is a convex combination of pure strategies and expected utility functions are
linear in each variable, so it follows from the inequality above that

ũ1(r1, p2) < ũ1(p̂1, p2)

for all mixed strategies p2 of the column player. Thus, in the mixed extension
of the current game, the row player’s pure strategy r1 is strictly dominated
by his mixed strategy p̂1. A rational player should therefore not choose the
pure strategy r1 because it gives him less expected payoff than the mixed
strategy p̂1, no matter how the column player acts.

The examples above serve as justification for the following general defi-
nition.
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Definition 5.4.1 Let 〈N, (Ai), (ui)〉 be a finite strategic game. The action
ai ∈ Ai is strictly dominated if player i has a mixed strategy pi that gives
him a greater expected utility than the pure strategy ai, regardless of the
other players’ choices of actions, i.e. if

ui(x−i, ai) < ũi(x−i, pi)

for all x−i ∈ A−i.

Remark. If the action ai is strictly dominated by the mixed strategy pi, then
it is also strictly dominated by the mixed strategy p̂i which is defined by
p̂i(ai) = 0 and p̂i(xi) = pi(xi)/(1 − pi(ai)) for all xi ∈ Ai \ {ai}. Therefore,
there is no restriction to assume that pi(ai) = 0 in the definition above.

Proposition 5.4.1 Assume that p∗ is a mixed Nash equilibrium of the finite
strategic game 〈N, (Ai), (ui)〉 and that player i’s action ai is strictly domi-
nated. Then, p∗i (ai) = 0.

In other words, a strictly dominated action can not be included in a
player’s Nash equilibrium strategy with positive probability.

Proof. Since the action ai is strictly dominated, player i has a mixed stragegy
p̂i such that

ui(x−i, ai) < ũi(x−i, p̂i)
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for all x−i ∈ A−i. Let p = (p1, p2, . . . , pn) be an arbitrary strategy vector.
The expected utilities ũi(p−i, ai) and ũi(p−i, p̂i) are obtained as expected
values of the functions x−i �→ ui(x−i, ai) and x−i �→ ũi(x−i, p̂i) with respect
to the product measure on A−i formed by the lotteries in p−i. It therefore
follows from the inequality above that

ũi(p−i, ai) < ũi(p−i, p̂i).

We use this inequality when p is the mixed Nash equilibrium p∗ and conclude
that

ũi(p
∗
−i, ai) < ũi(p

∗
−i, p̂i) ≤ ũi(p

∗).

It now follows from the indifference principle that p∗i (ai) = 0, because the
assumption p∗i (ai) > 0 implies that ũi(p

∗
−i, ai) = ũi(p

∗), which contradicts
the inequality above.

Definition 5.4.2 The game G′ = 〈N, (A′
i), (u

′
i)〉 is a subgame of the strate-

gic game G = 〈N, (Ai), (ui)〉 if A′
i ⊆ Ai and the utility function u′

i is the
restriction of the utility function ui to the set A′ = A′

1 × A′
2 × · · · × A′

n for
each player i ∈ N .

Since the utility functions of a subgame are restrictions of the utility func-
tions of the original game, we may use the same notation for them without
any risk of misunderstanding. The subgames of a game 〈N, (Ai), (ui)〉 will
thus be written as 〈N, (A′

i), (ui)〉.
If an outcome a∗ belonging to A′ is a Nash equilibrium of the game G,

then it is obviously also a Nash equilibrium of the subgame G′.
A mixed strategy pi for player i in the subgame G′ can also be perceived

as a mixed strategy in the game G by simply extending the definition of pi
to the entire set Ai by defining pi(ai) = 0 for ai ∈ Ai \ A′

i. Conversely, each
mixed strategy pi in the game G with the property that pi(ai) = 0 for all
ai ∈ Ai \A′

i can be perceived as a mixed strategy in the game G′. This allows
us to perceive a player’s set L(A′

i) of strategies in the subgame G′ as a subset
of the same player’s strategy set L(Ai) in the game G.

This means that the mixed extension of a subgame G′ of a game G is
a subgame of the mixed extension of G. By applying our trivial observa-
tion above concerning Nash equilibria in games and subgames to the mixed
extensions of the games, we therefore get the following result.

Proposition 5.4.2 Let p∗ = (p∗1, p
∗
2, . . . , p

∗
n) be a vector of mixed strategies

in a subgame G′ of the game G. If p∗ is a mixed Nash equilibrium of the
game G, then p∗ is also a mixed Nash equilibrium of the subgame G′.
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Iterated elimination of strictly dominated actions

Example 5.4.3 Consider the following strategic game G:

k1 k2 k3 k4
r1 (2, 3) (2, 4) (2, 3) (4, 2)

r2 (4, 2) (3, 3) (0, 2) (2, 1)

r3 (1, 4) (1, 2) (0, 0) (3, 1)

r4 (1, 0) (2, 1) (5, 5) (3, 2)

The row player’s action r3 is strictly dominated by the action r1 and will
not be selected by any rational player. Therefore, let us delete the r3 action,
which results in the following subgame G1:

k1 k2 k3 k4
r1 (2, 3) (2, 4) (2, 3) (4, 2)

r2 (4, 2) (3, 3) (0, 2) (2, 1)

r4 (1, 0) (2, 1) (5, 5) (3, 2)

Now, we see that the column player’s action k1 is strictly dominated by k2,
and that k4 is strictly dominated by k3. Therefore, we eliminate k1 and k4
from the game because these actions will not be selected by any rational
column player of the game G1. This gives us the following subgame G2 of
the game G1:

k2 k3
r1 (2, 4) (2, 3)

r2 (3, 3) (0, 2)

r4 (2, 1) (5, 5)

In the game G2 the row player’s action r1 is strictly dominated by his mixed
strategy (0, 1

2
, 1
2
), which gives him the expected utility 5

2
, regardless of the

column player’s choice. So we eliminate the alternative r1 and obtain the
subgame G3:

k2 k3
r2 (3, 3) (0, 2)

r4 (2, 1) (5, 5)

No action is strictly dominated in this subgame.
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Rational players of the game G should, if they believe that their opponent
is also rational, by reasoning as we have done, come to the conclusion that
they should only choose actions that occur in the subgame G3, i.e. the row
player should select r2 or r4 and the column player should choose k2 or k3.
In Chapter 7, we will provide further support for this conclusion.

The reasoning in the example above can of course be generalized and
suggests the following definition.

Definition 5.4.3 Let G = 〈N, (Ai), (ui)〉 be a strategic game. We say that
the subset B = B1×B2×· · ·×Bn of A = A1×A2×· · ·×An survives iterated
elimination of strictly dominated actions if there exists a finite sequence
At = At

1 ×At
2 × · · · ×At

n, t = 0, 1, 2, . . . , T , of product sets that satisfies the
following conditions:

• A0 = A and AT = B;

• At+1 ⊆ At for t = 0, 1, . . . , T − 1;

• The actions in the sets At
i \ At+1

i are strictly dominated in the game
Gt = 〈N, (At

i), (ui)〉 for t = 0, 1, . . . , T − 1;

• No action in the game GT = 〈N, (Bi), (ui)〉 is strictly dominated.
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It follows from the remark after Definition 5.4.1 that we may assume that
each action in the set At

i \ At+1
i is strictly dominated by a mixed strategy

that belongs to the game Gt+1.

In Chapter 7, we will show that the set B of surviving outcomes is unique,
which is not obvious as there may be several different ways to perform the
eliminations of strictly dominated actions. (See Corollary 7.2.3.) Of course
it may happen that B = A, i.e. that there are no strictly dominated actions
in the original game G.

If B consists of just one outcome â, we say that the game G is solvable
by repeated strict dominance with â as the solution.

Example 5.4.4 The outcomes of the subgame G3 are the surviving out-
comes of the game G in Example 5.4.3 with respect to iterated elimination
of strictly dominated actions.

Proposition 5.4.3 Let G = 〈N, (Ai), (ui)〉 be a finite strategic game, suppose
that the set B = B1 × B2 × · · · × Bn survives iterated elimination of strictly
dominated actions, and let p∗ = (p∗1, p

∗
2, . . . , p

∗
n) be a vector of mixed strategies

in the game G. The following two assertions are then equivalent:

(i) p∗ is a mixed Nash equilibrium of the game G.

(ii) p∗i (ai) = 0 for each player i and each action ai ∈ Ai \ Bi, and p∗ is a
mixed Nash equilibrium of the subgame H = 〈N, (Bi), (ui)〉.

Actions that disappear during iterated elimination of strictly dominated
actions can thus not occur with positive probability in any Nash equilibrium
strategy.

Proof. Let G0 = G, G1, G2, . . . , GT−1, GT = H be the chain of subgames
that appears in Definition 5.4.3. Due to induction, it is sufficient to show
that the following two statements are equivalent for an arbitrary strategy
vector p∗ in the game Gt.

(a) p∗ is a mixed Nash equilibrium of the game Gt.

(b) p∗i (ai) = 0 for all i ∈ N and all ai ∈ At
i \ At+1

i , and p∗ is a mixed Nash
equilibrium of the subgame Gt+1.

Assume first that statement (a) applies and that ai is an action in the
set At

i \At+1
i . The action ai is then strictly dominated in the game Gt, so it

follows from Proposition 5.4.1 that p∗i (ai) = 0. The strategy p∗i can therefore
be perceived as a mixed strategy in the subgame Gt+1 for player i, and the
strategy vector p∗ is according to Proposition 5.4.2 a Nash equilibrium of the
subgame Gt+1. Thus we have shown that (a) implies (b).

Conversely, suppose that statement (b) applies. Due to the indifference
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principle we have

(7) ũi(p
∗
−i, ai)

{
= ũi(p

∗
−i, p

∗
i ) if p∗i (ai) > 0,

≤ ũi(p
∗
−i, p

∗
i ) if p∗i (ai) = 0

for each player i and each action ai ∈ At+1
i .

For each action ai ∈ At
i \ At+1

i , player i has a mixed strategy p̂i in the
subgame Gt+1 that strictly dominates the action ai, which implies that

(8) ũi(p
∗
−i, ai) < ũi(p

∗
−i, p̂i) ≤ ũi(p

∗
−i, p

∗
i ).

Since moreover p∗i (ai) = 0 for all ai ∈ At
i \At+1

i , by assumption, we conclude
from the inequalities (7) and (8), that the strategy vector p∗ satisfies the
indifference principle in the game Gt and hence is a Nash equilibrium of
Gt.

Example 5.4.5 The surviving actions of the game G in Example 5.4.3 are
r2, r4 and k2, k3. A strategy vector (p∗1, p

∗
2) is therefore a Nash equilibrium

of G if and only if p∗1(r1) = p∗1(r3) = 0, p∗2(k1) = p∗2(k4) = p∗2(k5) = 0 and
the restriction of (p∗1, p

∗
2) to the subgame G3 is a Nash equilibrium of the

subgame. The subgame G3 has two pure Nash equilibria, namely (r2, k2)
and (r4, k3), and one mixed Nash equilibrium that is easily computed using
the indifference principle, and it consists of the row player choosing r2 and r4
with the probabilities 4

5
and 1

5
, respectively, and the column player choosing

k2 and k3 with the probabilities 5
6
and 1

6
, respectively. We conclude that the

original game G has three Nash equilibria, the two pure equilibria (r2, k2)
and (r4, k3), and the mixed Nash equilibrium that consists of the strategies
(0, 4

5
, 0, 1

5
) and (0, 5

6
, 1
6
, 0, 0).

Example 5.4.6 In the game with payoff matrix

k1 k2 k3
r1 (2, 5) (1, 3) (2, 2)

r2 (4, 1) (3, 2) (0, 1)

r3 (1, 4) (0, 3) (1, 4)

row 3 is strictly dominated by row 1. Elimination of row 3 results in a
game in which column 3 is strictly dominated by column 2. Elimination of
column 3 leads to a game where row 2 strictly dominates row 1. After having
eliminated the first row, there remains a subgame in which column 2 strictly
dominates column 1. Iterated elimination of strictly dominated actions thus
results in the trivial subgame
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k2
r2 (3, 2)

We conclude that the original game has a unique Nash equilibrium, namely
the pure Nash equilibrium (r2, k2).

Weak dominance

Definition 5.4.4 Let 〈N, (Ai), (ui)〉 be a finite strategic game. The action
ai ∈ Ai is said to be weakly dominated if player i has a mixed stragegy pi
that gives him at least as great expected utility as the pure strategey ai, no
matter what actions the other players choose, and a greater expected utility
in some case, i.e. if

ui(x−i, ai) ≤ ũi(x−i, pi)

for all x−i ∈ A−i with strict inequality for at least one x−i.

Example 5.4.7 Consider the game

L R

T (1, 2) (0, 3)

M (2, 1) (0, 1)

B (2, 4) (1, 2)
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The action T is weakly dominated by M , M is weakly dominated by B, and
T is strictly dominated by B.

Elimination of weakly dominated actions does not yield as satisfactory
results as the elimination of strictly dominated actions. For example, Nash
equilibria may disappear during elimination of weakly dominated actions.
However, every Nash equilibrium of a subgame that remains after elimination
of weakly dominated actions is a Nash equilibrium also of the original game.

Example 5.4.8 The outcome (B,R) is a Nash equilibrium of the game

L R

T (1,1) (0,0)

B (0,0) (0,0)

in spite of the fact that the row player’s action B is weakly dominated by
the action T , and the column player’s action R is weakly dominated by the
action L.

The set of actions that survive iterated elimination of weakly dominated
actions may also depend on the order in which the actions are eliminated.

Example 5.4.9 Consider the following game:

L R

T (1, 1) (0, 0)

M (1, 1) (2, 1)

B (0, 0) (2, 1)

By first eliminating T (weakly dominated by M) and then eliminating L
(weakly dominated by R), we are left with the two outcomes (M,R) and
(B,R), both with payoff (2, 1). If instead we first eliminate B (weakly dom-
inated by M) and then R (weakly dominated by L), we are left with the two
outcomes (T, L) and (M,L), both with payoff(1, 1).

Exercises

5.6 Solve the game Prisoner’s Dilemma by iterated elimination of strictly domi-
nated actions.

5.7 Find the subset that survives iterated elimination of strictly dominated actions
in the game
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k1 k2 k3 k4

r1 (3, 1) (1, 4) (3, 2) (2, 2)

r2 (4, 0) (2, 3) (3, 1) (3, 2)

r3 (3, 2) (1, 0) (2, 2) (2, 2)

r4 (4, 1) (1, 1) (2, 2) (2, 2)

Also determine all mixed Nash equilibria.

5.8 Consider the game Guess 2/3 of the average in Exercise 2.5.
a) Is there any strictly dominated action in the game?
b) What outcomes survive iterated elimination of weakly dominated actions?

5.5 Maxminimizing strategies

Definition 5.5.1 By a player’s mixed safety level in a finite strategic game
G is meant the player’s safety level in the mixed extension G̃ of the game. A
mixed strategy in the game G is called a mixed maxminimizing strategy if it
is a maxminimizing action in the extension G̃.

A mixed maxminimizing strategy p̂i for player i is in other words a mixed
strategy (i.e. a lottery over his set Ai of actions) that maximizes the function

fi(pi) = min
q−i

ũi(q−i, pi),

where the minimum is taken over all strategy vectors q−i for the other players.
The problem of computing a player’s mixed safety level and mixed max-

minimizing strategies is a straightforward optimization problem, and we can
simplify the problem by noting that

fi(pi) = min
a−i∈A−i

ũi(a−i, pi) = min
a−i∈A−i

∑
ai∈Ai

ui(a−i, ai)pi(ai),

because
ũi(q−i, pi) ≥ min

a−i∈A−i

ũi(a−i, pi)

for all strategy vectors q−i, according to inequality (1) in Section 5.1, and
this implies that the minimum of ũi(q−i, pi) is assumed when q−i is a vector
consisting of pure strategies.

We leave as an exercise to verify that the functions fi are concave, i.e. that
fi(αp+βq) ≥ αfi(p)+βfi(q) for all positive numbers α and β with sum 1 and
all mixed strategies p, q. The problem of determining the maxminimizing
strategies, i.e. to maximize fi over the convex set L(Ai), is therefore a convex
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optimization problem. It is even better than that because the problem can
easily be reformulated into a linear programming problem.

The smallest number of the numbers t1, t2, . . . , tm is namely equal to the
largest number v that satisfies the inequalities v ≤ t1, v ≤ t2, . . . , v ≤ tm.
The function value fi(p) is therefore equal to the largest of all the numbers
v that satisfy all the inequalities

v ≤
∑
ai∈Ai

ui(a−i, x)p(ai)

that are obtained by letting a−i run through the set A−i. The mixed safety
level �i, i.e. the maximum value of fi(pi), and the maxminimizing strategies
are thus obtained by solving the optimization problem

Maximize v as



v≤
∑
ai∈Ai

ui(a−i, ai)p(ai) for all a−i ∈ A−i

pi ∈ L(Ai)

(9)

Suppose Ai consists of m possible actions e1, e2, . . . , em, and let us in-
troduce the variables x1, x2, . . . , xm by defining xk = pi(ek). The above
maximization problem is then a problem in the m+1 variables x1, x2, . . . , xm
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and v with linear inequalities and equalities as constraints, because the last
condition pi ∈ L(Ai) is equivalent to the conditions xk ≥ 0 for k = 1, 2,
. . . , m and x1 + x2 + · · ·+ xm = 1. Problem (9) is therefore a typical linear
programming problem, and for such problems there are efficient solution
algorithms, for example the simplex algorithm.

Example 5.5.1 We will compute the mixed maxminimization strategies for
the players of the game in Example 5.2.1 with payoff table

L R

T (3, 3) (0, 2)

B (2, 1) (5, 5)

Let p1 be a mixed strategy of the row player, and let x1 = p1(T ) and
x2 = p1(B). The lottery set L(A1) can be identified with the line segment

X = {(x1, x2) ∈ R2 | x1 + x2 = 1, x1, x2 ≥ 0}

between the two points (0, 1) and (1, 0) in R2, and the row players maxmin-
imization problem consists in maximizing the function

f1(x1, x2) = min
a2∈A2

∑
a1∈A1

u1(a1, a2) p1(a1)

= min
(
u1(T, L)p1(T ) + u1(B,L)p1(B), u1(T,R)p1(T ) + u1(B,R)p1(B)

)

= min(3x1 + 2x2, 0x1 + 5x2)

when (x1, x2) ∈ X. The equivalent linear programming problem has the form

Maximize v as


3x1 + 2x2 ≥ v
0x1 + 5x2 ≥ v
x1 + x2 = 1
x1, x2 ≥ 0

The easiest way to solve this simple problem is to eliminate the variable x1

(= 1 − x2) from the function f1 and then solve the problem graphically. It
is clear from Figure 5.2 that f1(1 − x2, x2) = min(3 − x2, 5x2) assumes its
largest value 5

2
for x2 =

1
2
. The mixed strategy (1

2
, 1
2
) is in other words player

1’s maxminimizing strategy, and his mixed safety level is equal to 5
2
.

Similarly, the column player should maximize the function

f2(y1, y2) = min(3y1 + 2y2, y1 + 5y2) = min(3− y2, 1 + 4y2)

when y1 + y2 = 1 och y1, y2 ≥ 0. Maximum is obtained for y2 = 2
5
, so the

player’s maxminimizing strategy consists in choosing L with probability 3
5

and R with probability 2
5
. His mixed safefy level is 13

5
.
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Figure 5.2. Graphical solution to the maximization problem in Example 5.5.1.

The two players’ mixed safety levels 5
2
and 13

5
coincide with their expected

utilities in the mixed Nash equilibrium in the above example. A player’s
expected utility in a Nash equilibrium can never be less than his safety level
because of the following general result, which is an immediate consequnece
of Proposition 2.4.1 applied to the mixed extension of a game.

Proposition 5.5.1 In a mixed Nash equilibrium, each player’s expected util-
ity is greater than or equal to the player’s mixed safety level.

Exercise

5.9 Determine the mixed safety levels and mixed maxminimizing strategies for the
players of the game in Exercise 5.3.
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Chapter 6

Two-person Zero-sum Games

In Section 2.5, we studied strictly competitive two-person games. Two-person
zero-sum games forms a special subclass of such games, and they are char-
acterized by the players’ preferences being given by cardinal utility functions
whose sum is identical to zero. In this chapter we will study the mixed exten-
sion of finite zero-sum games and, above all, characterize their mixed Nash
equilibria.

6.1 Optimal strategies and the value

A finite two-person zero-sum game is completely determined by the game’s
payoff matrix A = [aij], which in the rest of this chapter is assumed to be a
matrix with m rows and n columns, unless otherwise stated. Player 1, the
row player, selects a row i in the matrix, and player 2, the column player,
selects simultaneously, and unaware of the row player’s choice, a column j
in the matrix. Thereafter, the column player pays the amount of aij units to
the row player, which in the case of aij < 0 means that the column player
gets −aij from the row player.

A two-person zero-sum game’s pure Nash equilibria, if any, are character-
ized by the saddle point inequality (2) in Section 2.5. The pair (i, j) is a Nash
equilibrium if and only if the matrix element aij is the largest in its column
and the smallest in its row. However, most matrices lack saddle points, and
this is a reason to study mixed extensions of zero-sum games.

The row player’s set of lotteries will be denoted by X and the col-
umn player’s set of lotteries will be denoted by Y . An element x in X is
thus a probability distribution on the set of rows of the payoff matrix A,
i.e. x = (x1, x2, . . . , xm), where all entries xi are nonnegative numbers and∑m

i=1 xi = 1. The number xi stands for the row player’s probability of choos-
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ing row i. Similarly, the elements y ∈ Y have the form y = (y1, y2, . . . , yn)
with yj ≥ 0 for all j and

∑n
j=1 yj = 1.

The sets X and Y are the two players’ sets of actions in the mixed ex-
tension of the finite zero-sum game. The row player’s expected payoff is his
utility function in the extension; the expected payoff U is defined on the
product set X × Y and is given by the formula

U(x, y) =
m∑
i=1

n∑
j=1

aijxiyj.

The column player’s expected payoff is of course equal to −U , so the mixed
extension is also a zero-sum game.

We can now apply Nash’s existence theorem (Proposition 5.2.1) and the
characterization of Nash equilibria in strictly competitive games (Proposi-
tions 2.5.2 and 2.5.3). This immediately gives us the following proposition.

Proposition 6.1.1 (The Max-min theorem)

(i) Every finite zero-sum game G has a mixed Nash equilibrium.

(ii) A mixed strategy vector (x∗, y∗) in G is a mixed Nash equilibrium if and
only if x∗ is a mixed maxminimizing strategy of the row player and y∗

is a mixed maxminimizing strategy of the column player.

(iii) The row player’s expected utility in a mixed Nash equilibrium equals his
mixed safety level. The column player’s mixed safety level is equal to
the row player’s mixed safety level with reversed sign.

Definition 6.1.1 The row player’s mixed safety level in a finite zero-sum
game is called the value of the game. The game is said to be fair if its value
is equal to zero.

The value of a zero-sum game is according to Proposition 6.1.1 equal to
the row player’s expected utility in an arbitrary mixed Nash equilibrium.

The Max-min theorem indicates that the Nash equilibrium is a stable
and satisfactory solution concept for zero-sum games. The row player can
determine a Nash equilibrium strategy x∗ without worrying about his oppo-
nent’s action, since x∗ is a maxminimizing strategy, and by choosing such a
strategy he has a guaranteed expected payoff that is at least as great as the
game’s value. The same applies to the column player, who can make sure on
average not to lose more than the game’s value. For that reason, strategies
that are part of a mixed Nash equilibrium are also called optimal strategies.

However, note that the Max-min theorem is about expected values; in
individual games, payouts to the row player may, of course, be less than the
value of the game.

Download free eBooks at bookboon.com



NON-COOPERATIVE GAMES: AN 
INTRODUCTION TO GAME THEORY – PART I

113

Two-person Zero-sum Games

113

6.1 Optimal strategies and the value 113

The indifference principle applies to zero-sum games and can be formu-
lated as follows for such games.

Proposition 6.1.2 (Indifference principle) In a finite zero-sum game with
payoff matrix A = [aij], the mixed strategies x∗ and y∗ are optimal (i.e.
(x∗, y∗) is a mixed Nash equilibrium) and v∗ is the game’s value, if and only
if the following four implications are true:

x∗
i > 0 ⇒

∑
j

aijy
∗
j = v∗

x∗
i = 0 ⇒

∑
j

aijy
∗
j ≤ v∗

y∗j > 0 ⇒
∑
i

aijx
∗
i = v∗

y∗j = 0 ⇒
∑
i

aijx
∗
i ≥ v∗.

Example 6.1.1 The game Matching Pennies with payoff table

Head Tail

Head (1,−1) (−1, 1)

Tail (−1, 1) (1,−1)
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is a two-person zero-sum game with payoff matrix

[
1 −1

−1 1

]
.

The matrix has no saddle point, so there is no pure Nash equilibrium. Any
mixed Nash equilibrium (x∗, y∗) with x∗

1, x
∗
2 > 0 must, because of the indiffer-

ence principle, satisfy the equation y∗1 − y∗2 = −y∗1 + y∗2 = v∗, and combining
this with the condition y∗1 + y∗2 = 1, we obtain y∗1 = y∗2 = 1

2
and v∗ = 0. For

simimilar reasons, x∗
1 = x∗

2 = 1
2
if (x∗, y∗) is a mixed Nash equilibrium with

y∗1, y
∗
2 > 0. We conclude that the game has a unique mixed Nash equilibrium(

(1
2
, 1
2
), (1

2
, 1
2
)
)
in which both players should choose Head and Tail with the

same probability 1
2
, and that the game is fair.

As an application of the indifference principle, we will give a general
formula for the Nash equilibrium in two-person zero-sum games where both
players have two action options.

Proposition 6.1.3 Consider a two-person zero-sum game in which both
players have two action options, and suppose that the payoff matrix

A =

[
a11 a12
a21 a22

]

has no saddle points. The game has then a unique mixed Nash equilibrium
(x∗, y∗), given by

x∗
1 =

a22 − a21
s(A)

, x∗
2 =

a11 − a12
s(A)

,

y∗1 =
a22 − a12
s(A)

, y∗2 =
a11 − a21
s(A)

,

where
s(A) = a11 − a12 − a21 + a22.

The value of the game is

v∗ =
detA

s(A)
=

a11a22 − a12a21
s(A)

.

Proof. We first show that s(A) �= 0 by considering three separate cases.

Case 1: a11 = a12. We will prove that this contradicts the assumption
that the matrix lacks saddle points. So assume that a21 ≥ a22. If a11 ≥ a21,
then (1, 1) and (1, 2) are both saddle points, if a21 > a11 ≥ a22, then (1, 2)

2

Page 114: Immediately before Proposition 6.1.3 add one sentence so that
the paragraph will read like follows:

As an application of the indifference principle, we will give a general
formula for the Nash equilibrium in two-person zero-sum games where both
players have two action options. Recall that a saddle point in a matrix is a
matrix element that is the smallest in its row and the largest in its column.

Corrections to Cooperative Games – Part II

Misprints

Page Line Replace with
5 mid incitament incentive
5 -15 and and and
5 -13 rational.) rational.
20 4 banced balanced
28 -5 excesss excess
43 6 calculate calculate.
44 11 superadditiv superadditive

Additions/Substitutions

Page v: Replace the following two sentences in the preface:
We assume that each coalition may attain some payoff, and the basic

assumption is that the grand coalition, that is the group consisting of all
players, will form. The main question is how to allocate in some fair way the
payoff of the grand coalition among the players.

with the sentence:

The basic assumption is that the grand coalition, that is the group con-
sisting of all players, will form, and the main question is how to allocate in
some fair way the payoff of the grand coalition among the players.

Page 92: At the end add the answer of exercise 12.4 as follows:

12.4 $ 0.5 million in company B and $ 0.5 million in company C.
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is a two-person zero-sum game with payoff matrix

[
1 −1

−1 1

]
.

The matrix has no saddle point, so there is no pure Nash equilibrium. Any
mixed Nash equilibrium (x∗, y∗) with x∗

1, x
∗
2 > 0 must, because of the indiffer-

ence principle, satisfy the equation y∗1 − y∗2 = −y∗1 + y∗2 = v∗, and combining
this with the condition y∗1 + y∗2 = 1, we obtain y∗1 = y∗2 = 1

2
and v∗ = 0. For

simimilar reasons, x∗
1 = x∗

2 = 1
2
if (x∗, y∗) is a mixed Nash equilibrium with

y∗1, y
∗
2 > 0. We conclude that the game has a unique mixed Nash equilibrium(

(1
2
, 1
2
), (1

2
, 1
2
)
)
in which both players should choose Head and Tail with the

same probability 1
2
, and that the game is fair.

As an application of the indifference principle, we will give a general
formula for the Nash equilibrium in two-person zero-sum games where both
players have two action options.

Proposition 6.1.3 Consider a two-person zero-sum game in which both
players have two action options, and suppose that the payoff matrix

A =

[
a11 a12
a21 a22

]

has no saddle points. The game has then a unique mixed Nash equilibrium
(x∗, y∗), given by

x∗
1 =

a22 − a21
s(A)

, x∗
2 =

a11 − a12
s(A)

,

y∗1 =
a22 − a12
s(A)

, y∗2 =
a11 − a21
s(A)

,

where
s(A) = a11 − a12 − a21 + a22.

The value of the game is

v∗ =
detA

s(A)
=

a11a22 − a12a21
s(A)

.

Proof. We first show that s(A) �= 0 by considering three separate cases.

Case 1: a11 = a12. We will prove that this contradicts the assumption
that the matrix lacks saddle points. So assume that a21 ≥ a22. If a11 ≥ a21,
then (1, 1) and (1, 2) are both saddle points, if a21 > a11 ≥ a22, then (1, 2)
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is a saddle point, and if finally a21 > a22 > a11, then (2, 2) is a saddle point.
This is a contradiction. Hence, a21 ≤ a22, but this assumption leads to a
contradiction in a similar way. Thus, case 1 is impossible.

Case 2: a11 > a12. We now conclude that a22 > a12 (because (1, 2) is not
a saddle point), that a22 > a21 (because (2, 2) is not a saddle point), and
that a11 > a21 (because (2, 1) is not a saddle point).

Case 3: a11 < a12. As in case 2, it now follows that a21 > a11, a21 > a22
and a12 > a22.

The number s(A) (= (a11 − a12) + (a22 − a21)) is positive in case 2 and
negative in case 3. The four numbers x∗

1, x
∗
2, y

∗
1 and y∗2 are positive in both

cases, and the sums x∗
1 + x∗

2 and y∗1 + y∗2 are both equal to 1.
That (x∗, y∗) is a mixed Nash equilibrium follows immediately from the

indifference principle, because

a11y
∗
1 + a12y

∗
2 = a21y

∗
1 + a22y

∗
2 = a11x

∗
1 + a21x

∗
2 = a12x

∗
1 + a22x

∗
2 = v∗.

For example,

a11y
∗
1 + a12y

∗
2 =

a11(a22 − a12) + a12(a11 − a21)

s(A)
=

a11a22 − a12a21
s(A)

= v∗.

It remains to show that the Nash equilibrium is unique. Therefore, sup-
pose that (x̂, ŷ) is another mixed Nash equilibrium. Then, (x∗, ŷ) is also a
Nash equilibrium with the same value v∗, and it now follows from the in-
difference principle that a11ŷ1 + a12ŷ2 = v∗. The strategy ŷ = (ŷ1, ŷ2) is
therefore a solution to the linear system

{
a11y1 + a12y2 = v∗

y1 + y2 = 1.

The system’s determinant a11 − a12 is nonzero because case 1 above can not
occur. The solution of the system is therefore unique, and since the Nash
solution y∗ also solves the system, we conclude that ŷ = y∗. That x̂ = x∗ is
of course proven analogously.

Example 6.1.2 Consider the zero-sum game with payoff matrix

A =

[
2 −3

−1 0

]
.

The matrix lacks saddle points, so the optimal strategies x∗ and y∗ are ob-
tained from the formulas in Proposition 6.1.3, which yield s(A) = 2− (−3)−
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(−1) + 0 = 6 and

x∗
1 =

0− (−1)

6
=

1

6
, x∗

2 =
2− (−3)

6
=

5

6
,

y∗1 =
0− (−3)

6
=

1

2
, y∗2 =

2− (−1)

6
=

1

2
.

The value of the game is

v∗ =
2 · 0− (−3) · (−1)

6
= −1

2
.

Exercises

6.1 In the game Odd or Even, two players choose one of the numbers 1 or 2
independently of each other. If the sum of the two chosen numbers is odd, the
row player wins the product of the two numbers from the opponent. If the sum
is even, he loses the product of the two numbers to the opponent. Set up the
game’s payoff matrix, and solve the game, i.e. determine the players’ optimal
strategies as well as the game’s value.
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6.2 Solve using the indifference principle the games with the following payoff ma-
trices.

a)

[
2 3
4 1

]
b)



1 −1 −1
0 2 1
0 0 3




6.3 Decide whether x = (19 , 0,
1
18 ,

5
6) and y = (0, 0, 13 ,

2
3) are optimal strategies in

the game with payoff matrix




0 3 −3 2
−2 −3 2 −1
−5 0 −3 2
3 0 1 0


 .

Find the game’s value.

6.4 Solve the games with payoff matrices

a)



2 5 3
5 4 4
7 2 3


 b)

[
2 3
4 −1

]
c)



4 5 2
3 4 4
1 6 3


.

[Hint: In c), start by eliminating strictly dominated actions.]

6.2 Two-person zero-sum games and linear

programming

In order to determine his mixed maxminimizing strategies in the game with
payoff matrix A = [aij], the row player has to solve the optimization problem

max
x∈X

min
y∈Y

U(x, y),

where

U(x, y) =
m∑
i=1

n∑
j=1

aijxiyj.

This problem can be reformulated as a linear programming problem by noting
that the expected payoff

U(x, y) =
n∑

j=1

yj
( m∑
i=1

aijxi

)

for each x ∈ X is a weighted average of the n numbers
∑m

i=1 aijxi, (j = 1,
2, . . . , n) with yj as the weights. A weighted average is a number between
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the smallest and the largest of the given numbers, and the weighted average
is equal to the smallest of the given numbers if the smallest number is given
weight 1 and all other numbers weight 0. Consequently,

min
y∈Y

U(x, y) = min {
m∑
i=1

aijxi | j = 1, 2, . . . , n}.

But the smallest of a number of given numbers is equal to the largest number
s that is less than or equal to the given numbers. The number miny∈Y U(x, y)
is therefore, for each x, equal to the largest real number s that satisfies the
inequalities

m∑
i=1

aijxi ≥ s

for all column indices j.

The row player’s maxminimizing problem is therefore equivalent to the
optimization problem of finding the largest real number s that satisfies the
above inequalities for some x belonging to X. This means that the row
player’s maxminimizing strategies are obtained as solutions x to the linear
maximization problem

(P) Maximize s as


a11x1 + a21x2 + . . . + am1xm ≥ s
a12x1 + a22x2 + . . . + am2xm ≥ s

...
a1nx1 + a2nx2 + . . . + amnxm ≥ s

x1 + x2 + . . . + xm = 1
x1, x2, . . . , xm ≥ 0.

The column player’s maxminimizing problem is analogous, but to max-
imize the minimal expected payoff −U(x, y) is equivalent to the problem
of minimizing maximum of U(x, y). The column player’s maxminimizing
strategies are therefore obtained as solutions to the optimization problem

min
y∈Y

max
x∈X

U(x, y).

Using an argument simular to that above, we find that this problem is equiv-
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alent to the linear minimization problem

(P′) Minimize t as



a11y1 + a12y2 + . . . + a1nyn ≤ t
a21y1 + a22y2 + . . . + a2nyn ≤ t

...
am1y1 + am2y2 + . . . + amnyn ≤ t

y1 + y2 + . . . + yn = 1
y1, y2, . . . , yn ≥ 0.

In summary, we have shown the following proposition.

Proposition 6.2.1 A mixed strategy vector (x∗, y∗) in a finite two-person
zero-sum game with payoff matrix A = [aij] is a Nash equilibrium if and only
if x∗ and y∗ are optimal solutions to the linear programming problems (P)
and (P′), respectively. The value of the game is equal to the maximum value
of (P) and to the minimum value of (P′).

The two problems (P) and (P′) are instances of dual linear programming
problems. According to an important theorem in linear programming, the
so called Duality Theorem, dual problems (with feasible points) have the
same optimal values. This means in our case that the maximum value in the
problem (P) is equal to the minimum value in the problem (P′). Since the
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optimal maximum value is the row players mixed safety level and the opti-
mal minimum value is the column players mixed safety value with reversed
sign, we get an alternative proof from the Duality Theorem for statement
(iii) in the Max-min theorem (Proposition 6.1.1) and thus also, because of
Proposition 2.5.1, for the existence of mixed Nash equilibria in two-person
zero-sum games.

The indifference principle is, by the way, also a consequence of a corollary
to the Duality Theorem (the so called Complementary Theorem)

In cases where the game’s value is positive, we can rewrite the maximiza-
tion problem (P) in a simpler form. Since we only need to consider positive
s values in these cases, we can after division by s write the constraints on
the form 




a11x1/s+ a21x2/s+ . . . + am1xm/s ≥ 1
a12x1/s+ a22x2/s+ . . . + am2xm/s ≥ 1

...
a1nx1/s+ a2nx2/s+ . . . + amnxm/s ≥ 1

x1/s+ x2/s+ . . . + xm/s = 1/s
s > 0, x1, x2, . . . , xm ≥ 0.

Maximizing s is equivalent to minimizing 1/s. So by introducing new vari-
ables zi = xi/s and by using the constraint equality for 1/s, we can replace
the maximization problem (P) by the minimization problem

Minimize z1 + z2 + · · ·+ zm as


a11z1 + a21z2 + . . . + am1zm ≥ 1
a12z1 + a22z2 + . . . + am2zm ≥ 1

...
a1nz1 + a2nz2 + . . . + amnzm ≥ 1

z1, z2, . . . , zm ≥ 0.

Let c be the minimum value of this problem and let z∗ be a minimum point.
The game’s value v∗ is then equal to c−1, and c−1z∗ is an optimal strategy
for the row player.

The assumption that the value of the game should be positive is not a
serious restriction. We can always accomplish this by adding a sufficiently
large positive constant K to all matrix elements in the payoff matrix A so
that all of these will be nonnegative. This increases the game’s value by the
same constant K but does not affect the players’ optimal strategies.

Example 6.2.1 Consider the game in Example 6.1.2 with payoff matrix

A =

[
2 −3

−1 0

]
.
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Figure 6.1. A graphical solution to Example 6.2.1.

To obtain a game with a positive value we add 3 to all matrix elements and
get a new game with the matrix

[
5 0
2 3

]
.

In order to determine the row player’s maxminimization strategies we solve
the optimization problem

Minimize z1 + z2 as

5z1 +2z2 ≥ 1

3z2 ≥ 1
z1, z2 ≥ 0.

graphically. See figure 6.1. The minimum is assumed at the intersection
z∗ = ( 1

15
, 1
3
) of the lines 5z1 + 2z2 = 1 and 3z2 = 1, and it is equal to

2
5
. This means that the modified game’s value is equal to 5

2
, and that the

row player’s optimal strategy in both the modified and the original game is
x∗ = 5

2
z∗ = (1

6
, 5
6
). The original game’s value is 5

2
− 3 = −1

2
.

The column player’s optimal strategy (y∗1, y
∗
2) is most easily calculated

using the indifference principle according to which

{
2y∗1 − 3y∗2 =−1

2

−y∗1 =−1
2
.

It follows that y∗1 = y∗2 = 1
2
.

Exercise

6.5 Charlie and Rick have three playing cards each. Both have ace of diamonds
and ace of spades. Charlie also has 2 of diamonds and Rick has 2 of spades.
The players simultaneously play a card each. Charlie wins if both of these
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122 6 Two-person Zero-sum Games

cards have the same color and loses in the opposite case. The winner receives
in payment the value of his winning card from the loser, with ace counting as 1.
Write down the payoff matrix for this two-person game, and formulate column
player Charlie’s problem to optimize the expected payoff as an LP problem.
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Chapter 7

Rationalizability

7.1 Beliefs

Consider a strategic game 〈N, (Ai), (ui)〉, and suppose player i knows what
action vector a−i the other players will choose. The player’s problem is then
a pure decision problem, and if he is rational, he should of course choose an
action that maximizes the function xi �→ ui(a−i, xi).

Suppose the player instead believes that the other players choose their
actions in the set A−i randomly according to some probability distribution
µ. The probability that the other players select the action vector a−i is, in
other words, µ(a−i), and player i’s expected utility if he chooses the option
xi ∈ Ai is

Ui(xi;µ) =
∑

a−i∈A−i

ui(a−i, xi)µ(a−i).

Given that player i wants to maximize his expected utility, his problem is still
a pure decision problem. Now he has to maximize the function xi �→ Ui(xi;µ).

A player can of course not be sure that the other players play according
to a certain probability distribution, so we use the following terminology.

Definition 7.1.1 A probability distribution on the set A−i is called a belief
of player i. An action ai ∈ Ai is said to be supported by the belief µ if it
maximizes the function xi �→ Ui(xi;µ).

Note that we do not rule out beliefs in which the opponents cooperate
and coordinate their actions. In other words, player i’s belief does not have
to be a product measure on A−i.

Example 7.1.1 Let us determine some beliefs that support various actions
in the two-person game with payoff matrix

123
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L M R

T (4, 12) (6, 4) (2, 5)

N (8, 3) (2, 6) (4, 5)

B (6, 5) (5, 9) (3, 8)

The row player’s belief δM , i.e. the belief that the column player chooses
his actions with the probabilities 0, 1 and 0 respectively, obviously supports
the action T , while the belief δL instead supports the action N . The belief
µ = 0.1δL + 0.4δM + 0.5δR supports the action B, because the calculation

U1(T ;µ) = 0.1 · 4 + 0.4 · 6 + 0.5 · 2 = 3.8,

U1(N ;µ) = 0.1 · 8 + 0.4 · 2 + 0.5 · 4 = 3.6,

U1(B;µ) = 0.1 · 6 + 0.4 · 5 + 0.5 · 3 = 4.1,

shows that U1(B;µ) is the largest.
The column player has no belief ν = α1δT + α2δN + α3δB that supports

his action R, because by eliminating α1 (= 1− α2 − α3) we get

U2(L; ν) = 12α1 + 3α2 + 5α3 = 12− 9α2 − 7α3,

U2(M ; ν) = 4α1 + 6α2 + 9α3 = 4 + 2α2 + 5α3,

U2(R; ν) = 5α1 + 5α2 + 8α3 = 5 + 3α3,

and it is easy to verify that U2(M ; ν) > U2(R; ν) if α2 + α3 > 1
2
, and that

U2(L; ν) > U2(R; ν) if α2 + α3 ≤ 1
2
. In other words, there is no belief ν that

makes U2(R; ν) greatest.

Our next proposition shows that actions without support of any belief
can not be included with positive probability in a player’s Nash equilibrium
strategy.

Proposition 7.1.1 Let p∗ be a mixed Nash equilibrium of the strategic game
〈N, (Ai), (ui)〉. Each player i has a belief that supports all actions ai ∈ Ai

such that p∗i (ai) > 0.

Proof. Let µ be the product lottery on A−i that is obtained by multiplying
the lotteries p∗1, . . . , p

∗
i−1, p

∗
i+1, . . . , p

∗
n that form the strategy vector p∗−i. Then

Ui(xi;µ) =
∑

a−i∈A−i

ui(a−i, xi)µ(a−i) = ũi(p
∗
−i, xi)

for all xi ∈ Ai. If ai ∈ Ai is an action with p∗i (ai) > 0, then ũi(p
∗
−i, ai) = ũi(p

∗)
because of the indifference principle, and it follows that

Ui(ai;µ) = ũi(p
∗
−i, ai) = ũi(p

∗) ≥ ũi(p
∗
−i, xi) = Ui(xi;µ)

for all xi ∈ Ai. The action ai is thus supported by the belief µ.
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What will be the outcome of a game with rational participants? If a
player’s action is not supported by any belief, the player should not reason-
ably choose the action in question. A natural common sense requirement is
that each player makes his choice among the actions that are supported by
a belief.

Therefore, it seems natural to start by characterizing the set of actions
that lack support in beliefs.

Proposition 7.1.2 A player’s action in a game G = 〈N, (Ai), (ui)〉 lacks
beliefs that support the action, if and only if the action is strictly dominated.

Proof. By renumbering the players we may without loss of generality restrict
our attention to player 1. So let â1 be an action of player 1. We will prove
that the player has no belief that supports â1 if and only if the action is
strictly dominated. To achieve this we consider the two-person zero-sum
game G′ = 〈{1, 2}, (Bi), (vi)〉 with B1 = A1 \{â1} as player 1’s set of actions,
B2 = A−1 as player 2’s set of actions, and the following function v as player
1’s utility function:

v(b1, b2) = u1(b1, b2)− u1(â1, b2).

The function v is well-defined since (b1, b2) and (â1, b2) are outcomes in the
game G. Player 2’s utility function is of course −v.
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A mixed strategy of player 2 in the game G′ is by definition a probability
distribution on the set A−1, i.e. a belief µ of player 1 in the game G, and a
mixed strategy p1 of player 1 in the game G′ can be perceived as a mixed
strategy of player 1 in the game G with the property that p1(â1) = 0. Let P
denote the set of all mixed strategies of player 1, and let M denote the set
of all mixed strategies of his opponent player 2 in the game G′.

Player 1’s expected utility of his mixed strategy p1 when player 2 chooses
the mixed strategy µ is

ṽ(p, µ) =
∑
b1∈B1

∑
b2∈B2

v(b1, b2)p(b1)µ(b2).

If in particular p1 = δa1 is a pure strategy for player 1 (i.e. a1 is an action in
the set B1) and µ ∈ M is an arbitrary mixed strategy of player 2, then

ṽ(δa1 , µ) =
∑
b2∈B2

v(a1, b2)µ(b2)(1)

=
∑

b2∈A−1

u1(a1, b2)µ(b2)−
∑

b2∈A−1

u1(â1, b2)µ(b2)

= U1(a1;µ)− U1(â1;µ).

By definition, there is no belief that supports the action â1 in the game
G if and only if for each probability distribution µ on A−1 there exists an
action a1 of player 1 such that U1(a1;µ) > U1(â1;µ), and using equation (1)
we conclude that there is no belief that supports â1 if and only if for each
mixed strategy µ ∈ M in the game G′ there is a pure strategy δa1 ∈ P such
that ṽ(δa1 , µ) > 0.

The expected value ṽ(p1, µ) is for each mixed strategy p1 ∈ P a convex
combination of the expected values ṽ(δa1 , µ), where a1 belongs to the set
B1. Therefore, there exists, given µ ∈ M , an action a1 ∈ B1 such that
ṽ(δa1 , µ) > 0 if and only if there exists a mixed strategy p1 ∈ P such that
ṽ(p1, µ) > 0.

To summarize, we have shown that there is no belief µ that supports â1
if and only if

max
p1∈P

ṽ(p1, µ) > 0 for all µ ∈ M ,

that is if and only if
min
µ∈M

max
p1∈P

ṽ(p1, µ) > 0.

But
max
p1∈P

min
µ∈M

ṽ(p1, µ) = min
µ∈M

max
p1∈P

ṽ(p1, µ)
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according to the Max-min theorem for zero-sum games (Proposition 6.1.1).
That there is no belief that supports â1 is therefore equivalent to the condition

max
p1∈P

min
µ∈M

ṽ(p1, µ) > 0,

i.e. to the condition that there is a mixed strategy p∗1 of player 1 in the game
G′ such that ṽ(p∗1, µ) > 0 for all beliefs µ of player 1 in the game G.

Since ṽ(p∗1, µ) is linear function with respect to the second variable and
since every belief µ is a convex combination of the safe lotteries δa−1 over the
set A−1, ṽ(p

∗
1, µ) > 0 for all beliefs µ if and only if

∑
a1∈B1

v(a1, a−1)p
∗
1(a1) = ṽ(p∗1, δa−1) > 0

for all action vectors a−1 in A−1, i.e. if and only if

ũ1(p
∗
1, a−1)− u1(â1, a−1) =

∑
a1∈B1

(
u1(a1, a−1)− u1(â1, a−1)

)
p∗1(a1)

=
∑
a1∈B1

v(a1, a−1)p
∗
1(a1) > 0

for all a−1 ∈ A−1, which means that the action â1 is strictly dominated by
the mixed strategy p∗1.

Thus, we have shown that there are no beliefs that support the action â1
if and only if the action is strictly dominated.

Example 7.1.2 The column player in the game in Example 7.1.1 has no
belief that supports the action R, which is thus strictly dominated. Indeed,
the mixed strategy p2 = 0.2δL + 0.8δM , which means that the action L
is selected with 20% probability and the action M is selected with 80%
probability, dominates R strictly, since

ũ2(T, p2) = 0.2 · 12 + 0.8 · 4 = 5.6 > 5 = u2(T,R)

ũ2(N, p2) = 0.2 · 3 + 0.8 · 6 = 5.4 > 5 = u2(N,R)

ũ2(B, p2) = 0.2 · 5 + 0.8 · 9 = 8.2 > 8 = u2(B,R).

On the other hand, none of the row player’s actions are strictly dominated
because everyone is supported by beliefs.

Exercise

7.1 a) Show for the game in Example 7.1.1 that
(
(13 , 0,

2
3), (

1
3 ,

2
3 , 0)

)
is a mixed

Nash equilibrium.

b) Verify that the row player’s belief 1
3δL+ 2

3δM supports the actions T och B,
and that the column player’s belief 1

3δT + 2
3δB supports the actions L and M .

Download free eBooks at bookboon.com



NON-COOPERATIVE GAMES: AN 
INTRODUCTION TO GAME THEORY – PART I

128

Rationalizability

128

128 7 Rationalizability

7.2 Rationalizability

We have argued that each player should only choose actions that he can
support by beliefs. But all beliefs are not rational. For example, it does
not seem sensible for a player to believe that another player will choose one
for him strictly dominated alternative with positive probability. Each player
should, as he forms his beliefs, assume that his opponents only will choose
actions that they in turn can support by beliefs.

Example 7.2.1 Consider a game G with the following payoff table:

L M R

T (2, 2) (1, 1) (4, 0)

B (1, 2) (4, 1) (3, 5)

The column player’s action M is strictly dominated by L, and by eliminating
the latter alternative we obtain the subgame G1 with payoff table

L R

T (2, 2) (4, 0)

B (1, 2) (3, 5)
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The row player’s action B is strictly dominated in this game, so we elim-
inate B and obtain the subgame G2:

L R

T (2, 2) (4, 0)

The column player’s action R is now strictly dominated, and a final elimina-
tion leads to the trivial game G3:

L

T (2, 2)

with just one outcome (T, L), which we recognize as the Nash equilibrium of
the original game.

Now let us see what arguments are needed for the players to reach this
conclusion.

1. A rational column player does not select the M action because it is
strictly dominated by L, and according to Proposition 7.1.2 there is no
belief under which M is the best choice.

2. If the row player knows that the column player is rational, then he
realizes that the column player does not select the M action. He can
therefore eliminate it from the discussion and is thus in the game G1.
If he is also rational himself, he does not choose B because that action
is strictly dominated by T and therefore has no support in any belief.

3. If the column player is rational, knows that the row of player is rational
and that the row player knows that the column player is rational, then
the column player knows that the row player will select the T action.
Therefore, only the game G2 remains, and in that game, R is strictly
dominated by L. Thus, the column player should select the L action,
and thus the end result is that the players select the action vector
(T, L).

It may be worth noting what kind of knowledge the two players must
possess for the above reasoning to be valid. The row player must know that
the column player is rational. The column player must know that the row
player knows that the column player is rational, which is a ”higher level”
of knowledge. It is not enough for a player to know that the opponent is
rational, but he must also be sure that the opponent knows that the former
player is rational. There are, of course, even higher levels of knowledge. I
may know that my opponent is rational and that he knows I am. But he
may not know I know he knows.
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We will now clarify the above reasoning by introducing the concept of
rationalization. In the game G = 〈N, (Ai), (ui)〉, let us provisionally call
player i’s belief µ reasonable if µ(a−i) = 0 for all action vectors a−i of the
opponents that contain at least one action ak that is not supported by any
reasonable belief of player k. Also, let us call player i’s action ai rationalizable
if it is supported by a reasonable belief of the player.

The recursive definition of the concept of reasonable belief may seem
problematic and, of course, need to be specified. We can do that by first
considering player 1, defining B1 as the set of all actions of the player that
are supported by beliefs. In the subgameG1 with A−1×B1 as set of outcomes,
we define B2 to be the subset of A2 whose actions are supported by beliefs of
player 2, and G2 to be the subgame of G2 with B1×B2×A3×· · ·×An as set of
outcomes. After n steps we have obtaine a subgameGn with B1×B2×· · ·×Bn

as set of outcomes, where Bn consists of the actions that are supported in
the subgame Gn−1 by beliefs of player n. Now we start again with player
1, defining C1 to be the subset of B1 that consists of the actions of player
1 that are supported by beliefs in the subgame Gn. After a number of laps
we end up in a subgame G′ with outcome set Z1 × Z2 × · · · × Zn, in which,
for each player k, every action ak ∈ Zk is supported by some belief. These
beliefs are the reasonable beliefs, and the actions belonging to Zk are player
k’s rationalizable actions.

Instead of defining rationalizable actions in terms of reasonable convic-
tions, however, it is easier to define the concept of rationalizability directly
as follows.

Definition 7.2.1 Player i’s action ai in the game 〈N, (Ai), (ui)〉 is rational-
izable if for each k ∈ N there is a subset Zk with the following two properties:

(i) ai ∈ Zi.

(ii) For each k ∈ N and each action ak ∈ Zk, player k has a belief µ that
supports ak and is zero outside the set Z−k, i.e. µ(a−k) = 0 for all
a−k /∈ Z−k.

Note that if the sets Z1, Z2, . . . , Zn meet the conditions of the definition,
then all actions in Zk are rationalizable for each player k.

Are there always rationalizable actions? The affirmative answer is given
by the next proposition.

Proposition 7.2.1 In every finite game 〈N, (Ai), (ui)〉 there is a unique
largest nonempty subset Z = Z1 × Z2 × · · · × Zn of A = A1 × A2 × · · · × An

with the following property:
For each player i and each action ai ∈ Zi, there exists a belief µ that

supports ai and is zero outside Z−i.
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Proof. We first show that there is a nonempty product set Z with the stated
property and then that there is a largest such set.

Therefore, let p∗ be a mixed Nash equilibrium of the game, and define
the product set Z by for each player i letting

Zi = {ai ∈ Ai | p∗i (ai) > 0}.

It immediately follows from the proof of Proposition 7.1.1 that each action
in Zi is supported by the product measure µ on A−i that is formed by the
mixed strategies in p∗−i, and µ is zero outside Z−i.

To prove that there is a unique largest set Z with the stated property we
consider all product sets that meet the condition of the proposition. There
are of course only finitely many such sets Z1, Z2, . . . , Zm.

Let Z = Z1 × Z2 × · · · × Zn be the product set obtained by defining
Zi = Z1

i ∪ Z2
i ∪ · · · ∪ Zm

i for each player i. This product set meets the
condition of the proposition, because each action ai in Zi belongs to the set
Zk

i for some k and is therefore supported by some belief µ that is zero outside
Zk

−i and then apriori zero outside the larger set Z−i. The set Z is obviously
the unique largest set that meets the condition of the proposition since it
contains all the sets Zk as subsets.
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Example 7.2.2 The product set of rationalizable actions in the game

L M R

T (4, 12) (6, 4) (2, 5)

N (8, 3) (2, 6) (4, 5)

B (7, 5) (1, 9) (3, 8)

is the set Z = {T,N} × {L,M}. The row player’s action T is supported
by the belief δM and the action N is supported by the belief δL, and both
beliefs are zero outside {L,M}. Similarly, the column player’s action L is
supported by the belief δT and the action M is supported by the belief δN .
It is also easy to see that there is no larger set of rationalizable actions than
Z.

The proof of Proposition 7.2.1 shows that all actions that are included
in a mixed Nash equilibrium with positive probability are rationalizable. It
also follows from Proposition 7.1.2 that no strictly dominated action can be
rationalizable. The precise connection between rationalizability and strict
dominance is given by the following proposition.

Proposition 7.2.2 An action in a finite strategic game survives iterated
elimination of strictly dominated actions if and only if the action is rational-
izable.

Proof. Let Z be the product set of rationalizable actions in the game G =
〈N, (Ai), (ui)〉, and let B be a product set of actions that survive iterated
elimination of strictly dominated actions. Let further Gt = 〈N, (At

i), (ui)〉,
t = 0, 1, . . . , T , denote the chain of subgames that through iterated elim-
ination of strictly dominated actions leads from G0 = G to the subgame
GT = 〈N, (Bi), (ui)〉 (compare with Definition 5.4.3). We will prove that
Zi = Bi for each player i.

We begin by inductively proving that Z is a subset of the set At =
At

1 × · · · × At
n for t = 0, 1, . . . , T . The initial step t = 0 is trivial since

A0 = A, so assume that Z ⊆ At for some t < T .
All actions in Zi are by definition supported by beliefs that are zero out-

side the set Z−i and therefore also, because of the induction assumtion, zero
outside the larger set At

−i. This means that all actions in Zi are supported
by beliefs in the game Gt, so it follows from Proposition 7.1.2 that no action
in Zi is strictly dominated when considered as an action in the subgame Gt.
Thus, all actions in Zi survive the elimination of strictly dominated actions
that leads from Gt to the subgame Gt+1, which means that Zi ⊆ At+1

i and
that consequently Z is a subset of At+1.
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This completes the induction set, and at the endpoint t = T we get the
desired inclusion Z ⊆ AT = B.

It remains to prove the converse B ⊆ Z, and for this purpose, it is
sufficient to prove that the product set B = AT satisfies the condition in
Proposition 7.2.1, i.e. that every action ai ∈ AT

i is supported by some be-
lief that is zero outside AT

−i, because Z is the largest product set with this
property.

Let ai be an arbitrary action in AT
i . Since ai is not strictly dominated by

any strategy in the subgame GT , the action ai is (according to Proposition
7.1.2 applied to the subgame GT ) supported by some belief µ of player i
that is zero outside the set AT

−i. This means that ai maximizes the player’s
expected utility Ui(xi;µ) as xi ranges over the set AT

i . The problem is that
we have to show that the belief µ also supports the action ai in the original
game G = G0, i.e. that ai maximizes the expected utility Ui(xi;µ) for all
xi ∈ Ai.

Suppose that is not the case. Then there is a t < T such that ai maximizes
the expected utility Ui(xi;µ) for all xi ∈ At+1

i but not for all xi ∈ At
i. Let bi

an action in At
i that gives maximum; the action bi is in other words an action

in the game Gt that is supported by the belief µ. Since Ui(bi;µ) > Ui(ai;µ), bi
can not belong to the set At+1

i , and hence bi ∈ At
i \At+1

i . This means that the
action bi has been eliminated at the transition from the subgame Gt to the
subgame Gt+1, and it is therefore strictly dominated by some mixed strategy
in the game Gt. This contradicts Proposition 7.1.2 since bi is supported by
the belief µ in the same game.

Our contradiction shows that the action ai is supported by the belief µ
also considered as an action in the game G, and this proves that B satisfies
the condition of Proposition 7.2.1.

Corollary 7.2.3 The product set of actions that survives iterated elimination
of strictly dominated actions is uniquely determined.

Proof. The corollary follows immediately from Proposition 7.2.2, because the
player’s rationalizable actions are uniquely determined according to Propo-
sition 7.2.1,

Example 7.2.3 In the game in Example 7.2.2, the row player’s action B
is strictly dominated by the action N , and by eliminating B we obtain a
subgame where the column player’s action R is strictly dominated by the
mixed strategy 0.25δL + 0.75δM . Iterated elimination of strictly dominated
actions thus leads to the subgame
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L M

T (4, 12) (6, 4)

N (8, 3) (2, 6)

This is consistent with the fact that T and N are the row player’s rationaliz-
able actions, and L and M are the column player’s rationalizable actions.
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Chapter 8

Extensive Games with Perfect
Information

The strategic form describes games in a very compact way, but it is still
possible to analyze many interesting questions. However, the assumption
that all players choose their action plans simultaneously and once and for
all is a limitation that causes certain important aspects to be lost. In many
conflict situations and games, participants can consider and modify their
action plans as the situation evolves and not only at the beginning. The
extensive form is a way to model such situations.

8.1 Game trees

Chess is a board game played by two players, White and Black, who alternate
moves. White moves first and has 20 legal first moves to choose from. Then
it is Black’s turn to move a piece, and Black has also 20 possible first moves.
After that, it is White’s turn, and the number of legal moves now depends
on the position of the pieces on the chessboard. After a number of moves, a
position can arise in which the player to move does not have any legal moves,
either because the player’s king is placed in check and there is no move the
player can make to escape check; in that case the player’s king is checkmated
and the opponent has won, or because the player is not in check but has no
legal move; this situation is called a stalemate and the game is declared a
draw. The game is also a draw when there is no possibility of checkmate for
either side with any series of legal moves due to insufficient material, or if
the same board position has occurred three times with the same player to
move and all pieces having the same rights to move, or if there has been no
capture or pawn move in the last fifty moves by each player. A game can

135
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Figure 8.1. A game tree

also be terminated prematurely by one of the players resigning in a hopeless
position or by the players agreeing on a draw. All chess games therefore end
after a finite number of moves.

We can illustrate chess using a game tree like that in Figure 8.1. The root
of the tree symbolizes the starting position of the game, and the branches
from the root are White’s possible first moves (twenty but in the figure we
have just drawn three). After each of these we have come to a node in the
tree (a position) where it is Black’s turn to move, and Black has a number
of possible moves each symbolized by a branch (in the figure, we have drawn
a variable number despite the fact that Black in reality has twenty possible
moves), etc. The tree in the figure, of course, shows only a small part of the
enormously large game tree of chess, which is so big and complex that it is
not possible to draw it in practice.

Each node in the game tree corresponds to a chess position, but note that
there is no one-to-one correspondance between nodes and configurations of
pieces on the board, because the same configuration may occur after different
series of moves, and the legal moves at a certain position of the game are not
entirely determined by the position of the pieces but may also depend on the
previous moves. (For example, castling is not allowed if the king or the rook
has been previously moved.) However, the branches that emanate from each
node of the game tree are unambiguously defined by the chess rules.

The final positions of chess games, i.e. positions where one of the players
has won or where the game has ended in a draw, corespond to nodes from
which no branches emanate. Each path in the tree from the root up to a
final position corresponds to a specific game of chess.

With the above description of chess as a model, we now make the following
general definition.

Definition 8.1.1 A game tree 〈P, p0, s〉 is a structure consisting of the fol-
lowing components:

• a nonempty set P of positions ;

• a special element p0 ∈ P , the initial position;

• a function s : P → P(P ) from the position set P to the set P(P ) of all

Download free eBooks at bookboon.com



NON-COOPERATIVE GAMES: AN 
INTRODUCTION TO GAME THEORY – PART I

137

Extensive Games with Perfect Information

137

8.1 Game trees 137

subsets of P with the following property:
For each position p �= p0 there is a unique sequence (pk)

n
k=1 of

positions such that pn = p and pk+1 ∈ s(pk) for k = 0, 1, . . . , n− 1.

The positions belonging to s(p) are called the successors of position p,
and the set-valued function s is the successor function. Positions without
successors are called terminal positions. The set of all nonterminal positions
is denoted P ◦.

A pair (p, q) consisting of a nonterminal position p and a successor q of p
is called a move.

A move sequence of length n−1 from p1 is a sequences (pk)
n
k=1 of positions

such that pk+1 is a successor of pk for k = 1, 2, . . . , n − 1, or equivalently,
a sequence of n − 1 moves (pk, pk+1), k = 1, 2, . . . , n − 1. An infinite move
sequence from p1 is an infinite sequence (pk)

∞
k=1 of positions such that pk+1

succeeds pk for all positive integers k.
A move sequence that starts in the game tree’s initial position p0 and

ends in a terminal position or continues indefinitely is called a play. The set
of all plays in a game tree is denoted Π.

We will often assign names to the moves in a game tree in order to be
able to refer to them comfortably. In addition, we will usually specify move
sequences by listing the successive moves instead of the successive positions.
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Example 8.1.1 We illustrate game trees by drawing them as ”trees” with
the initial position at the bottom as root and with line segments as ”branches”
from each position to each succeeding position. Figure 8.2 shows a game tree
with nine positions. Position p0 is the initial position, p0, p1, p2 and p3 are
nonterminal positions, and p4, p5, p6, p7 and p8 are terminal positions. We
have given the moves letter names so that for example the move (p0, p1) is
called A. The move sequence p0, p1, p3, p8 is a play of length 3 that can also
be described as ACH. There are a total of five plays, namely ACG, ACH,
AD, BE and BF .
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Figure 8.2. The game tree in Example 8.1.1.

Definition 8.1.2 A game tree is finite if its position set P is finite. A game
tree is of finite height if there is a number c such that no play has length
greater than c, and the height of the game tree is the length of the longest
play in the tree.

All finite game trees are of course of finite height, but the converse does
not hold.

Exercises

8.1 Give an example of a non-finite game tree of finite height.

8.2 Give an example of a game tree of infinite height where all plays have finite
length.

8.2 Extensive form games

We have introduced the concept of game tree 〈P, p0, s〉, but to make a game
of the tree we also need players and rules that determine who to perform
the moves in the nonterminal positions. Let N = {1, 2, . . . , n} be the set of
players. We assume that in each nonterminal position p of the game tree only
one player is allowed to make a move, and if we denote that player Pl(p),
we have thereby also defined a function Pl from the set P ◦ of nonterminal
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positions to the set N of players. Obviously, it is unnecessary to decide who
should act at a terminal position, as there are no moves to do there.

In order to give the players incentives to act, we also need to specify their
preferences for the different outcomes of the game. In chess, each player
prefers a win in front of a draw and a draw in front of a loss, which we can
of course also indicate with a utility function that allocates 1 to wins, 1

2
to

draws and 0 to losses.

In an arbitrary game, we assume similarly that each player i has a pref-
erence relation �i (or a utility function ui) that is defined on the set Π of
all plays. If there are no infinite plays, i.e. if each play ends in a terminal
position, then there is a one-to-one correspondance between plays and ter-
minal positions, and we may as well assume that the preference relations are
defined on the set of all terminal positions in the game tree.

We are now ready for the formal definition of an extensive game.

Definition 8.2.1 An n-person game 〈N,P, p0, s,Pl , (�i)〉 in extensive form
with perfect information consists of

• a set N = {1, 2, . . . , n} of players ;

• a game tree T = 〈P, p0, s〉;
• a function Pl : P ◦ → N , the player function;

• for each player i ∈ N a preference relation �i on the set Π of all plays.

The game has a finite horizon if the game tree T has a finite height, and
the game is finite if the game tree is finite.

Remark. The above definition does not require all players in N to participate
by making moves. In other words, the player function Pl need not be sur-
jective. The reason for allowing passive players is that we thereby simplify
some inductive arguments that we will have to do later. For the same rea-
son, we do not require that there be any nonterminal positions. A game with
no nonterminal position is of course trivial − it only consists of the initial
position, and the player function is empty.

The add ”perfect information” is motivated by the fact that the players
each time they have to perform a move know all previous moves and the
exact position of the game. In the next chapter we will study games where
this information is not available.

When we illustrate extensive games in figures, we describe the player
function and the utility functions by entering the player value Pl(p) at each
nonterminal position p and the players’ utility values (u1(p), . . . , un(p)) at
each terminal position p. However, we omit the utility values in cases where
these do not matter in the current discussion.
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A B

C D E F

G H

Figure 8.3. The game in Example 8.2.1.

In a specific instance of the extensive game, player Pl(p0) begins by se-
lecting one of the possible moves at the initial position p0, i.e. the player
chooses a position p1 ∈ s(p0). Then player Pl(p1), the player at position p1,
makes a move by selecting a position p2 that succeeds p1. Then player Pl(p2)
chooses a successor p3 of position p2, and so on. The game is over as soon as
any of the succeeding positions, pk say, is a terminal position with the play
p0, p1, . . . , pk as a result. An infinite play is obtained if the players constantly
choose nonterminal positions.

Example 8.2.1 Figure 8.3 shows an extensive two-person game with the
tree in Figure 8.2 as game tree. Player 1 moves in the initial position p0 and
in p3, and player 2 moves in positions p1 and p2.

The move sequence ACH corresponds to the play p0p1p3p8, which results
in 2 utility units for player 1 and 4 utility units for player 2. Therefore, both
players prefer this play in front of for example the play BE. On the other
hand, the play BF is better for player 1.

Strategies

We will now define the concept of strategy for games in extensive form so
that it corresponds to actions or pure strategies for games in strategic form.

A strategy for a player is a plan that describes what the player should
do in each position of the game, where it is the player’s turn to perform a
move, regardless of whether the player can reach that position or not if he
follows his plan.

This differs from the normal use of the concept of strategy in, for example,
chess. No chess player can have a game plan that describes what to do in
all possible positions, but the game plan develops during the game. Good
chess players usually follow pre-planned plans during the opening game, let’s
say during the first ten moves, plans that mean that they know in advance
how to respond to all sensible moves of the opponent. The first moves are
therefore performed quickly and follow traditional courses.

However, theoretically we can imagine that both players have plans for
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everything (including positions that can not occur if a player follows his
plan). In that case, it is of course unnecessary that the players themselves
play the game. Instead, they can give their respective plans to a third party,
a referee who can then play the game according to their intentions and see
how it ends.

The corresponding applies to all extensive games if the players have com-
plete plans for all positions in the game − the outcome is then completely
determined by the plans.

We are now ready for the formal definition.

Definition 8.2.2 Let Pi denote the set of all positions in the extensive game
〈N,P, p0, s,Pl , (�i)〉 where player i is supposed to make a move, i.e.

Pi = {p ∈ P ◦ | Pl(p) = i}.

A strategy σ for player i is a function σ : Pi → P with the property that
σ(p) is a successor of p for each p ∈ Pi.

The set of all strategies of player i is denoted by Σi, and we put

Σ = Σ1 × Σ2 × · · · × Σn.
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Remark. If player i does not participate actively in the game, then Pi is
the empty set and i’s only strategy is the empty function This is of course
compatible with the player not doing anything.

If σ is a strategy of player i and p is a position belonging to Pi, then
(p, σ(p)) is by definition one of the player’s possible moves at p. So instead of
definining strategies as functions, we might as well define a strategy for player
i as a set of moves that contains exactly one move (p, p′) for each position
p ∈ Pi. We will switch freely between these two equivalent interpretations
and use the variant that is simplest in the current situation. In our examples
and figures we often assign names to the moves but not to the positions, and
then it is most natural to describe strategies by listing the moves that are
contained in them.

Example 8.2.2 Consider the game in Example 8.2.1. Player 1 has four
strategies, which written as sets of moves are {A,G}, {A,H}, {B,G} and
{B,H}. From now on we will drop the set brackets and describe strategies
by just listing their moves in an arbitrary order. Player 1 strategies can
thus be described briefly as AG, AH, BG, and BH. Player 2 also has four
strategies, and with the corresponding notation, these can be written as CE,
CF , DE and DF .

The strategy AG means that player 1 chooses the move A in the initial
position p0 and the move G if the play reaches the position p3.

The strategy BG means that player 1 chooses the move B in the initial
position p0 and that he should choose the move G in the position p3. But if
the player starts with the move B then it is inpossible for the play to reach
the position p3. In other words, the strategy describes an action option for
a situation that can not occur if the player follows his strategy. This is a
consequence of our definition of strategy, because the definition requires the
player to specify a move in each position that belongs to him.

Is it possible to ease this requirement? The Nash equilibrium concept,
which we will immediately study, can be formulated with a more intuitive
strategy concept that only requires the strategies to be defined in positions
that can arise if the strategies are followed. However, the Nash equilibrium
concept is not particularly compelling for extensive games, so we will intro-
duce an intuitively better equilibrium concept, and then we need the strategy
concept in the version we have given above.

One way to understand the strategy BG, which does not make it so
unreasonable, is to see it as a plan for what the player would do in the
position p3 if he by mistake would have chosen the move A instead of B in
the initial position.
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Each strategy vector σ = (σ1, σ2, . . . , σn) ∈ Σ determines uniquely a play
π(σ) in the game, i.e. a sequence of moves that starts in the initial position
and either ends in a terminal position or goes on forever. The map σ �→ π(σ)
is in other words a function

π : Σ → Π

from the product Σ = Σ1 ×Σ2 × · · · ×Σn of the players’ strategy sets to the
set Π of all plays.

The formal definition of the play π(σ), which is called the outcome of the
strategy vector σ, is straightforward and looks like this:

Definition 8.2.3 Let σ = (σ1, σ2, . . . , σn) be a strategy vector in the exten-
sive game 〈N,P, p0, s,Pl , (�i)〉.

Assume inductively that the position sequence (pj)
k
j=0 has already been

defined. Stop if pk is a terminal position. Otherwise, let ik = Pl(pk) be
the player in turn to make a move in position pk and set pk+1 = σik(pk).
The position pk+1 is thus the position that succeeds the pk position if player
Pl(pk) follows his strategy.

The procedure will either end with a finite play p0, p1, . . . , pk or give rise
to an infinite play, and the play obtained is the outcome π(σ) of σ.

Example 8.2.3 We continue our study of the game in Example 8.2.1, which
is again shown in Figure 8.4. Let σ1 be player 1’s strategy AH and σ2 player
2’s strategy CF . This means that player 1 will start with the move A leading
to position p1, where player 2 continues with the move C leading to position
p3, where player 1 does the move H leading to the terminal position p8.
The outcome π(σ1, σ2) is thus the play p0p1p3p8, for which we also use the
notation ACH.
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Figure 8.4

Player 1’s strategy σ1 and player 2’s strategy σ′
2 = DE results correspond-

ingly in the outcome π(σ1, σ
′
2) = AD. A table of outcomes for all strategy

combinations looks like this:
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CE CF DE DF

AG ACG ACG AD AD

AH ACH ACH AD AD

BG BE BF BE BF

BH BE BF BE BF

Reduction from extensive to strategic form

The players’ preference relations�i, or utility functions ui, are apriori defined
on the set Π of all plays. However, they give rise to preference relations �′

i,
or utility functions u′

i respectively, on the product Σ of strategy sets via the
following definition:

σ �′
i τ ⇔ π(σ) �i π(τ)

or

u′
i(σ) = ui(π(σ)).

It is immediately verified that the relations �′
i are preference relations,

respectively that the functions u′
i are utility functions, on Σ. This makes it

possible to transfer a game in extensive form 〈N,P, p0, s,Pl , (�i)〉 to a game
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in strategic form, namely to the strategic game 〈N, (Σi), (�′
i)〉. The latter

game is called the reduced strategic form of the extensive game.

Example 8.2.4 In the previous example, we determined the outcomes of
all strategy combinations for the game in Example 8.2.1. In Figure 8.4, the
payoffs to the players are listed at the terminal positions, and by entering
these payoffs in the table of outcomes, we obtain the following strategic form
of the game, where player 1 is the row player as usual:

CE CF DE DF

AG (3, 3) (3, 3) (0, 1) (0, 1)

AH (2, 4) (2, 4) (0, 1) (0, 1)

BG (1, 2) (4, 1) (1, 2) (4, 1)

BH (1, 2) (4, 1) (1, 2) (4, 1)

Nash equilibrium

We assume that every player of an extensive game tries to choose his strategy
so that his outcome is as good as possible, but just like in strategic games
there is generally no outcome that is best for all players. We must therefore
focus on defining and studying different kinds of equilibrium solutions. The
following equilibrium definition is natural, given the corresponding definition
for strategic games.

Definition 8.2.4 A strategy vector σ∗ ∈ Σ = Σ1 × Σ2 × · · · × Σn in an
extensive game is called a Nash equilibrium if, for each player i and each
strategy τi ∈ Σi,

π(σ∗
−i, σ

∗
i ) �i π(σ

∗
−i, τi).

The following proposition is a trivial consequence of the definition of the
reduced strategic form of an extensive game.

Proposition 8.2.1 A strategy vector σ∗ = (σ∗
1, σ

∗
2, . . . , σ

∗
n) is a Nash equi-

librium of an extensive game if and only if it is a Nash equilibrium of the
reduced strategic form of the game.

Example 8.2.5 The game in Example 8.2.1 has three Nash equilibria,
namely (AG,CE), (BG,DE) and (BH,DE). This follows immediately from
the payoff table in Example 8.2.4.

A Nash equilibrium should be a stable and trustworthy solution, but
there is a problem with the Nash equilibrium (BG,DE) (and similarly with
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(BH,DE)) which makes it difficult to take it seriously. The problem does
not appear in the strategic formulation of the game, but it occurs as soon as
you take into account that the players of extensive games choose their moves
in succession.

The reason why the strategy vector (BG,DE) is a Nash equilibrium is
the fact that player 2 has a potential threat that could prevent player 1 from
choosing the strategy AG, namely the move D, which in that case would
result in the play AD with payoff 0 to player 1. But this threat is not
very credible, because if player 1 starts with the move A, then player 2 is
guaranteed at least 3 utility units by the move C, which is better than 1
utility unit for the move D. Under such circumstances, a rational player
should not choose D.

To get around this problem, we will introduce a more stringent equilib-
rium concept in the next section.

Exercises

8.3 Consider the extensive game in Figure 8.5.

a) List the players’ strategies.
b) Determine all Nash equilibria.
c) Reduce the game to strategic form.
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Figure 8.5

8.4 Two people should choose one of three options A, B and C by successively
excluding one of them. First, person 1 excludes one of the options, and then
person 2 excludes one of the two remaining options. The option remaining after
these two rounds becomes the choice of the people. Formulate the procedure
as an extensive game and determine the Nash equilibria in cases where the two
persons’ preferences for the alternatives are given by

a) A �1 B �1 C and C �2 B �2 A b) A �1 B �1 C and C �2 A �2 B.

8.5 Charlie and Lisa use the following method to split $ 100. Charlie offers Lisa
$x, where x is an arbitrary integer in the range of 0 ≤ x ≤ 100. If Lisa
accepts the offer, Charlie will retain the remaining $ (100 − x). However, if
Lisa rejects the offer, none of them will receive any money. Both Charlie and
Lisa only care about the amount they receive and prefer to get as much as
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possible. Formulate the procedure as an extensive game and determine the
Nash equilibria. (The game is usually called the ultimatum game.)

8.6 Consider the same situation as in the previous exercise, but assume that the
amount offered may be any real number x in the interval [0, 100]. Formulate
this situation as an extensive game, and determine the Nash equilibria. The
new game is of course no longer a finite game.

8.3 Subgame perfect equilibria

By ”cutting the branch” that leads to a position p in a game tree we get a
new game tree with p as the initial position. We call this tree a subgame
tree. The formal definition reads as follows:

Definition 8.3.1 Let p be a position in the game tree T = 〈P, p0, s〉, and let
P ′ be the set of positions that consists of p and all positions q ∈ P that can
be reached from p by a sequence of moves in the game tree. Let moreover s′

denote the restriction of the successor function s to the set P ′, i.e. s′(q) = s(q)
for all q ∈ P ′. Then Tp = 〈P ′, p, s′〉 is a game tree with p as initial position,
and it is called a subgame tree of T .
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Each play π′ in a subgame tree Tp with p as the initial position can be
uniquely extended to a play π in the original game tree T by starting with
the unique sequence of moves that leads to p from the initial position p0 in
T , and then continuing with the play π′. The assignment π′ �→ π is obviously
an injective map from the set Πp of all plays in the subgame tree Tp to the
set Π of all plays in T .

It is now obvious what should be meant by a subgame of an extensive
game; a subgame is formed by starting in an arbitrary position, forgetting
what has happened before. The exact definition looks like this:

Definition 8.3.2 Let G = 〈N,P, p0, s,Pl , (�i)〉 be an extensive game, and
let p be an arbitrary position in the game. The game Gp = 〈N, Tp,Pl

′, (�′
i)〉,

where

• Tp is the subgame tree of T = 〈P, p0, s〉 with p as initial position;

• the player function Pl ′ is the restriction of the player function Pl to
the set of all nonterminal positions in Tp;

• the preference relations �′
i are defined on the set Πp of all plays π′ in

Tp by declaring π′
1 �′

i π
′
2 if and only if π1 �i π2, where π1 and π2 are

the unique extensions in T of the plays π′
1 and π′

2;

is called a subgame of G.

Each strategy σi for player i in the game G gives naturally rise to a
strategy σ′

i in the subgame Gp; the function σ′
i is simply the restriction of

the strategy σi to those positions of the subgame Gp where it is the player’s
turn to perform a move.

Example 8.3.1 Figure 8.6 shows the game tree T of a game G that we have
already met in Example 8.2.1 and three subgame trees Tp1 , Tp2 and Tp3 . Each
play in the subgame Tp1 can be extended uniquely to a play in the game tree
T ; for example, the play ACH is the extension of the play CH.

In the game G, AH is a strategy for player 1. The restriction of this
strategy to the three subgames Gp1 , Gp2 and Gp3 are the strategy H, the
empty strategy, and the strategy H, respectively. Player 2 has CE as one
of his strategies in the game G; the restriction of this strategy to the three
subgames are in turn C, E and the empty strategy.

The gameG has a natural solution, which we will now determine. Suppose
we for some reason have come to the position p3. This means that we are in
the initial position of the Gp3 subgame whose game tree has height 1. For
the player in turn to move, i.e. player 1, there is only one rational move, the
move G, because this move gives him more payoff than the other move H.
In other words, player 1’s optimal strategy in the subgame is the G strategy.
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Figure 8.6. At the top a game G (and the corresponding game tree T ), at the
bottom the three subgames Gp1 , Gp2 and Gp3 (and the corresponding game trees).

In Figure 8.6 we have highlighted this by thickening the edge G. Player 2,
of course, can not affect the outcome of the subgame Gp3 .

Similarly, player 2’s optimal strategy in the subgame Gp2 is the strategy
E, which benefits him more than the other strategy F .

Suppose now that the game has progressed to the p1 position, which is
the initial position of the subgame Gp1 . Player 2 is to move, and he can now
figure out that player 1’s optimal strategy in position p3 consists in selecting
the G move which gives 3 utility units to player 2, which is more than player
2 receives through the move D. Player 2’s optimal strategy in the game Gp1

is thus the C strategy, which we have highlighted by a thick edge. Note that
the strategy vector (G,C) is a Nash equilibrium in the game Gp1 , because
player 1 loses by unilaterally switching from G to H, and player 2 loses by
unilaterally changing from C to D.

Consider now the initial position p0 of the original game G. If player
1 selects the A move, the optimal continuation of the two players in the
subgame Gp1 will result in the play ACG with 3 utility units to player 1.
If player 1 instead chooses B, the optimal continuation of the subgame Gp2

will result in the play BE with only 1 utility unit to player 1. Player 1’s
optimal move in the starting position is thus A, and his optimal strategy in
the original game is the strategy AG, while player 2’s optimal strategy is
CE.

The strategy vector (AG,CE) is a Nash equilibrium of the game G with
the special feature that the restriction of the vector to each subgame is a
Nash equilibrium of the subgame. This property distinguishes it from the
two other less credible Nash equilibria that we found when we studied the
game G in Example 8.2.5.
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The characteristics of the Nash equilibrium in the previous example are
intuitively very appealing and justify the following general definition.

Definition 8.3.3 A strategy vector σ = (σ1, σ2, . . . , σn) in an extensive game
G is called a subgame perfect equilibrium if for each subgame of G the re-
striction of the strategy vector σ to the subgame is a Nash equilibrium of the
subgame.

Example 8.3.2 The strategy vector (AG,CE) is a subgame perfect equi-
librium of the game in the previous example.

The way to argue in Example 8.3.1 can be generalized and leads to what
is commonly called backward induction.

Proposition 8.3.1 Let G = 〈N,P, p0, s,Pl , (�i)〉 be an extensive game with
initial position p0, and consider the subgames Gp for each successor p of p0,
i.e. for each p ∈ s(p0).

Assume that each such subgame Gp has a subgame perfect equilibrium

σ∗
p = (σ∗

p1, σ
∗
p2, . . . , σ

∗
pn),

and let π∗
p denote the corresponding play in Gp. Let Π∗ denote the set of all

plays that are obtained by extending these plays to plays in G, i.e. all plays
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of the type p0, π
∗
p that starts with the move (p0, p) and then continues with

the play π∗
p.

Let i0 be the player in turn to make a move at the initial position p0, and
suppose there is a first move (p0, p) such that the play p0, π

∗
p is a maximal

element in the set Π∗ with respect to the player’s preference relation �i0.
(There is certainly such a maximal element if the set s(p0) of successors to
the initial position is finite.)

Now extend each player j’s strategies σ∗
pj to a strategy σ∗

j in the game
G by defining σ∗

j as the uniquely determined strategy whose restrictions to
the subgames Gp are equal to σ∗

pj, in the case j = i0 supplemented with the
definition σ∗

i0
(p0) = p.

Then

σ∗ = (σ∗
1, σ

∗
2, . . . , σ

∗
n)

is a subgame perfect equilibrium of the game G, and all subgame perfect
equilibria of G are formed in this way.

Proof. The restrictions of the strategies σ∗
i to the subgames Gp are by def-

inition subgame perfect equilibrium strategies of these subgames, and they
are therefore Nash equilibrium strategies of every proper subgame of G. So
it suffices to show that σ∗ is a Nash equilibrium of the game G.

First consider an arbitrary strategy τi0 for player i0, and let (p0, p) be
the first move of this strategy. The remaining part of the play will then
take part in the subgame Gp. Since the restrictions to the subgame Gp

of the players’ strategies σ∗
j are Nash equilibrium strategies of this game,

the strategy vector (σ∗
−i0

, τi0) will result in a play with an outcome that is
not preferred by player i0 when compared with the outcome of the Nash
equilibrium σ∗

p of the subgame Gp, and this outcome, in turn, is not better
than the outcome of σ∗ because of the definition of the first move (p0, p).
This proves that player i0 does not profit from unilaterally switching from
strategy σ∗

i0
to any other strategy τi0 .

Now, let τj be an arbitrary strategy for any player j other than player
i0, and suppose that all players except j stick to their strategies in σ∗. In
particular, player i0 does so, which means that the strategy vector (σ∗

−j, τj)
results in a play that after one move takes place in the subgame Gp and then
is identical to the play obtained when all players except player j use their
Nash equilibrium strategies σ∗

p and player j uses the restriction of τj to the
subgame Gp. For player j, this play can not be better than the play given by
the Nash equilibrium σ∗

p of Gp, which apart from the first move is the play
in G given by the strategy vector σ∗.

This concludes the proof of the proposition.
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The construction in Proposition 8.3.1 gives rise to the following algorithm.

Algorithm for determining subgame perfect equilibria of extensive
games G with finite horizon

1. Set k = 0. The only subgame perfect strategy of subgames Gp, when
p is a terminal position, is the empty strategy.

2. Stop if the height of G’s game tree is equal to k. Use otherwise Propo-
sition 8.3.1 to determine all subgame perfect equilibria of all subgames
with game trees of height k + 1.

3. Set k := k + 1 and return to step 2.

For the induction step 2 to work, there must exist optimal moves, which
obviously is the case if the game is finite.

As a corollary of Proposition 8.3.1 and the algorithm we get the following
result.

Proposition 8.3.2 Each finite extensive game with perfect information has
a subgame perfect equilibrium.

Corollary 8.3.3 Each finite extensive game with perfect information has a
Nash equilibrium.

Example 8.3.3 Chess is a finite extensive game and therefore has a Nash
equilibrium. The game is furthermore strictly competitive, so White has
the same payoff in each Nash equilibrium (if there are several), according to
Proposition 2.5.3. If the value of the game is 1, then White has a strategy
that guarantees him to win no matter how Black plays, if the value is 1

2
, both

players have strategies that guarantee them at least a draw, and finally if the
value is 0, then Black has a strategy that guarantees him to win regardless
of how White plays. Theoretically, chess is therefore an uninteresting game.
But the game’s value is not known, and even less are the Nash equilibria,
and because of the great complexity of chess, it is unlikely that they ever will
be calculated.

Example 8.3.4 An extensive game can have more than one subgame perfect
equilibrium. Consider the game in Figure 8.7. Using backward induction we
get two subgame perfect equilibria, namely (B,CE) and (A,DE). The first
one results in the play BE with payoff (3, 4). The second equilibrium vector
results in the play AD with payoff (5, 2), which is better for player 1 and
worse for player 2. In this game there is no way for player 1 to rationalize
the choice of strategy B instead of A or vice versa, because in the initial
position he can not predict if player 2 will choose C or D if he chooses the
move A,
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Figure 8.7. A game with two subgame perfect equilibria.

The problem in Example 8.3.4 can not arise in games where the optimal
choice of strategy is unique in each subgame.

Exercises

8.7 Determine all subgame perfect equilibria of the game in Exercise 8.3.

8.8 Determine all subgame perfect equilibria of the game in Exercise 8.4.

8.9 Determine all subgame perfect equilibria of the game in Exercise 8.5.

8.10 Determine all subgame perfect equilibria of the game in Exercise 8.6.
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8.11 Two people use the following method to divide a cake. Person 1 divides the
cake into two pieces, after which person 2 chooses one of the parts and person
1 gets the remaining part. They only care about the size of their own cake
piece. Formulate the method as an extensive game. How is the cake divided
by a subgame perfect equilibrium?

8.12 Find all subgame perfect equilibria of the game in Figure 8.8.
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Figure 8.8

8.13 The game in Figure 8.9 is called the centipede game. The game has 100
nonterminal positions that are located at the integer points 1, 2, . . . , 100 on
the line. From each nonterminal position it is possible to move either one step
to the right or one step downwards. The game starts in position 1 with a move
by player 1, who will then move at all odd positions 2k − 1, while it is player
2’s turn to move at the even positions 2k. The payoff to the two players at a
terminal position under an odd number 2k − 1 is given by the pair (k, k), and
under an even number 2k by the pair (k − 1, k + 2).
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Figure 8.9

a) Determine the subgame perfect equilibria.
b) Is it likely that the players would choose this solution?
c) Are there any other Nash equilibria?
d) Is there any Nash equilibrium with a payoff that differs from the payoff at

the subgame perfect equilibrium?

8.4 Stackelberg duopoly

In this section we will study a market model for two firms that produce and
sell an identical product. Firm i’s cost of producing qi units of the product is
Ci(qi), and just as in the Cournot model, the price of the product depends on
the total output − if this is Q = q1+q2, the product is sold at the price P (Q)
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per unit. It is the size of the output, which is the firm’s strategic variable,
but contrary to the Cournot model, the firms do not take their strategic
decisions independently, but the market leader, firm 1, first determines its
output, and the other firm knows this decision when it decides its output.
We assume that the two firms can choose any non-negative number as size
of their outputs.

The problem of deciding the optimal outputs can be formulated as an
extensive two-person game, and the game has been named after economist
von Stackelberg who studied a similar asymmetric situation.

The players in the Stackelberg game are of course the two firms. Firm 1
begins by selecting any non-negative number q1, whereupon firm 2 continues
by also selecting an arbitrary non-negative number q2. Then the game is
over. This gives rise to an infinite game tree, as indicated by Figure 8.10.

• 1

2



........................................................................................................................................................................................................................................................................................................................................................................................................................



.............................................................................................................................................................................................................................................................................................



.....................
.....................
.....................
.....................
......................
...............................

...............................
...............................

...............................
.........................

q1

q2

Figure 8.10. Stackelberg’s duopoly game. The intervals symbolize R+.

A play in the game is in other words an ordered pair (q1, q2) of nonneg-
ative numbers, and the set of all plays coincides with the Cartesian product
R+ ×R+. The two players value their plays using their respective profit
functions Vi(q1, q2) = qiP (q1 + q2)− Ci(qi).

Since the game has a finite horizon, we can determine a subgame perfect
equilibrium using backward induction:

1. Given that firm 1 has chosen the output q1, firm 2 should maximize
the function q2 �→ V2(q1, q2). Let us assume that the maximum exists
and is assumed in a unique point m(q1).

2. Firm 1’s problem now consists in maximizing its profit given that firm
2 acts in accordance with paragraph 1. The output q1 results in the
profit

V1(q1,m(q1)) = q1P (q1 +m(q1))− C1(q1),

so the problem consists in maximizing this function. Let us assume
that the maximum exists and is assumed in a unique point q1.

3. Under these conditions, the game has a unique subgame perfect equi-
librium, namely (q1, q2), where q2 = m(q1). This equilibrium is called
the Stackelberg equilibrium solution.

Remark. If there are several maximizing points in step 1, then it is of course
necessary to carry out the investigation in step 2 for each maximum point in
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order to obtain all equilibrium solutions. The same applies if the maximum
point in step 2 is not unique.

Example 8.4.1 Let us determine the Stackelberg equilibrium solution in
the case of a linear inverse demand function

P (Q) =

{
a−Q if 0 ≤ Q ≤ a,

0 if Q > a

and the same constant piece cost c for both companies, where 0 < c < a.
Firm 2’s profit V2(q1, q2) is for 0 ≤ q1 ≤ a− c given by the second degree

polynomial q2(a − c − q1 − q2) in the interval 0 ≤ q2 ≤ a − c − q1, while
the profit is negativ outside that interval. The maximum is attained for
q2 = 1

2
(a − c − q1). Firm 2’s profit is equal to −cq2 if q1 > a − c, so the

maximum is in this case assumed for q2 = 0. This means that

m(q1) =

{
1
2
(a− c− q1) if 0 ≤ q1 ≤ a− c,

0 if q1 > a− c.

Hence,

q1 +m(q1) =

{
1
2
(a− c+ q1) if 0 ≤ q1 ≤ a− c,

q1 if q1 > a− c,
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and the profit of firm 1 is therefore

V (q1,m(q1)) =





1
2
q1(a− c− q1) if 0 ≤ q1 ≤ a− c,

q1(a− c− q1) if a− c < q1 ≤ a,

−cq1 if q1 > a.

The maximum is attained at the point 1
2
(a − c). Stackelberg’s equilibrium

solution (q1, q2) is therefore given by

q1 =
1

2
(a− c) and q2 = m(q1) =

1

4
(a− c).

The total supply at the equilibrium point is equal to 3
4
(a − c), the price is

1
4
(a + 3c), and firm 1’s profit is 1

8
(a − c)2, while firm 2’s profit is half that

big, that is 1
16
(a− c)2.

Compare with the Cournot model (see Example 3.1.1), where the total
equilibrium supply is 2

3
(a − c) to the price 1

3
(a + 2c) with a profit for each

company equal to 1
9
(a − c)2. Stackelberg’s model gives a greater supply, a

lower price and a lower overall profit than the Cournot model.

Exercises

8.14 Determine the Stackelberg equilibrium solution if P (Q) = 64(Q + 2)−1 and
both companies have the same linear cost function C(q) = 9q.

8.15 Consider a duopoly with the sole assumption regarding the two firms’ profit
functions V1(q1, q2) and V2(q1, q2) that there is a Cournot equilibrium and a
Stackelberg equilibrium. Prove that the market leading firm, firm 1, receives
a higher profit from the Stackelberg solution than from the Cournot solution.

8.5 Chance moves

The extensive games we have studied so far have been deterministic, i.e.
when the players have chosen their strategies and play according to them,
the outcome is entirely given. But there are also many sequential games in
which there are situations where the continuation is due to chance. This is
true not least in many popular parlor games, where you are forced to draw a
playing card or perform a roll of the dice, and where the continuation of the
game then depends on the color or the value of the drawn card or the number
of eyes on the dice. In many more serious games, players, when deciding on
their action plans, must also take into account future situations that they
themselves can not control, situations that depend on a whimsical nature
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or chance, and where at best it is possible to identify a number of possible
alternatives that can be assigned probabilities.

Example 8.5.1 Instead of starting with a general definition, we begin with
an example. Figure 8.11 illustrates an extensive two-person game with two
nonterminal positions marked with a c. The letter c stands for ”chance”, and
none of the players should make a choice there but the continuation is due to
chance. The probabilities of the different random or chance moves that lead
from such a position have been marked along the respective moves. The two
chance moves x and y are equally probable because the probability of each
of them is 1

2
. In the second chance position, the probability of the move z is

equal to 1
4
and the probability of the move w equals 3

4
.
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(4, 24) (0, 0)

Figure 8.11

Assume that player 1 has decided to make the moves B and E, and that
player 2 has decided for the moves D and H − the thick marked edges in
the figure. The outcome of the game is then not given but depends on which
random moves will actually be made in the positions where this is applicable.
If chance results in the moves x and z, which occurs with probability 1

8
, the

players’ strategies lead to the play BxE with payoff (4, 2) to the two players.
If instead the chance moves are y and w, which occurs with probability 3

8
,

then we get the play ByHw with payoff (0, 0).

The following table summarizes all possibilities:

Random moves Probability Play Payoffs

x, z 1
8

BxE (4, 2)

y, z 1
8

ByHz (4, 24)

x, w 3
8

BxE (4, 2)

y, w 3
8

ByHw (0, 0)

Using the above table we can now compute the two players’ expected
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utilities of the strategy combinations BE and DH. They are

U1(BE,DH) =
1

8
· 4 + 1

8
· 4 + 3

8
· 4 + 3

8
· 0 =

5

2
,

U2(BE,DH) =
1

8
· 2 + 1

8
· 24 + 3

8
· 2 + 3

8
· 0 = 4.

Similarly, we could calculate the players’ expected utilities for all strategy
vectors, and it should now be obvious what should be meant by a Nash
equilibrium − it is a strategy vector with the property that no player can
increase his expected utility by unilaterally changing strategy.

In this example, it is easy to see that (BE,DH) is not a Nash equilibrium.
Player 1 profits from unilaterally switching to the AE strategy, which results
in the play AD with the expected payoff (in this case, sure payoff) of 3 units
to player 1.

The concept of subgame perfect equilibrium can be naturally generalized
to games with random moves, and the method of backward induction works
for games with finite horizon as in the game above. For each position, we
can ”backwards” gradually calculate the players’ expected payoffs for the
subgame starting from the position in question, given that the players choose
their best possible strategies in the subgame.
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Example 8.5.2 Figure 8.12 shows the result of the successive computa-
tions needed to compute the subgame perfect equilibrium of the game in
Example 8.5.1. In turn, we consider the subgames that start in the positions
marked p5, p4, p3, p2, p1 and p0.
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Figure 8.12. Computation of the subgame perfect equilibrium of the game in
Example 8.5.1 and Figure 8.11 using backward induction.

The move at position p5 is a random move, and the two players’ expected
utilities after this move are given by the pair (1, 6) (= 1

4
(4, 24)+ 3

4
(0, 0)). We

note this in the game tree by writing the number pair (1, 6) below the p5
node.

Consider now the subgame that starts in p4. The move that gives player
2 the highest expected payoff is the move H, giving him the expected utility
6 (and player 1 expected utility 1). We highlight this in the figure with a
thick edge H and by writing the number pair (1, 6) below the node p4.

In the subgame starting at p3, E is the best move for player 1; this
move results in a play with the (expected) payoffs (4, 2). We thicken the
corresponding edge and write the expected payoffs below the p3 node.

The expected payoffs for the subgame starting at position p2, where a
random move is performed, are (2.5, 4) (= 1

2
(4, 2) + 1

2
(1, 6)), provided that

the players follow their subgame strategies calculated so far.
The D strategy is the best strategy for player 2 in the subgame starting

at p1, and it gives the players the payoffs (3, 6).
Therefore, at the initial position p0, it is best for player 1 to select the A

move, as it gives the player the expected utility 3. We have thus found that
the game has a unique subgame perfect equilibrium, namely the strategy pair
(AE,DH), which of course is also a Nash equilibrium.

With the example above in mind, it is now easy to provide formal defini-
tions of the concept of extensive game with chance moves and the concepts of
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strategy, Nash equilibrium and subgame perfect equilibrium for such games.

Definition 8.5.1 An n-person game in extensive form with perfect informa-
tion and chance moves consists of

• a set N = {1, 2, . . . , n} of players;

• a game tree T = 〈P, p0, s〉;
• a function Pl : P ◦ → N ∪ {c}, the player function, defined on the set
P ◦ of all nonterminal positions in the game;

• for each position p such that Pl(p) = c a probability measure µp on
the set of s(p) of all successors of p (or, equivalently, on the set of all
moves at p);

• for each player i ∈ N a cardinal utility function ui on the set Π of all
plays.

We define

Pi = {p ∈ P ◦ | Pl(p) = i}

for i ∈ N ∪ {c}. The set Pc consists of those positions where the moves are
determined by chance. The probability of a certain move at a chance position
p is given by the probability measure µp. We assume that the probability
distributions at different chance positions are independent of each other.

The concept of strategy can now be defined for games with chance moves
in exactly the same way as for games without any chance moves.

Definition 8.5.2 A strategy σ for player i in a game in extensive form with
perfect information and chance moves is a function σ : Pi → P such that σ(p)
is a successor of p for all positions p ∈ Pi.

The set of all strategies of player i will be denoted by Σi as before, and
we set Σ = Σ1 × Σ2 × · · · × Σn.

Unlike earlier, the outcome of the game now no longer depends on the
players’ choice of strategy vector σ = (σ1, σ2, . . . , σn) ∈ Σ only, but also on
the random moves performed at the chance positions in Pc. Therefore, let Σc

denote the set of all functions σc : Pc → P such that σc(p) is a successor of p
for all p ∈ Pc. As before, we will not make any distinction between succeeding
positions and moves when describing the functions σc. To describe a specific
function σc therefore becomes equivalent to describing a move at each chance
position.

The independent probability measures µp induce a probability measure µ
on the set Σc, the product measure of the µp:s.

Example 8.5.3 In example 8.5.1, the set Σc consists of four functions σi
c,
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i = 1, 2, 3, 4, which (in terms of moves) are defined by

σ1
c (p2) = x, σ1

c (p5) = z; σ2
c (p2) = x, σ2

c (p5) = w

σ3
c (p2) = y, σ3

c (p5) = z; σ4
c (p2) = y, σ4

c (p5) = w.

The induced probability distribution µ on Σc is defined by

µ(σ1
c ) =

1
2
· 1
4
= 1

8

µ(σ2
c ) =

1
2
· 3
4
= 3

8

µ(σ3
c ) =

1
2
· 1
4
= 1

8

µ(σ4
c ) =

1
2
· 3
4
= 3

8
.

Each combination (σ, σc) ∈ Σ× Σc gives rise to a unique play π(σ, σc) in
the game and thereby also to a uniquely determined payoff ui(π(σ, σc)) to
player i. The outcome is random, insofar as it is due to the random moves
σc that have been executed. More precisely, the outcome is a stochastic
variable on the probability space Σc with µ as probability measure. We
denote by Ui(σ) players i’s expected utility from the strategy vector σ ∈ Σ.
The expected utility is (if Σc is a finite probability space) given by the formula

Ui(σ) =
∑
σc∈Σc

ui(π(σ, σc))µ(σc).
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We assume that the players use these expected utilities when they eval-
uate the value of a given strategic vector in Σ. It is now easy to generalize
the concepts of Nash equilibrium and subgame perfect equilibrium to games
with chance moves.

Definition 8.5.3 A strategy vector σ∗ = (σ∗
1, σ

∗
2, . . . , σ

∗
n) in an extensive

game with chance moves is called

• a Nash equilibrium if for each player i and each strategy τi ∈ Σi

Ui(σ
∗
−i, σ

∗
i ) ≥ Ui(σ

∗
−i, τi);

• a subgame perfect equilibrium if the restriction of the strategy vector
to each subgame is a Nash equilibrium of the subgame.

Backward induction works equally well in extensive games with chance
moves as in games without such moves, so the proof of the following proposi-
tion requires only minor modifications of the proof of Proposition 8.3.1 and
is therefore left to the reader.

Proposition 8.5.1 Each finite game in extensive form with perfect informa-
tion and chance moves has a subgame perfect equilibrium and consequently a
Nash equilibrium.

Exercise

8.16 Determine the subgame perfect equilibrium and the players expected utility
in the equilibrium for the game in Figure 8.13.
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Chapter 9

Extensive Games with
Imperfect Information

In the extensive games we have studied so far, each player, when performing
a move, has complete information about all players’ previous moves including
the outcome of any chance moves, and the player knows exactly his actual
position in the game tree. But in many games, the players do not have that
information. For example, in many card games, a player usually does not
know which cards the opponents have.

In this chapter we will study extensive games where the players’ infor-
mation about the situation is limited − when a player is to perform a move,
he may be in one of several possible positions. We model this by dividing
the player’s set of positions into pairwise disjoint subsets that we call the
player’s information sets. During the play, the player always knows in what
information set the play is, but he does not know the exact position in the
information set. However, we still assume that all players know the game
tree, what moves are possible in the information sets, and last but not least,
each other’s preferences.

9.1 Basic Endgame

Poker is a classic example of a game where the players do not have full
information, and where winning game modes contain moments of bluffing.
The game has therefore interested many prominent game theorists who have
analyzed simplified poker models. We will study a model introduced by W.H.
Cutler and commonly called Basic Endgame. A detailed analysis of the model
and different extensions of this has been done by Tom and Chris Ferguson,
father and son, the first professor of mathematics, the latter professional

164
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poker player.

Basic Endgame adequately describes the considerations a player faces in
the final phase of poker, when only two players remain. The two players start
by placing $1 each in the pot. Player 1 then receives a card from a deck of
cards. The card is a winning card with a probability of 1/3 and a losing card
with a probability of 2/3. The player sees the card but keeps it hidden for
the opponent who does not get a card.

Player 1 can now choose between passing or betting. If he passes with a
winning card he gets the pot and then wins $1. If he passes with a losing
card, he loses the pot and in that way he has lost $1. If player 1 bets he
must add another $2 into the pot. Player 2, who does not know which card
player 1 has, can now choose between calling or folding. If he folds, player 1
gets the whole pot regardless of which card he has and thus has won $1. If
player 2 calls, he adds $2 to the pot, after which player 1 shows his card. If
player 1 has a winning card, he will win the whole pot and has won $3. If
not, player 2 gets the whole pot and player 1 has lost $3.

The game tree of Basic Endgame is shown in Figure 9.1. The game starts
with a chance move. Player 1 then knows his position in the game tree and
has four options, namely

1. to pass with both winning and losing cards: passw-pass l,
2. to pass with a winning card and bet with a losing card: passw-bet l,
3. to bet with a winning card and pass with a losing card: betw-pass l,
4. to bet with both winning and losing cards: betw-bet l.

The second option may seem bizarre but is still an option. Option 3 is
the player’s honest strategy, and option 4 is his bluffing strategy.

The problem for player 2 is that he does not know if player 1 has a
winning or a losing card, if player 1 has chosen to bet. In other words,
player 2 does not know if he is in the left or the right part of the game tree.
Player 2 therefore has only two options, namely to call or to fold regardless
of player 1’s card. We indicate player 2’s lack of information in the drawing
of the game tree by connecting his two positions with a dotted line, and

•
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Figure 9.1. The game Basic Endgame
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by marking a move from each position with ”call” and a move from each
position with ”fold”. The move that is then actually performed in the game
if player 2 chooses ”call” depends on player 1’s previous move, and similarly
for ”fold”.

The two positions that have been connected by a dotted line constitute
an information set for player 2, who knows that he is supposed to perform a
move from a position in the information set but does not know from which
position.

We can analyze the game by reducing it to strategic form. The expected
payoff matrix with player 1 as the row player is calculated as follows:

If player 1 selects the option passw-pass l, his expected payoff will be
1
3
· 1 + 2

3
· (−1) = −1

3
, regardless of whether player 2 had chosen to call or to

fold.
If player 1 chooses the option passw-bet l, his expected payoff will be

1
3
·1+ 2

3
· (−3) = −5

3
if player 2 calls, and 1

3
·1+ 2

3
·1 = 1 if player 2 folds, etc.
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The full expected payoff matrix looks like this:

call fold

passw-pass l −1
3

−1
3

passw-bet l −5
3

1

betw-pass l
1
3

−1
3

betw-bet l −1 1

Row 1 is weakly dominated by row 3, and row 2 is weakly dominated by row
4. By eliminating the two top rows we get the matrix

call fold

betw-pass l
1
3

−1
3

betw-bet l −1 1

Since the matrix has no saddle point, there is no pure Nash equilibrium in
the game, but there is of course a mixed Nash equilibrium. The row player’s
optimal mixed strategy consists in choosing betw-pass l with probability 3

4

and betw-bet l with probability 1
4
, while player 2’s optimal mixed strategy

consists in calling and folding with equal probability 1
2
. The game is fair

because its value is equal to 0.
In order to play optimally in Basic Endgame, player 1 should always bet

when he has a winning card and bluff by betting on average once by four
with a losing card.

Exercise

9.1 Solve the game Basic Endgame when the probability that player 1 will get a
winning card is

a) 1
4 b) p, where 0 < p < 1.

9.2 Extensive games with incomplete infor-

mation

We will now give a general definition of extensive games in which players,
like in Basic Endgame, have limited information about their positions in the
game tree. We do this by using the concepts of information set and label.

The set Pi of positions that belong to player i is partitioned into pair-
wise disjoint subsets Pij, j = 1, 2, . . . , ni, and each such subset is called an
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information set. A player in turn to perform a move always knows what
information set the play has come to, but he does not know the exact posi-
tion in the information set unless the information set happens to consist of
just one position. In order for the player to lack information about the exact
position, it is necessary that all positions in an information set have the same
number of succeeding positions, i.e. that there are as many possible moves
to perform from each position in an information set.

The player must also somehow be able to indicate how he will continue
the game from an information set Pij. Since he does not know his position
p ∈ Pij, he can not do this by specifying a move, i.e. a succeeding position
q ∈ e(p).

We solve this problem by demanding from the rules of the game that the
set of moves from all positions in a given information set Pij be grouped into
pairwise disjoint subsets with the property that each such subset E contains
exactly one move from each position in the given information set. This means
that all positions in the information set Pij must have the same number of
successors and that the number of subsets is equal to this common number.
To keep track of the moves in such a subset E, we then put a unique common
name, a label, on all the moves in the subset E.

In Basic Endgame (see Figure 9.1) player 2 has one information set con-
sisting of two positions which in the figure are connected by a dotted line.
There are two moves from each position, and two subsets are formed by the
four moves − one consists of the two moves labeled ”call”, the other of the
two moves labeled ”’fold”. Both subsets consist of exactly one move from
each position in the information set.

Player 1 has two information sets in Basic Endgame, but both of them
are singleton sets, i.e. consist of only one position, and in such cases, we can
use the names of the actual moves as labels.

We are now ready for the general definition of games in extensive form
that includes the possibility of chance moves and of incomplete information.

Definition 9.2.1 An n-person game in extensive form consists of

• a set N = {1, 2, . . . , n} of players;

• a game tree T = 〈P, p0, s〉;
• a function Pl : P ◦ → N ∪ {c}, the player function, defined on the set
P ◦ of all nonterminal positions in the game;

• for each position p with Pl(p) = c a probability measure µp on the set
s(p) of all successors of p (or, equivalently, on the set of all moves at
p);
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• for each player i a partition of the player’s nonterminal positions

Pi = {p ∈ P ◦ | Pl(p) = i}

into subsets Pij, the player’s information sets, with the following prop-
erty: All positions in a given information set Pij have the same number
of successors;

• for each information set Pij a partition of the set of moves from the
positions belonging to Pij into pairwise disjoint subsets called labels
with the following property: Each label contains exactly one move
from each position in the information set;

• for each player i ∈ N a cardinal utility function ui defined on the set
Π of all plays.

In our drawings of games we connect positions belonging to the same
information set by a dotted line and write the name of the player at the line.
Labels are indicated by giving all the moves that are contained in a label a
common name.

A concrete instance of an extensive game progresses as follows. When the
play reaches a position p, the player who owns the information set to which p
belongs selects a label from the information set. The selected label contains
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a move that leads from p to a succeeding position p′. The player to whom
position p′ belongs, then continues. If the play comes to a chance position p,
then the following position is selected according to the probability distribu-
tion that belongs to p.

Example 9.2.1 Figure 9.2 shows an extensive two-person game with chance
moves. We have omitted the players’ utility functions.
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Figure 9.2. An extensive game with chance moves and imperfect information.

Player 1 has three information sets, but two of them consist of just one
position. The third one consists of two positions and there are two moves at
each position, labeled L and R.

Player 2 has only one information set that consists of three positions. In
each position, the player has three moves to choose from and therefore three
labels are required: V , M and H.

If player 1 decides to use the moves labeled A, C and R, and player 2
decides to use the M label, then we get the play AMR.

If player 1 instead uses B, C and R, and player 2 still has chosen M , the
outcome will depend on chance; we get the play BxM with probability 1/3
and the play ByCM with probability 2/3.

The general definition of extensive games is very flexible. Games with
perfect information are of course special cases; in them, all information sets
are singleton sets and each label corresponds to a unique move.

Games where the players make their moves simultaneously and indepen-
dently can be described as extensive games with imperfect information. Sup-
pose, for example, that we have two players 1 and 2, that player 1 selects
one of the options a1, a2, . . . , ak, that player 2 selects one of the options
b1, b2, . . . , bm, and that the pair (ai, bj) results in the payoff vector (uij, vij).
In Chapter 2, we expressed this situation as a strategic two-person game, but
we can also formulate it as an extensive game with

• an initial position p0 that belongs to player 1;
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• k positions p1, p2, . . . , pk that belong to player 2 and form his only
information set;

• km terminal positions p11, . . . , p1m, p21, . . . , p2m, . . . , pk1, . . . , pkm;
• for each i a move from p0 to pi with the label ai, and for each pair i, j
a move from pi to pij with the label bj;

• utility functions u and v that are defined at the terminal positions by
u(pij) = uij and v(pij) = vij.

Figure 9.3 illustrates the game when k = 3 and m = 2. Each n-person
game in strategic form can of course similarly be written as an n-person game
in extensive form with imperfect information.
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Figure 9.3. Extensive form of a strategic two-person game.

Pure strategies

The concept of strategy was defined for extensive games with perfect infor-
mation in Sections 8.2 and 8.5. It is now easy to generalize this concept to
games with imperfect information.

Definition 9.2.2 A (pure) strategy for a player in a general extensive n-
person game is a set of labels that consists of one label from each information
set that belongs to the player.

We denote the set of all pure strategies belonging to player i by Σi and
put Σ = Σ1 × Σ2 × · · · × Σn.

A strategy is thus a set {A1, A2, . . . , Ak} of labels, but in order to simplify
the notation we often specify strategies by listing their labels in an arbitrary
order, for example as A1A2 . . . Ak.

If player i has � information sets Pi1, Pi2, . . . , Pi�, and mj is the number of
labels in the information set Pij, then the player’s number of pure strategies
is obviously equal to m1m2 · · ·m�.
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Example 9.2.2 In the game in Example 9.2.1 (Figure 9.2), ACR is a pure
strategy for player 1 and M is a pure strategy for player 2. Player 1 has 8
(= 2 · 2 · 2) pure strategies, and player 2 has 3 pure strategies.

The outcome of an extensive game with no chance moves is completely
determined when each player i has choosen a strategy σi ∈ Σi. Let π(σ)
denote the play obtained from the strategy vector σ = (σ1, σ2, . . . , σn). This
gives us a function π : Σ → Π, where as previously Π denotes the set of all
plays.

In the presence of chance moves, the play is no longer unambiguously
determined by the players’ strategy choices but random. Given the strategy
choice σ = (σ1, σ2, . . . , σn), the play π occurs with a certain probability that
we denote λσ(π). This probability depends, of course, on the probabilities
of the chance moves that occur in the game. In the general case, λσ is a
probability measure on the set Π of all plays.

Example 9.2.3 Consider the game Basic Endgame from previous section
(see Figure 9.1), and let σ1 denote player 1’s strategy ”betw-pass l” and σ2

denote player 2’s strategy ”fold”. The strategy pair σ = (σ1, σ2) results in
the following probability distribution λσ for the plays of the game:
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Play Probability

winning–passw 0
winning–betw–call 0
winning–betw–fold 1/3
losing–pass l 2/3
losing–bet l–call 0
losing–bet l–fold 0

Reduction to strategic form

Each strategic game can, as we have seen, be perceived as an extensive game
with imperfect information. The converse is also true − each extensive n-
person game can be transformed into a strategic game as follows.

Let in the extensive game

• Σi denote player i’s set of pure strategies;

• ui : Π → R denote player i’s utility function, where Π is the set of all
plays;

• λσ be the probability measure on Π that is induced by the strategy
choice σ = (σ1, σ2, . . . , σn) ∈ Σ = Σ1 × Σ2 × · · · × Σn;

• Ui(σ) denote the expected value of the utility function ui with respect
to this probability measure λσ, which means that

Ui(σ) =
∑
π∈Π

ui(π)λσ(π),

if the game is finite.

We now have all the ingredients of a strategic game 〈N, (Σi), (Ui)〉, and
this is the reduced strategic form of the given extensive game.

An action vector σ∗ ∈ Σ is by definition a Nash equilibrium in the strate-
gic game if the inequality Ui(σ

∗
−i, σ

∗
i ) ≥ Ui(σ

∗
−i, τi) holds for all players i and

all actions τi ∈ Σi. We can of course formulate this condition directly for the
extensive game, and we will then get the following definition.

Definition 9.2.3 A vector σ∗ of pure strategies in a finite extensive game is
a (pure) Nash equilibrium if

∑
π∈Π

ui(π)λ(σ∗
−i,σ

∗
i )
(π) ≥

∑
π∈Π

ui(π)λ(σ∗
−i,τi)

(π)

for all players i and all pure strategies τi ∈ Σi.

Download free eBooks at bookboon.com



NON-COOPERATIVE GAMES: AN 
INTRODUCTION TO GAME THEORY – PART I

174

Extensive Games with Imperfect Information174 9 Extensive Games with Imperfect Information

In Section 9.1, we reduced the game Basic Endgame to strategic form
and found that it has no pure Nash equilibrium. So extensive games with
imperfect information can lack Nash equilibria.

Games with perfect recall

We can use the extensive form with information sets to describe games in
which players forget moves they have previously made. For example, such
games as bridge can be modeled in this way. Bridge is played by four players
who form two teams with two players in each team, but since it is the teams
that play against each other, bridge should be perceived as a two-person
game. During the bidding phase, the players in a team bid alternately on
their hands, and each player only sees his own hand. Each team can therefore
be perceived as one player who alternately remembers and forgets a part of
what he previously knew. The corresponding applies when the cards are
played and the players in the non-playing team only know their own cards,
the cards on the table and the cards that have already been played.

Example 9.2.4 Figure 9.4 shows a game where player 1 after two moves
in the game has forgotten his opening move. If he had remembered that he
started with L (or R), he would know the game’s position after two moves,
and his information set after two moves would then consist of one instead of
two positions.
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Figure 9.4. A game where player 1 has forgotten a move he has made previously.

Example 9.2.5 In the game to the left in Figure 9.5, player 1 has forgotten
his initial move when the game comes to position p2.

Note that the definition of a pure strategy requires the player to choose
one label from each of his information sets. This means that a player must
choose the same label no matter how many times the game comes to a certain
information set. If player 1’s strategy consists of choosing the V label in the
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Figure 9.5. In the game to the left, player 1 forgets his initial move. The game
is strategically equivalent to the right game.

information set {p0, p2}, then the game ends at p4, and if the strategy instead
consists of choosing H, then the game will end in p5 or p3. So the terminal
position p6 is unreachable and may as well be deleted from the game, resulting
in the game to the right in the figure.

Similar situations arise as soon as there is an information set containing
two positions p and q that are connected by some move sequence. (In the
example above, there is a move sequence from p0 to p2.) Some authors include
in the definition of extensive games that there shall be no such positions in
any information set, but we have not done so.
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Extensive games with imperfect information are, as we have seen, able to
model situations where a player forgets moves that he has previously made.
Games in which all players remember all their previous moves are called
games with perfect recall, and we will now provide a precise definition of this
term.

Consider an arbitrary extensive game, and let p be a position in the game
where player i is expected to make a move. In turn, let I1, I2,. . . , Ik be the
information sets which belong to player i and have been passed by during
the move sequence that leads from the intial position p0 up to the p position,
and denote by Lj the label chosen by player i when the game was in the
information set Ij. The sequence I1, L1, I2, L2,. . . , Ik, Lk is called the
player’s memory list in position p, and it is denoted Mi(p) for the rest of
this section. The memory list Mi(p) is of course empty if player i has not
made any moves before position p.

Example 9.2.6 To exemplify the concept of memory list, we consider the
game in Figure 9.6. (We have refrained from naming the final positions and
from entering the payoffs because they do not matter.)

•

• •

• • • •

• • • • • •

• • • • • • • •

• • • •

...................................................................................................................................................................................................................................................................................................................................................................
............................

............................
............................

............................
............................

............................
.................

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
........
........
........
........
........
........
........
........
........
........
.......................................................................................................................................................................................................................................................................................................................

......................................................................................

....................................................................................................................................................................................
........
........
........
........
........
........
........
........
........
......

......................................................................................................

......................................................................................

................................................................................................................................................................................................................................

......................................................................................................

..................................................................................................................................................................................................................................................................................

...................................................................................... ......................................................................................

......................................................................................

· · · · · · · · · · · ·

· · · · · · · · · · · ·

· · · · · · · · · · · · · · · ·

· · · · · · · · · · · ·

p0

p1 p2

p3 p4 p5

p6 p7 p8 p9

p10 p11

1

c 2

1 1

2 2

1

A B

C D E F

G H G H I J

K L K L M N M N

O P O P

Figure 9.6. The game in Example 9.2.6.

The two players memory lists at some different positions look like this:

M1(p10) : {p0}, A, {p3, p4}, H M1(p11) : {p0}, B, {p5}, I
M2(p6) : ∅ M2(p8) : {p2}, F M2(p9) : {p2}, F

A player i with perfect recall should of course remember his memory lists,
so if two memory lists Mi(p) and Mi(p

′) differ, then the player has differ-
ent information about the two positions p and p′, which therefore can not
belong to the same information set. This observation justifies the following
definition.
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Definition 9.2.4 A player of an extensive game has perfect recall if the
player’s memory lists at positions in the same information set are identical
for all information sets of the player.

The extensive game has perfect recall if all players in the game have
perfect recall.

Example 9.2.7 Player 2 has perfect recall in the game in Figure 9.6. How-
ever, player 1 does not have perfect recall, because the player’s memory lists
in the positions p10 and p11 are different. So the game does not have perfect
recall.

The game Basic Endgame and the games in Figures 9.2 and 9.3 have
perfect recall.

A player with perfect recall can not have any information set I that
contains two positions p and p′ which are connected by a move sequence from
p to p′, because the memory list at p′ must then be equal to the memory list
at p extended with at least the information set I and a label from I. Player
1 therefore does not have perfect recall in the left game in Figure 9.5.

Exercises

9.2 Figure 9.7 shows a two-person zero-sum game in extensive form. The numbers
at the terminal positions are the payoffs to player 1.
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Figure 9.7

a) Does the game have perfect recall?

b) Determine the equivalent strategic form of the game.

c) Solve the game, i.e. determine a pair of optimal mixed strategies for the two
players and compute the game’s value.

[Hint: Eliminate dominated strategies in order to get a manageable problem.]

9.3 Player 2 chooses one of two rooms where he hides a coin. Player 1, who does
not know in which room the coin is hidden, selects one of the rooms to search
for the coin. If he is looking in room A and the coin is there, he will find it
with 50 % probability, but if he searches in room B and the coin is there he
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will find it with only 25 % probability. If he is looking in the wrong room, he
will of course not find the coin. Player 1 keeps the coin if he finds it, otherwise
it is returned to player 2.
Formulate the situation as an extensive game, then reduce it to strategic form
and determine the optimal mixed strategies and the game’s value.

9.4 Consider the game in the previous exercise and suppose player 1 gets a second
chance to find the coin if he fails in the first attempt. In other words, he may
choose a room again, either the same as in the first attempt or the second
room, and is then allowed to search for the coin in the selected room with the
same probabilities of finding it as before. Draw the game tree for this extensive
game, reduce it to strategic form and determine the optimal mixed strategies
and the game’s value.

9.5 Determine the equivalent strategic form of the extensive zero-sum game in
Figure 9.8 and solve the game.

9.6 Coin A is a fair coin with equal probability for heads and tails, while coin
B is fake and has probability 1/3 of heads and 2/3 of tails. Player 1 begins
by predicting ”heads” or ”tails”. If he predicts heads, coin A is tossed, and
if he predicts tails, coin B is tossed. Player 2 is informed whether player 1’s
prediction was right or wrong, but not about the prediction or about which
coin was used, and he is then supposed to guess which of the two coins was
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tossed. If player 2 guesses correctly, he wins 1 dollar from player 1, but if he
guesses wrong and player 1’s prediction was correct, he loses 2 dollar to the
opponent. If both are wrong, no payment is made.
Draw the game tree, reduce the game to strategic form and solve it.

9.3 Mixed strategies and behavior strategies

By reducing extensive games to strategic form we can easily translate many
concepts and results for strategic games to coresponding concepts and results
for extensive games. Here follows an example.

Definition 9.3.1 A mixed strategy for a player i in an extensive game is a
lottery, i.e. a probability distribution, on the set Σi of the player’s strategies.

To clarify the difference between mixed strategies and strategies in Σi,
we will often call the latter the player’s pure strategies.

The concept of mixed strategy is natural for games in strategic form, but
does not feel particularly appealing for extensive games. It does not seem
natural for a player to make a random choice of strategy once and for all
and then follow the chosen strategy regardless of how the opponents do their
moves during the game. Instead, it seems more natural to choose a move
randomly every time it is the player’s turn to make a move. Such thinking
leads to the concept of behavior strategy.

Definition 9.3.2 Let I1, I2, . . . , Im be the information sets of player i in an
extensive game. A behavior strategy λ for player i is a set λ = {λ1, λ2, . . . , λm}
of independent probability measures, where each λj is a probability measure
on the set of labels in the information set Ij.

Example 9.3.1 Consider the game in Figure 9.8. Player 1 has four pure
strategies, namely AC, AD, BC and BD. A mixed strategy for player 1
could be to choose these pure strategies with the probabilities 1

7
, 2

7
, 3

7
and 1

7
,
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and the set of all his mixed strategies can obviously be identified with the
subset {x ∈ R4 | x1 + x2 + x3 + x4 = 1, x1, x2, x3, x4 ≥ 0} of R4.

A behavior strategy for the same player has the following form: ”Choose
the label A with probability α and the label B with probability (1− α), the
label C with probability β and the label D with probability (1−β)”, where α
and β are arbitrary real numbers in the interval [0, 1]. The set of all behavior
strategies can evidently be identified with the subset [0, 1]× [0, 1] of R2.

Now consider an arbitrary extensive game and suppose that each player
i has chosen a mixed or a behavior stratey λi. The outcome of a game that
is played using these strategies will of course be stochastic; the probability
of a certain play π depends on the strategy vector λ = (λ1, λ2, . . . , λn) (and
on the chance moves, if any). In other words, the strategy vector λ gives rise
to a probability distribution Pλ on the set Π of all plays, and we will now
describe how to determine this distribution.

Let π be a play of the game. A pure strategy of player i is said to be
compatible with the play π if all moves that the player makes in the play have
labels that belong to the strategy. The set of all pure strategies for player i
that are compatible with the play π will be denoted Σi(π).

If a player uses a strategy that is incompatible with the play π, then this
play can not occur, regardless of how the opponents play and of the outcome
of chance moves.

Example 9.3.2 Figure 9.9 shows a piece of an extensive game. Let π denote
the play that ends in the position p. During the path from the initial position
p0, the play π passes through three information sets that belong to player 1,
and we have indicated these by dotted lines. The player has three additional
information sets that are not visited by the play, and they are also indicated
by dotted lines.

•

•

•

•

•

•

•

•

•

•

•

...........
...........

......... .............................
...........
.........

..........................................
...........
.........

.....................................
......
......

...........
...........
.........

...........
...........

.........

...........
...........

.........

...........
...........
.........

...........
..........

..........

...........
...........

.........

...........
...........
...........
...........
...........
............
...........
...........
...........
...........
...........
............

...........
...........

...........
...........

............
...........
...........
...........
...........
...........
............
...........
...........
...........
...........
............
...........

...........
...........

..............
...........

............
...........
...........
...........
...........
.......

A

B

C

X1

X2

X3

· · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · ·

· · · · · · · · · · · ·

· · · · · · · · · · · ·

· · · · · · · · · · · · · · · ·

1

1

1

1

1

1

p0

p

Figure 9.9. The game in Example 9.3.2.

A pure strategy of player 1 is a set of labels with one label from each
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information set. The strategy is compatible with the play π if and only if it
contains the labels A, B and C from the three information sets in the play.
The set Σ1(π) of all pure strategies that are compatible with the play thus
consists of all pure strategies of the form ABCX1X2X3, where the labels
X1, X2 and X3 can be choosen arbitrarily from their respective information
sets.

Now, let λi be a mixed strategy of player i in an extensive game, and let
π be an arbitrary play in the game. The probability Pi(λi; π) that the mixed
strategy λi will result in the play π, given that the other players and chance
choose moves that belong to the play, is equal to the probability that the
lottery λi will result in an outcome belonging to the set Σ1(π) of strategies
that are compatible with the play, and it is consequently given by the formula

(1) Pi(λi; π) =
∑

σ∈Σi(π)

λi(σ).

We now consider the corresponding probability for behavior strategies.
So let λi be a behavior strategy of player i. This means that λi is a family
of independent probability measures λI

i with one probability measure λI
i for

each information set I that belongs to the player.
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Given an arbitrary play π, let E1(π), E2(π), . . . , Ek(π) be the labels of
the moves in the play that are performed by player i in the positions that
belong to the player. The corresponding information sets are denoted I1(π),
I2(π), . . . , Ik(π). (Note that different positions in π may belong to the same
information set, i.e. it may happen that I�(π) = Im(π) for � �= m, but then
necessarily E�(π) = Em(π). See Figure 9.5.) The number

(2) Pi(λi; π) =
k∏

j=1

λ
Ij
i (Ej(π))

gives the probability that the play π will occur if player i follows his behavior
strategy λi and all other players and chance choose the ”right” moves. (Here

we have to use our assumption that the probability measures λ
Ij
i are inde-

pendent of each other, i.e. that the choice of a label in an information set is
made independently of the choice of labels in the other information sets.)

We also need to take into account possible chance moves during a play.
Therefore, let p1, p2, . . . , p� be those positions in the play π where chance
moves are performed, and define c(π) as the probability that all these chance
moves are moves in the play π. The number c(π) is then a product with �
factors, where factor no. j is the probability that the chance move in position
pj is a move in the play π.

Using the quantities introduced above, we now get the following formula
for the probability that a play π will occur when the players have chosen
their mixed or behavior strategies.

Proposition 9.3.1 Suppose that each player i has chosen a mixed or a be-
havior strategy λi, and let λ = (λ1, λ2, . . . , λn). The probability Pλ(π) for the
play π is given by the formula

Pλ(π) = c(π) ·
∏
i∈N

Pi(λi; π).

Proof. The play π occurs if and only if all players and chance choose moves
that belong to the play, and these choices are independent events. The
probability for π to occur is therefore equal to the product of the probabilities
of these events.

Each vector λ = (λ1, λ2, . . . , λn) of mixed or behavior strategies of the n
players thus generates a probability measure Pλ on the set Π of all plays. A
pure strategy can of course be perceived as a special mixed strategy and as
a special behavior strategy.
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Let i be a player with utility function ui. The player’s expected utility
ũi(λ) of the strategy vector λ = (λ1, λ2, . . . , λn), where the λj are mixed or
behavior strategies, is given by the formula

ũi(λ) =
∑
π∈Π

ui(π)Pλ(π).

It is now clear how to define the concept of Nash equilibrium for both
mixed strategies and behavior strategies.

Definition 9.3.3 An n-tuple λ∗ = (λ∗
1, λ

∗
2, . . . , λ

∗
n) of mixed strategies of the

players in an extensive game is a mixed Nash equilibrium if

ũi(λ
∗
−i, λ

∗
i ) ≥ ũi(λ

∗
−i, τi)

for each player i and all mixed strategies τi of player i.
An n-tuple λ∗ of behavior strategies of the players in an extensive game

is a behavior Nash equilibrium if the same inequality holds for each player i
and all behavior strategies τi of player i.

A mixed strategy vector λ∗ in an extensive game is obviously a mixed
Nash equilibrium if and only if the same vector is a mixed Nash equilibrium
in the reduced strategic form of the game. The following result is therefore
an immediate consequence of Proposition 5.2.1.

Proposition 9.3.2 Every finite extensive game has a mixed Nash equilib-
rium.

A natural question in this context is now whether all that a player can
accomplish with mixed strategies can also be accomplished using behavior
strategies, and vice versa. To clarify what we mean, we need the following
definition:

Definition 9.3.4 In an extensive game, two strategies λi and τi of player
i (both mixed or both behavior or one of each kind) are called outcome
equivalent if the two probability measures P(σ−i,λi) and P(σ−i,τi) are identical
for all other players’ choices of pure strategies σ1, σ2, . . . , σn.

Suppose that a player has m information sets and that the number of
labels in these are respectively ν1, ν2, . . . , νm. The number of pure strategies
will then be ν = ν1ν2 · · · νm. The set of all mixed strategies of the player can
therefore be perceived as a subset of the space Rν , and the dimension of this
set is ν − 1, because one can choose the probability of each pure strategy as
an arbitrary nonnegative number as long as the sum of all numbers is 1.
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Each component λj of a behavior strategy λ is a probability measure
on the labels in the corresponding information set, and the set of all such
probability measures is a subset of Rνj of dimension νj − 1. The set of all
behavior strategies is therefore a product set of dimension ν ′ − m, where
ν ′ = ν1 + ν2 + · · ·+ νm.

It is easy to see that ν ′ − m ≤ ν − 1 with strict inequality except in
the trivial case when νj = 1 for all indices j but possibly one. This means
that there are generally ”more” mixed strategies than behavior strategies.
Therefore, one should not expect the two concepts to be equivalent in the
sense that for each mixed strategy there is an outcome equivalent behavior
strategy and vice versa. The concepts are indeed not equivalent for all games,
as the following two examples show.

Example 9.3.3 Figure 9.10 shows a game with 4 plays, called π1, π2, π3

and π4; the names are written at the final positions of the games.

•

• •

• •

• •

π1

π2

π3 π4

............................................................................................
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
...........
....

...................................................................................

...................................................................................

1
2

V H

V H

L R

· · · · ·
· · ·

· ·
··
··
·
·

Figure 9.10. A game with a behavior strategy that is not outcome equivalent to
any mixed strategy.

The two players have two pure strategies each, player 1 the strategies V
and H, and player 2 the strategies L and R. The combination (V,R) results
in the play π1, while the combination (H,R) gives π4.

Let λ1 be player 1’s mixed strategy that consists in choosing V with
probability α and H with probability 1−α. The mixed strategy λ1 combined
with the pure strategy R results in the play π1 with probability α and in the
play π4 with probability 1− α.

The probability distribution P(λ1,R) on the set Π of all four possible plays
is thus defined by

P(λ1,R)(π1) = α, P(λ1,R)(π2) = P(λ1,R)(π3) = 0, P(λ1,R)(π4) = 1− α.

Let now τ1 be player 1’s behavior strategy that consists in choosing V with
probability β and consequently H with probability 1 − β. When combined
with player 2’s pure strategy R, τ1 gives rise to the play π1 with probability
β, the play π3 with probability (1 − β)β and the play π4 with probability
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(1− β)2. The probability distribution P(τ1,R) is thus given by

P(τ1,R)(π1) = β, P(τ1,R)(π3) = (1− β)β, P(τ1,R)(π4) = (1− β)2,

while P(τ1,R)(π2) = 0. So the play π3 occurs with positive probability for the
behavior strategy if 0 < β < 1 but for no mixed strategy. In other words,
there is no mixed strategy that is outcome equivalent to the behavior strategy
τ1 if for example β = 1

2
.

Example 9.3.4 Figure 9.11 shows a game with six plays, whose names are
written at the respective terminal positions.

•

•

• •

• •

•

••

••

π1

π2 π3 π4 π5

π6
.....................................................................................................................................................................................................................................................................................................

................
................

................
................

................
.................

................
................

................
...............
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.

....................................................................................................................................................................................................

...........................................................................................

....................................................................................................................................................................................................

...........................................................................................

1

2 2

1

L R

C DA B

V HV H

· · · · · · · · · · · · ·

Figure 9.11. A game with a mixed strategy that is not outcome equivalent to
any behavior strategy.
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Player 1 has four pure strategies: LV , LH, RV and RH. Let λ1 denote
the mixed strategy which assigns these pure strategies the probabilities 0,
1
2
, 1

2
and 0. Player 1’s pure strategies in the given order combined with

player 2’s pure strategy BC result in the plays π2, π3, π4 and π5. The
combination of the mixed strategy λ1 and the pure strategy BC therefore
leads to the two plays π3 and π4 with equal probability 1

2
and to the other

plays with probability 0. In other words, P(λ1,BC)(π3) = P(λ1,BC)(π4) = 1
2
,

and P(λ1,BC)(π) = 0 for the other four plays π.

An arbitrary behavior strategy τ1 = (τ 11 , τ
2
1 ) of player 1 is defined by

τ 11 (L) = α, τ 11 (R) = 1 − α and τ 21 (V ) = β, τ 21 (H) = 1 − β, where 0 ≤
α, β ≤ 1. The strategy τ1 combined with player 2’s pure strategy BC results
in the plays π2, π3, π4 and π5 with probability αβ, α(1 − β), (1 − α)β and
(1− α)(1− β), respectively .

In order for the strategy τ1 to be outcome equivalent to the mixed strategy
λ1, the following system has to be satisfied





αβ= 0

α(1− β)= 1
2

(1− α)β= 1
2

(1− α)(1− β)= 0 .

The first equation implies that α = 0 or β = 0, but this contradicts the
second and the third equation, respectively. So the system is inconsistent,
and that means that no behavior strategy is outcome equivalent to the mixed
strategy λ1.

The games in the two examples 9.3.3 and 9.3.4 are games without perfect
recall. This is no coincidence because we have the following result due to
Kuhn.

Proposition 9.3.3 Consider a player in a finite extensive game, and assume
that the player has no information set that contains two positions that are
connected by a move sequence; this assumption is in particular satisfied if
the player has perfect recall. Then, each of the player’s behavior strategy is
outcome equivalent to a mixed strategy.

Proposition 9.3.4 For a player with perfect recall in a finite extensive game,
each mixed strategy is outcome equivalent to a behavior strategy.

Corollary 9.3.5 For players with perfect recall in finite extensive games,
each mixed strategy is outcome equivalent to a behavior strategy and vice
versa.
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Proof of Proposition 9.3.3. Let player 1 be the player under consideration,
and let I1, I2, . . . , Im be his information sets. To each of player 1’s behavior
strategies τ1 we have to associate a mixed strategy λ1 that is outcome equiva-
lent to τ1, i.e. has the property that the two probabilities P(τ1,σ2,...,σn)(π) and
P(λ1,σ2,...,σn)(π) coincide for all plays π and all pure strategies σ2, . . . , σn of
the other players, and because of the formula in Proposition 9.3.1 it suffices
to prove that λ1 satisfies the equality

(3) P1(τ1; π) = P1(λ1; π)

for all plays π.
We recall that player 1’s behavior strategies have the form

τ1 = {τ 11 , τ 21 , . . . , τm1 },

where τ j1 for each j is a probability measure on the information set Ij. The
player’s mixed strategies are probability measures on the set Σ1 that consists
of the player’s pure strategies, and a pure strategy σ1 is just a list of labels
with one label from each information set belonging to the player.

Given the behavior strategy τ1 we now define the mixed strategy λ1 by,
for pure strategies σ1 of the form σ1 = E1E2 . . .Em with labels Ej belonging
to the information set Ij, putting

λ1(σ1) =
m∏
j=1

τ j1 (Ej).

Then λ1(σ1) ≥ 0, and
∑

σ1∈Σ1
λ1(σ1) = 1, so λ1 is indeed a probability

measure on Σ1, i.e. a mixed strategy of player 1.
It remains to show that the two strategies λ1 and τ1 are outcome equiva-

lent. Therefore, let π be an arbitrary play in the game, and renumber player
1’s information sets so that I1, I2, . . . , Ik are the informations sets that con-
tain the player’s positions in the play π, and let E ′

1, E
′
2, . . . , E

′
k, where E ′

j

belongs to Ij, denote the labels of the player’s moves in the play π. It fol-
lows from the assumptions of Proposition 9.3.3 that none of the information
sets contain more than one position from the play, so the information sets
I1, I2, . . . , Ik and hence also the labels E ′

1, E
′
2, . . . , E

′
k are therefore certainly

different. By definition,

P1(τ1; π) =
k∏

j=1

τ j1 (E
′
j).

To compute P1(λ1; π), we begin by noting that the set Σ1(π) of player 1’s
pure strategies that are compatible with the play π consists of all strategies σ1
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of the form σ1 = E ′
1, E

′
2 . . . E

′
k, Xk+1 . . . , Xm, where the labels Xk+1, . . . , Xm

are arbitrary in their respective information sets Ik+1, . . . , Im, because the
choice of label is irrelevant in information sets that do not contain a position
from π, whereas there is a unique choice of label in each information set that
contains a position from π.

Therefore

P1(λ1; π) =
∑

σ1∈Σ1(π)

λ1(σ1) =
∑′

λ1(E
′
1E

′
2 . . . E

′
kXk+1 . . . Xm)(4)

=
∑′

τ 11 (E
′
1)τ

2
1 (E

′
2) · · · τ k1 (E ′

k)τ
k+1
1 (Xk+1) · · · τm1 (Xm)

= P1(τ1; π) ·
∑′

τ k+1
1 (Xk+1) · · · τm1 (Xm),

where the symbol
∑′ means that the summation is taken over all choices of

labels Xk+1 in Ik+1, Xk+2 in Ik+2, etc. Since each τ j1 is a probability measure
on the set of labels in Ij,

∑′
τ k+1
1 (Xk+1) · · · τm1 (Xm) =

∑
all Xk+1 ∈ Ik+1

τ k+1
1 (Xk+1) · · ·

∑
all Xm ∈ Im

τm1 (Xm)

= 1 · · · 1 = 1,

and by inserting this into equation (4) we obtain the requested equality (3).
This proves the proposition.
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Example 9.3.5 We illustrate Proposition 9.3.3 with the game in Figure
9.12.
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2 3 2
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3

2
3

A
B

C A
B

C

V
H

V
H

L R L R

v h

π

· · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · ·· · · · · · · · · · · · · ·

Figure 9.12. A game that illustrates Proposition 9.3.3.

Let us define a behavior strategy τ1 = {τ 11 , τ 21 , τ 31 } by putting

τ 11 (A) =
1
6
, τ 11 (B) = 1

3
, τ 11 (C) = 1

2

τ 21 (V ) = 1
5
, τ 21 (H) = 4

5

τ 31 (L) =
1
4
, τ 21 (R) = 3

4
.

Player 1 has 3 · 2 · 2 = 12 pure strategies that are listed in table 9.1, which
also contains the mixed strategy λ1 that is outcome equivalent to τ1. The
probabilities λ1(σ1) have been computed using the method in the proof of
Proposition 9.3.3. For example,

λ1(AV L) = τ 11 (A)τ
2
1 (V )τ 31 (L) =

1
6
· 1
5
· 1
4
= 1

120
.

σ1 AVL AVR AHL AHR BVL BVR BHL BHR CVL CVR CHL CHR

λ1(σ1)
1

120
1
40

1
30

1
10

1
60

1
20

1
15

1
5

1
40

3
40

1
10

3
10

Table 9.1. Player 1’s pure strategies σ1 and the mixed strategy λ1 that is outcome
equivalent to τ1.

Let π denote the play that ends in the position which have been marked
π i Figure 9.12. We will compute the two probabilities P(τ1,σ2,σ3)(π) and
P(λ1,σ2,σ3)(π) for all possible choices of pure strategies σ2 and σ3 of the two
other players in order to show that they coincide.

The play π is impossible if player 3 chooses the strategy v, so both prob-
abilities are equal to zero in that case.

If σ3 = h we get, regardless of player 2’s choice σ2,

P(τ1,σ2,h)(π) =
1
3
· τ 11 (C)τ 31 (L) =

1
3
· 1
2
· 1
4
= 1

24
.
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Player 1’s pure strategies CV L and CHL are the only ones that can result
in the play π, and the probabilities of those under the mixed strategy λ1 are
1
40

and 1
10
, respectively. Hence,

P(λ1,σ2,h)(π) =
1
3
· 1
40

+ 1
3
· 1
10

= 1
24
.

The two probability distributions are thus equal.

Proof of Proposition 9.3.4. Let λ1 be a mixed strategy of player 1. In order
to define an outcome equivalent behavior strategy τ1, we introduce a partial
order ≺ on the set of information sets of player 1 by writing I1 ≺ I2 if there
is a move sequence from a position in the information set I1 to a position in
the information set I2.

To define the behavior strategy τ1 we have to define a probability measure
τI1 on the set of labels for each information set I that belongs to player 1.
We do so recursively and begin by defining τI1 for information sets I that are
not preceeded by any other information set under the partial order ≺. Let
I be such an information set; for labels E belonging to I we let

(5) τI1 (E) =
∑
E∈σ1

λ1(σ1),

where the summation is over player 1’s pure strategies σ1 that contain the
label E. In other words, τI1 (E) is the probability that the mixed strategy λ1

assigns the set of pure strategies that contain the label E.

Let now I be an arbitrary information set, and assume that the proba-
bility measures τJ1 have already been defined for all information sets J that
preceed I with respect to the order ≺. Since player 1 has perfect recall, it is
possible to order these sets in a chain of the form I1 ≺ I2 ≺ · · · ≺ Im ≺ I.
The player’s memory list at an arbitrary position in the information set I
has the form I1, A1, I2, A2, . . . , Im, Am, where each Aj is a label belonging to
the information set Ij.

Let us now suppose that the definitions are made in such a way that
the following equality holds for every choice of label Bm belonging to the
information set Im:

(6)
m−1∏
j=1

τ
Ij
1 (Aj) · τIm1 (Bm) =

∑
A1...Am−1Bm∈σ1

λ1(σ1),

where the sum is taken over all pure strategies σ1 that contain the labels A1,
. . . , Am−1, Bm. (The equality holds for m = 1 because of equality (5).)

Download free eBooks at bookboon.com



NON-COOPERATIVE GAMES: AN 
INTRODUCTION TO GAME THEORY – PART I

191

Extensive Games with Imperfect Information

191

9.3 Mixed strategies and behavior strategies 191

We will now define the probability measure τI1 . Put

α =
m∏
j=1

τ
Ij
1 (Aj).

The number α is nonnegative, of course.
If α = 0, then we can choose an arbitrary probability measure on the

label set of I as τI1 .
If α > 0 and E is an arbitrary label belonging to I, we define

(7) τI1 (E) = α−1 ·
∑

A1...AmE∈σ1

λ1(σ1).

Then τI1 is a probability measure on the information set I, because
∑
E

τI1 (E) = α−1 ·
∑
E

∑
A1...AmE∈σ1

λ1(σ1) = α−1 ·
∑

A1...Am∈σ1

λ1(σ1) = α−1 · α = 1,

where we have used equation (6) with Bm replaced by Am and the definition
of α in order to get the last but one equality above. (Anyone who has studied
probability theory has certainly noted that τI1 (E) is defined as a conditional
probability.)
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Note that equation (7) implies that equation (6) holds when m is replaced
by m + 1, and this means that we have given a recursive definition of the
probability measures τI1 that satisfies equation (6).

It now only remains to show that the strategy τ1 is outcome equivalent to
the mixed strategy λ1. So let π be an arbitrary play. If I1 ≺ I2 ≺ · · · ≺ Im

are the information sets that contain player 1’s positions in the play and
A1, A2, . . . , Am are the the corresponding labels, then Σ1(π) consistes of all
mixed strategies σ1 that contains the labels A1, A2, . . . , Am. According to (1)
and (2),

P1(λ1; π) =
∑

A1...Am−1Am∈σ1

λ1(σ1)

and

P1(τ1; π) =
m∏
j=1

τ
Ij
1 (Aj).

Therefore, it follows from (6) that P1(λ1; π) = P1(τ1; π), and this implies that
the two strategies are outcome equivalent.

Example 9.3.6 Player 1 has perfect recall in the game in Figure 9.13, so
each mixed strategy λ1 is outcome equivalent to some behavior strategy τ1.
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A
B

C A
B

C

V H V H L R L R

1

I1

I2 I3
1 1

2

2 2

· · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Figure 9.13. The game in Example 9.3.6.

Let us compute τ1 when the mixed strategy λ1 is given by table 9.2.
Player 1 has three information sets, I1, I2 and I3, so his behavior strategy τ1
has the form {τ 11 , τ 21 , τ 31 }, where each τ j1 is a probability measure on the set
of labels in Ij. To calculate these probability measures we use the technique
in the proof of Proposition 9.3.4. We first calculate

τ 11 (X) =
∑
Y,Z

λ1(XYZ) = λ1(XVL) + λ1(XVR) + λ1(XHL) + λ1(XHR)
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σ1 AVL AVR AHL AHR BVL BVR BHL BHR CVL CVR CHL CHR

λ1(σ1)
7
50

2
50

6
50

3
50

1
50 0 9

50
5
50

4
50

8
50

2
50

3
50

Table 9.2. Player 1’s mixed strategy λ1.

for X = A, B and C, and the values in the table give us

τ 11 (A) =
7
50

+ 2
50

+ 6
50

+ 3
50

= 18
50

τ 11 (B) = 1
50

+ 0 + 9
50

+ 5
50

= 15
50

τ 11 (C) = 4
50

+ 8
50

+ 2
50

+ 3
50

= 17
50
.

We can then calculate τ 21 (Y ) for Y = V and Y = H using the formula

τ 21 (Y ) =
1

α

∑
Z

λ1(AYZ) =
1

α

(
λ1(AYL) + λ1(AYR)

)
, where α = τ 11 (A),

and obtain

τ 21 (V ) = 50
18

· ( 7
50

+ 2
50
) = 1

2
, τ 21 (H) = 50

18
· ( 6

50
+ 3

50
) = 1

2
.

Analogously, τ 31 (Z) is for Z = L and Y = R given by the formula

τ 31 (Z) =
1

α

∑
Y

λ1(BYZ) =
1

α

(
λ1(BVZ) + λ1(BHZ)

)
with α = τ 11 (B),

and we get

τ 31 (L) =
50
15

· ( 1
50

+ 9
50
) = 2

3
, τ 31 (R) = 50

15
· (0 + 5

50
) = 1

3
.

Exercise

9.7 Compute for the game in Figure 9.13 a behavior strategy τ1 for player 1 that
is outcome equivalen to the mixed strategyλ1 defined by the table

σ1 AVL AVR AHL AHR BVL BVR BHL BHR CVL CVR CHL CHR

λ1(σ1)
1
8

1
8

1
16

1
4 0 0 0 0 1

16
3
16

1
8

1
16
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Chapter 1

1.3 No, the completeness axiom is not satisfied.

1.4 b) No c) No

1.5 a) and c) Let x1, x2, x3, x4 be four points in the domain of a strictly
concave function u with x1 < x2, x3 < x4 and x1 < x3. The slope of
the chord between the points (x1, u(x1)) and (x2, u(x2)) on the curve
y = u(x) is then greater than the slope of the chord between the points
(x3, u(x3)) and (x4, u(x4)). For a risk averse utility function u, this
means that (u(a + h) − u(a))/h > (u(b + h) − u(b))/h if a < b and
h > 0. In other words, the utility increase is greatest at the least
wealth.

b) The utility increase of a fixed increase in wealth is the same at all
wealths.

1.6 3000 SEK

1.7 No, ( 1
n
,−1) � (0, 0) for all n, but (0,−1) = lim( 1

n
,−1) �� (0.0).

1.8 To prove that a preference relation that satisfies the two implications
is continuous, you can copy the proof of Lemma 1.5.4.

1.9 a) 2.9 million SEK b) 1.0427 (when the unit of x is million SEK)
c) Yes d) 2 837 000 SEK

1.10 Choose a sequence of numbers αn in the interval ]0, 1[ that converges
to 1 as n → ∞. If αnp + (1 − αn)r � q for all n, then p � q by the
continuity axiom, and this is a contradiction.

1.11 With A consisting of two elements and L(A) = {(x, 1−x) | 0 ≤ x ≤ 1},
we get a utility function u on the lottery set by defining

u(x, 1− x) =

{
x if 0 ≤ x < 1,

0 if x = 1.

The corresponding preference relation satisfies neither axiom 3 nor ax-
iom 4 and is therefore not a vNM-preference relation.

194
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Chapter 2

2.1 Payoff table: rock paper scissors

rock (0, 0) (−1, 1) (1,−1)

paper (1,−1) (0, 0) (−1, 1)

scissors (−1, 1) (1,−1) (0, 0)

No Nash equilibrium.

2.2 Prisoner’s dilemma: B1(Deny) = B1(Confess) = {Confess},
B2(Deny) = B2(Confess) = {Confess}.
Matching Pennies: B1(Head) = {Head}, B1(Tail) = {Tail},
B2(Head) = {Tail}, B2(Kl) = {Head}.

Stag Hunt: B1(X2, . . . , Xn) =

{
{Stag} if all Xi = Stag,

{Hare} otherwise.

2.3 (r2, k2)

2.4 (T, L) is a Nash equilibrium but not a strict one.

2.6 All players writing down the number 0 is a Nash equilibrium for all n.
All players writing down the number 1 is a Nash equilibrium if n ≥ 4.

2.7 Yes
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2.8 a) Closed b) Not closed c) Not closed d) Closed e) Not closed
f) Closed.

2.9 Nash equilibrium: (r3, k4). The row player’s maxminimizing action is
r4, and his safety level is 2. The column player’s maxminimizing action
is k4, and his safety level is also 2.

2.10 Both players have two maxminimizing actions, namely to choose the
number 5 or the number 6. The safety level is 5.

2.11 Follows immediately from Proposition 2.4.1.

2.12 a) The row player should choose row 3, the column player column 2.

b) No Nash equilibrium.

2.13 For example the matrix



1 1 2
1 1 2
0 0 3


.

Chapter 3

3.1 q∗i = (
√
n2 + 1− 1)/n2 for i = 1, 2, . . . , n.

3.2 q∗ = (2.5, 2.5)

3.3 a) 1
3
(a+ c2 − 2c1, a+ c1 − 2c2) if a ≥ 2c2 − c1;

1
2
(a− c1, 0) if a < 2c2 − c1.

b) 1
3
(a− c, a− c) if b ≤ 1

9
(a− c)2;

1
2
(a− c, 0) and 1

2
(0, a− c) if 1

16
(a− c)2 ≤ b ≤ 1

4
(a− c)2;

(0, 0) if b ≥ 1
4
(a− c)2.

Chapter 4

4.1 (x, x, y), (x, y, x) and (y, x, x).

4.2 a) Yes. Φ(C,C) = 0, Φ(C, F ) = −1, Φ(F,C) = −2, Φ(F, F ) = 0 is a
potential function.

b) Yes. Φ(H,H) = Φ(D,D) = 0, Φ(H,D) = Φ(D,H) = 1 is a poten-
tial function.

4.3 Every improvement path of maximal length ends at (T,R). If Φ is an
ordinal potential function, then

Φ(T,L) < Φ(B,L) < Φ(B,R) < Φ(T,R) = Φ(T,L),

which is contradictory.
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Chapter 5

5.1 No mixed Nash equilibria in addition to the pure (Confess,Confess).

5.2 A total of three mixed Nash equilibria − the pure (Consert,Consert)
and (Football,Football), and the mixed where player 1 chooses Concert
with probability 2

3
and player 2 chooses Football with probability 2

3
.

5.3 Only the two pure Nash equilibria (T, L) and (B,R).

5.4 p∗2 = ( 7
15
, 5
15
, 3
15
)

5.5 p∗2 =
1
5
(3− 2t, 5t, 2− 3t), where 0 ≤ t ≤ 1

3
.

5.7 Only (r2, k2) survives, and this pair is therefore the game’s unique Nash
equilibrium.

5.8 a) No b) Only the Nash equilibrium which consists of all players
writing the number 1.

5.9 Player 1’s mixed maxminimizing strategies: (t, 1− t), where 0 ≤ t ≤ 2
3
.

Player 2’s mixed maxminimizing strategies: (t, 1− t), where 0 ≤ t ≤ 4
5
.

Both players’ safety level: 2.

Chapter 6

6.1 The game is defined by the matrix
1 2

1 −1 2

2 2 −4

Both players have the same optimal strategy, namely to choose the
number 1 with probability 2

3
and the number 2 with probability 1

3
. The

value of the game is 0.

6.2 a) Row player: (3
4
, 1
4
), Column player: (1

2
, 1
2
). Value: 5

2
.

b) Row player: (3
7
, 3
7
, 1
7
), Column player: (5

7
, 1
7
, 1
7
). Value: 3

7
.

6.3 The strategies are optimal (the indifference principle!). The game’s
value: 1

3
.

6.4 a) Row player: (0, 1, 0), Column player: (0, 0, 1). Value: 4.

b) Row player: (5
6
, 1
6
), Column player: (2

3
, 1
3
). Value: 7

3
.

c) Row player: (1
3
, 2
3
, 0), Column player: (2

3
, 0, 1

3
). Value: 10

3
.

6.5 The Row player has the following payoff matrix:

♦A ♠A ♦2

♦A −1 1 −2

♠A 1 −1 1

♠2 2 −1 2
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The column player should solve the linear programming problem

Minimize t as



−y1 + y2 − 2y3 ≤ t
y1 − y2 + y3 ≤ t
2y1 − y2 +2y3 ≤ t
y1 + y2 + y3 = 1

y1, y2, y3 ≥ 0

(The minimum is equal to 0 and is obtaind for y = (0, 2
3
, 1
3
). The row

player’s optimal strategy is (1
2
, 0, 1

2
).)

Chapter 8

8.1 Let P = {p0, p1, p2, p3, . . . }, s(p0) = {p1, p2, p3, . . . } and e(pn) = ∅ for
n = 1, 2, 3, . . . . The game tree 〈P, p0, s〉 is non-finite and has height
equal to 1.

8.2 Let P = {p0}∪{pik | 1 ≤ k ≤ i, i = 1, 2, 3, . . . }, and define a successor
function s by putting s(p0) = {pi1 | i = 1, 2, 3, . . . }, s(pik) = {pi,k+1}
for 1 ≤ k < i, and s(pii) = ∅. Every play in 〈P, p0, s〉 is of the form
p0, pi1, pi2, . . . , pii and has finite length.
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8.3 a) Player 1: A, B. Player 2: CE, CF , DE, DF .

b) (A,CE) and (A,CF )

c) CE CF DE DF
A (2, 1) (2, 1) (3, 0) (3, 0)
B (0, 2) (1, 3) (0, 2) (1, 3)

8.4 a) With u1(A) = 2, u1(B) = 1, u1(C) = 0 and u2(A) = 0, u2(B) = 1,
u2(C) = 2 the game tree looks like this:

•

• • •

• • • •••

1

2 22

..................................................................................................................................................................................................................................................................................................................................................................................................................
........................

........................
........................

........................
........................

........................
........................

........................
........................

........................
............
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..................................................................................................................

................................................................................................................

..........................................................................................................................
..........
..........
..........
..........
..........
..........
............
..........
..........
..........

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..

Excl. A Excl. C
Excl. B

Excl. B Excl. BExcl. C Excl. CExcl. A Excl. A

(0, 2) (1, 1) (0, 2) (2, 0) (1, 1) (2, 0)

The game tree in exercise 8.4.

There are two Nash equilibria. In both of them, player 1 excludes
option C. In one of them, player 2 excludes B if his opponent excludes
A, and A if the opponent excludes B or C. In the other one, player 2
excludes C if his opponent excludes A, and A if the opponent excludes
B or C.

b) Four Nash equilibria. In all of them, player 1 excludes alternative
C. Player 2’s response if player 1 excludes A, B and C, respectively is
(B,A,B), (B,C,B), (C,A,B) or (C,C,B)

8.5 Nash equilibria: All combinations where player 1 offers $x, and player
2 accepts x, declines all lower offers and accepts or declines all higher
offers. In addition the combination where player 1 offers $ 0 and player
2 declines all offers, and the combination where player 1 offers $ 0 and
player 2 declines all offers except $ 100. (The number of Nash equilibria
is 2100 + 1.)

•

• • •

• • • •••

1

2 22

......................................................................................................................................................................................................................................................................................................................................................................
.......................

.......................
.......................

.......................
.......................

.......................
.......................

.......................
.......................

...................
.........
........
.........
.........
.........
.........
.........
.........
.........
................................................................................................

..........................................................................................

...................................................................................................
.........
.........
.........
.........
.........
........
.........
.........
.........
.

.......

.......

.......

.......

.......

.......

.......

.......

.......

.....

..........
...
..........
...
..........
...
..........
...
....

.............
.............

.............
.............

.............
.............

.............

..........
...

..........
...

..........
...

..........
...

....

.............
.............

.............
.............

.............
.............

.............

0 100
x

Yes0 No100No0 Yesx Nox Yes100

(100, 0) (0, 0) (100− x, x) (0, 0) (0, 100) (0, 0)

The game tree in Exercise 8.5.

8.6 Analogous to Exercise 8.5, but x is now an arbitrary real number in
the interval [0, 100].
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8.7 (A,CF )

8.8 a) The combination where player 1 removes option C, and player 2
removes B, A and A, respectively, if player 1 removes A, B and C,
respectively. (The subgame perfect equilibrium solution thus results in
B remaining.)

b) The combination where player 1 removes option C, and player 2
removes B, A and B, respectively, if player 1 removes A, B and C,
respectively. (The subgame perfect equilibrium solution thus results in
A remaining.)

8.9 Two subgame perfect equilibria, namely that player 1 offers $ 0 and
player 2 accepts all offers (with a payoff of $ 100 to player 1), and that
player 1 offers $ 1 and player 2 declines the offer $ 0 and accepts all
other offers (with a payoff of $ 99 to player 1).

8.10 One subgame perfect equilibrium: Player 1 offers $ 0 and player 2 ac-
cepts all offers.

8.11 Game tree, where x represents the share of the cake that player 1 offers
player 2:

•

• • •

• • • •••

1

2 22

.......................................................................................................................................................................................................................................................................................................................................................................
.......................

.......................
.......................

.......................
.......................

.......................
.......................

.......................
.......................

..................
.........
.........
.........
.........
.........
.........
.........
.........
.........
...............................................................................................

..........................................................................................

...................................................................................................
.........
.........
.........
.........
.........
.........
.........
.........
.........

.......

.......

.......

.......

.......

.......

.......

.......

.......

.....

..........
...
..........
...
..........
...
..........
...
....

.............
.............

.............
.............

.............
.............

.............

..........
...

..........
...

..........
...

..........
...

....

.............
.............

.............
.............

.............
.............

.............

0 1
x

Accept 0 Decline 1Decline 0 Accept x Decline x Accept 1

(1, 0) (0, 1) (1− x, x) (x, 1− x) (0, 1) (1, 0)

In the subgame perfect equilibrium solution, player 1 offers exactly half
the cake and player 2 always takes the biggest part of the cake.

8.12 (A,EGJ), (A,EHJ), (A,FGJ), (B,FGJ), (C, FGJ) and (B,FHJ)
with payoffs (3, 0), (3, 0), (1, 0), (1, 1), (1, 3) and (2, 1), respectively.

8.13 a) The centipede game has a unique subgame perfect equilibrium. At
each non-terminal position the player in turn to move should take a
step downwards. Outcome: (1, 1).

c) All alternatives where the two players take a step downwards in their
first moves are Nash equilibria.

d) No.

8.14 (2, 4
3
)

8.15 Let (q∗1, q
∗
2) be the Cournot equilibrium. Player 1’s Stackelberg solution

q1 is obtained by maximizing the function V1(q1,m(q1)), where m(q1)
denotes is a maximum point of V2(q1, q2), considered as a function of
q2. We have m(q∗1) = q∗2, because V2(q

∗
1, q

∗
2) ≥ V2(q

∗
1, q2) for all q2, and

hence V1(q1,m(q1)) ≥ V1(q
∗
1,m(q∗1)) = V1(q

∗
1, q

∗
2).
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8.16 (BHI,DF ). Expected utility: (2.2, 2.8).

Chapter 9

9.1 a) Player 1 should with probability 5
6
bet with winning cards and pass

with losing cards and with probability 1
6
bet with both winning and

losing cards. Player 2 should call and fold with equal probability 1
2
.

Value: −1
4
.

b) If 0 < p ≤ 2
3
, player 1 should with probability (2− 3p)/(2− 2p) bet

with winning cards and pass with losing cards, and with probability
p/(2−2p) bet with both winning and losing cards. Player 2 should call
and fold with equal probability 1

2
. The value of the game is 3p− 1.

If p ≥ 2
3
, player 1 should always bet and player 2 should alwas fold,

and the value of the game is 1.

9.2 a) Yes.

b) Strategic form:
ac ad bc bd

AC 2 4 −3 −1

AD 2 2 0 0

BC 0 3 0 3

BD 0 1 3 4

c) Player 1 should choose AD and BD with probability 3
5
and 2

5
, re-

spectively, and player 2 should choose ac and bc with probability 3
5
and

2
5
, respectively. Value: 6

5
.

9.3 Game tree:

•

• •

• • • •

• • • •

2

1

c c

..........................................................................................................................................................................................................................................................................................................................................................................
...................

...................
..................

...................
...................

...................
...................

...............
...........
...........
...........
...........
...........
...........
...........
............
...........
...........
...........
...........
...........
...........
...........
....................................................................................................... ............................................................................................

............................................................................................

............................................................................................

Hide in A Hide in B

Look in A Look in BLook in ALook in B

1
2

1
2

1
4

3
4

· · · · · · · · · · · · · · · · · · · · · · · ·

1 0

0 0

1 0

Strategic form:
Hide in A Hide in B

Look in A 1
2

0

Look in B 0 1
4

Player 2’s optimal strategy is to hide in room A with probability 1
3
and

in room B with probability 2
3
. Player 1’s optimal strategy is to look in

A with probability 1
3
and in B with probability 2

3
. Value: 1

6
.
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9.4 Game tree:

•
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• •

• • • •

• • • •

• •

•

••

••••

••••
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..........
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..........
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..........
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..........
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..........

.. ...............................................................................

............................................................................... ...............................................................................

............................................................................... ...............................................................................

...............................................................................

...................................................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................................

...............................................................................

............................................................................... ...............................................................................

...............................................................................

2

1

1 1

c

c

c

c

c

c

Hide in A Hide in B

Look A1 Look B1Look A1Look B1

Look A2 Look B2

Look A2 Look B2

Look B3Look A3

Look B3
Look A3

1
2

1
2

1
2

1
2

1
2

1
2

3
4

1
4

3
4

1
4

3
4

1
4

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.................................

0

1 0

1

0

1 0

0

01

1

0

01

Strategic form:
Hide in A Hide in B

Look in A1, Look in A2, Look in A3
3
4

0

Look in A1, Look in A2, Look in B3
3
4

0

Look in A1, Look in B2, Look in A3
1
2

1
4

Look in A1, Look in B2, Look in B3
1
2

1
4

Look in B1, Look in A2, Look in A3
1
2

1
4

Look in B1, Look in A2, Look in B3 0 7
16

Look in B1, Look in B2, Look in A3
1
2

1
4

Look in B1, Look in B2, Look in B3 0 7
16

Player 2’s optimal strategy is to hide the coin in room A with proba-
bility 3

11
and in room B with probability 8

11
.

Player 1’s optimal strategy:
Start the search in room B and continue in the same room if the coin
is not found in the first try, with probability 4

11
;

Start the search in room A and continue in room B if the coin is not
found, with probability 7

11
, or vice versa, i.e. start in room B and

continue in room A with probability 7
11
.

The value of the game is 7
22
.

9.5 Strategic form:
a b c

AC 1 2 3

AD −1 1 1

BC 1 0 −1

BD 1 1 −1

Optimal strategies: Choose AC and a, respectively with probability 1.
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9.6 Game tree:

•

•

• •

• • • •

•

••

••••
...........................

...........................
...........................

...........................
...........................

...........................
......................

..............
..............

..............
..............

..............
..............

..............
..............
.............
.........
.........
.........
.........
.........
.........
.........
.........
......................................................................................

.................................................................................

.................................................................................................................................................................................................................

.................................................................................................................................................................................................................

.................................................................................

.................................................................................

Heads
(A)

Tails
(B)

H T
1
2

1
2

TH
2
3

1
3

Ar Br BrArAw Bw BwAwWrong

Right

1

2

2

cc

−1 2 −1 0 −12−10

· · · · · · · · · · · · · · · · · · ·· · · · ·
· · · · · ·

· · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Strategic form:
ArAw ArBw BrAw BrBw

Heads −1 −1
2

1
2

1

Tails 4
3

1 −2
3

−1

Player 1’s optimal strategy is to predict Heads with probability 4
7
and

Tails with probability 3
7
. Player 2 should with probability 1

3
guess

coin A regardless of whether the opponent’s prediction was correct or
not (the strategy ArAw), and with probability 2

3
guess coin B if the

prediction was correct and coin A if the prediction was wrong (the
strategy BrAw). The game is fair because its value is 0.

9.7 τ 11 (A) =
9
16
, τ 11 (B) = 0, τ 11 (C) = 7

16
; τ 21 (V ) = 4

9
, τ 21 (H) = 5

9
; τ 31 (L) = p,

τ 31 (R) = 1− p, where 0 ≤ p ≤ 1 is arbitrary.
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action, 30
action set, 30
affine function, 13, 15
Archimedean property, 29

backward induction, 150
Basic Endgame, 164
Battle of Sexes, 33
behavior

Nash equilibrium, 183
strategy, 179

belief, 123
Bernoulli utility function, 22
Bertrand’s model, 66
best-response

function, 39
set, 39, 90

cardinal utility function, 7, 14
centipede game, 154
chance move, 161
compatible strategy, 180
congestion

game, 72
model , 71

continuity axiom, 19
continuous preference relation, 9
convex, 44
cooperative game, v
Cournots oligopoly modell, 59
cycle, 78

demand function, 67

equilibrium
Nash —, 37, 89, 145, 163, 173,

183
subgame perfect —, 150

equivalent
actions, 4
utility functions, 17

exact potential function, 75
expected

utility function, 13
value, 13

extensive game, 139, 168

fair game, 112
finite

game, 139
game tree, 138
horizon, 139

FIP-property, 78
fixed-point, 46

game
cooperative —, v
extensive —, 139, 161
finite — 30, 139
with finite horizon, 139
mixed extension, 89
strategic —, 30
strictly competitive —, 52
symmetric —, 47
zero-sum —, 52

game tree, 136
finite —, 138
of finite height, 138

204
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Guess 2/3 of the average, 43

Hawk–Dove, 34

improvement path, 78
incomplete information, 168
indifference principle, 95, 113
indifferent, 4
induced preference relation, 6
information

incomplete —, 168
perfect —, 139
set, 169

initial position, 136
inverse demand function, 59
iterated elimination of strictly domi-

nated actions, 102

Kakutani’s fixed-point theorem, 47

label, 169
length

of move sequence, 137
lottery, 11

Matching Pennies, 34
max-min theorem, 112
maximal element, 4
maxminimizing

action, 50
strategy, 107

memory list, 176
mixed

extension, 89
maxminimizing strategy, 107
Nash equilibrium, 89, 183
safety level, 107
strategy, 88, 179

move, 137
sequence, 137

Nash equilibrium, 37, 145, 163, 173

Nash equilibrium
behavior —, 183
mixed —, 89, 183
pure —, 89
strict —, 43
symmetric —, 47

Nash solution, 37
Nash’s theorem , 45
non-cooperative game, v

Odd or Even, 116
optimal strategy, 112
ordinal

potential function, 75
potential game, 75
utility function, 4

outcome, 31
of strategy vector, 143
equivalent strategies, 183

path, 78
index, 79

payoff
function, 31
matrix, 31, 52

perfect
information, 139
recall, 177

play, 137
player, 30

function, 139
position, 136, 137
potential

function, 75
game, 75

preference relation, 3
continuous —, 9

Prisoner’s dilemma, 32
product lottery, 88
pure

Nash equilibrium, 89
strategy, 88, 171
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quasiconcave
function, 44
preference relation, 44

rational decision-maker, 4
rationalizable action, 130
reduced strategic form, 145, 173
risk

averse, 8
neutral, 8

Rock–paper-scissors, 42

saddle point inequality, 53
safety level, 50

mixed —, 107
simple path, 78
Stackelberg

duopoly, 154
equilibrium solution, 155

Stag Hunt, 35
strategic

form of an extensive game, 144,
173

game, 30
strategy, 88, 141, 161, 171, 179

behavior, — 179
mixed —, 88, 179
outcome equivalent —, 183
pure —, 88, 171

strictly competitive game, 52
strictly dominated, 99
subgame, 100, 148

perfect equilibrium, 150, 163
tree, 147

successor, 137
symmetric game, 47

terminal position, 137
two-person zero-sum game, 111

ultimatum game, 147

utility function
cardinal —, 7, 14
expected —, 13
ordinal —, 4

value, 112
von Neumann–Morgenstern preference,

19

weakly dominated action, 105

zero-sum game, 52
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