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PREFACE

Typical algorithms and data structures textbooks are seven or eight hundred pages long, 
include chapters about software engineering and the programming language used in the book, 
and include appendices with yet more information about the programming language. Often 
they include lengthy case studies with tens of pages of specifications and code. Frequently 
they are hardcover books printed in two colors; sometimes they have sidebars with various 
sorts of supplementary material. All of these characteristics make these textbooks very 
expensive (and very heavy), but in my experience, relatively few students take advantage of 
the bulk of this material and few appreciate these books’ many features: much of the time 
and money lavished on these texts is wasted on their readers.

Students seem to prefer dealing with only essential material compressed into the fewest number 
of pages. Perhaps this is attributable to habits formed by life on the Internet, or perhaps it 
is due to extreme pragmatism. But whatever the reason, it seems very difficult to persuade 
most computer science students to engage with long texts, large examples, and extra material, 
no matter how well it is presented and illustrated. This text is a response to this tendency.

This text covers the usual topics in an introductory survey of algorithms and data structures, 
but it does so in under 200 pages. There are relatively few examples and no large case studies. 
Code is presented in Go (more about this in a moment), but the book does not teach Go 
and it does not include reference material about the language. There are no sidebars and 
the book is in black and white. The book does include features of pedagogical value: every 
chapter has review questions with answers, and a set of exercises. There is also a glossary at 
the end. The book (and versions of it using other programming languages) has been used 
successfully for several years to teach introductory algorithms and data structures at James 
Madison University. Many students have commented appreciatively regarding its brevity, 
clarity, and low cost.

Ideally, a language for algorithms and data structures would be easy to learn (so as to leave 
time for learning algorithms and data structures), support data abstraction well, provide a 
good development environment, and engage students. Go is a fairly small language that 
can be learned quite easily, especially if the portions of the language about concurrency are 
left out. Go is not object-oriented, which makes it smaller and simpler, but it has a rich, 
modern type system with exactly the features needed to support data abstraction. Go is 
statically typed and its compiler gives good error messages, which helps novice programmers. 
Although it is not well-supported in Eclipse, it has an excellent command-line development 
environment, including a good testing framework, which students can learn to exploit 
with a little help. There are also editor plug-ins available that help with formatting and 
error messages in many code editors. Go is a relatively new language from Google, and 
many students are interested in learning it. Overall, Go is an excellent choice for teaching 
algorithms and data structures.
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Very few algorithms and data structures books do a good job teaching programming, and 
there is no reason for them to try. An algorithms and data structures book should concentrate 
on its main topic; students can learn the programming language from any of the many 
excellent books devoted to teaching it. Especially when an algorithms and data structures 
text is either free or only costs a few dollars, it is quite reasonable to expect students to also 
obtain a programming language tutorial. For Go, I highly recommend The Go Programming 
Language by Alan Donovan and Brian Kernighan. Besides being an excellent tutorial, it also 
contains extensive reference materials.

This text is informed by several themes:

Abstract data typing—All types are presented as implementations of abstract data 
types, and strong connections are made between the data structures used to represent 
values and the carrier set of the ADT, and the algorithms used to manipulate data 
and the method set of the ADT.

Contiguous versus linked representations—Two implementation strategies are considered 
for every ADT: one using contiguous memory locations (arrays), and one using 
linked structures.

Container hierarchy—A container hierarchy is built using the data structures studied 
in the text. Although modest, this hierarchy introduces the notion of a container 
library like the ones that students will encounter in many other languages, and it 
shows how various containers are related to one another.

Assertions—Preconditions, post-conditions, class invariants, and unreachable-code 
assertions are stated wherever appropriate, and panics (exceptions) are raised when 
assertions are violated.

All the code appearing in the book has been written and tested under Go version 1.8. Code 
implementing the container hierarchy and the searching and sorting algorithms covered in 
the book is downloadable from Github at github.com/foxcjmu/goDataStructures.

I thank Nathan Sprague for several constructive criticisms and error corrections that have 
improved the book. I also thank my students for suggestions and corrections, and for being 
willing to test the book for me.

Christopher Fox
July, 2018

Download free eBooks at bookboon.com



GO DATA STRUCTURES AND ALGORITHMS Introduction

14

1	 INTRODUCTION

1.1	 WHAT ARE DATA STRUCTURES AND ALGORITHMS?

If this book is about data structures and algorithms, then perhaps we should start by defining 
these terms. We begin with a definition for “algorithm.”

Algorithm: A finite sequence of steps for accomplishing some computational task. 
An algorithm must

•	 Have steps that are simple and definite enough to be done by a computer, and
•	 Terminate after finitely many steps.

This definition of an algorithm is similar to others you may have seen in prior computer 
science courses. Notice that an algorithm is a sequence of steps, not a program. You might 
use the same algorithm in different programs, or express the same algorithm in different 
languages, because an algorithm is an entity that is abstracted from implementation details. 
Part of the point of this course is to introduce you to algorithms that you can use no matter 
what language you program in. We will write programs in a particular language, but we are 
really studying the algorithms, not their implementations.

The definition of a data structure is a bit more involved. We begin with the notion of an 
abstract data type.

Abstract data type (ADT): A set of values (the carrier set), and operations on those 
values (the method set).

Here are some examples of ADTs:

Boolean—The carrier set of the Boolean ADT is the set {true, false}. The method set 
includes negation, conjunction, disjunction, conditional, is equal to, and perhaps 
some others.

Integer—The carrier set of the Integer ADT is the set {..., -2, -1, 0, 1, 2, ...}, and 
the method set includes addition, subtraction, multiplication, division, remainder, 
is equal to, is less than, is greater than, and so on. Note that although some of these 
operations yield other Integer values, some yield values from other ADTs (like true 
and false), but all have at least one Integer argument.

Download free eBooks at bookboon.com



GO DATA STRUCTURES AND ALGORITHMS Introduction

15

String—The carrier set of the String ADT is the set of all finite sequences of characters 
from some alphabet, including the empty sequence (the empty string). The method 
set includes concatenation, length of, substring, index of, and so forth.

Bit String—The carrier set of the Bit String ADT is the set of all finite sequences of 
bits, including the empty strings of bits, which we denote λ. This set is {λ, 0, 1, 00, 
01, 10, 11, 000, ...}. The method set of the Bit String ADT includes complement 
(which reverses all the bits), shifts (which rotates a bit string left or right), conjunction 
and disjunction (which combine bits at corresponding locations in the strings), and 
concatenation and truncation.

The thing that makes an abstract data type abstract is that its carrier and method sets hold 
mathematical entities, like numbers or geometric objects, and functions on them; all details 
of implementation on a computer are ignored. This makes it easier to reason about them 
and to understand what they are. For example, we can decide how div and mod should 
work for negative numbers in the Integer ADT without having to worry about how to 
make this work on real computers. Then we can deal with implementation of our decisions 
as a separate problem.

Once an abstract data type is implemented on a computer, we call it a data type.

Data type: An implementation of an abstract data type on a computer.

Thus, for example, the Boolean ADT is implemented as the boolean type in Java, and 
the bool type in Go and C++; the Integer ADT is realized as the int and long types 
in Java, and the Integer class in Ruby; the String ADT is implemented as the String 
class in Java and the string type in Go.

Abstract data types are very useful for helping us understand the mathematical objects that 
we use in our computations but, of course, we cannot use them directly in our programs. 
To use ADTs in programming, we must figure out how to implement them on a computer. 
Implementing an ADT requires two things:

•	 Representing the values in the carrier set of the ADT by data stored in computer 
memory, and

•	 Realizing computational mechanisms for the operations in the method set of the ADT.
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Finding ways to represent carrier set values in a computer’s memory requires that we 
determine how to arrange data (ultimately bits) in memory locations so that each value of 
the carrier set has a unique representation. Such things are data structures.

Data structure: An arrangement of data in memory locations to represent values of 
the carrier set of an abstract data type.

Realizing computational mechanisms for performing the operations in the method set of 
the type really means finding algorithms that use the data structures for the carrier set to 
implement the operations in the method set. And now it should be clear why we study data 
structures and algorithms together: to implement an ADT, we must find data structures to 
represent the values of its carrier set and algorithms to work with these data structures to 
implement the operations in its method set.

A course in data structures and algorithms is thus a course in implementing abstract data 
types. It may seem that we are paying a lot of attention to a minor topic, but abstract data 
types are really the foundation of everything we do in programming. Our computations 
work on data. This data must represent things and be manipulated according to rules. These 
things and the rules for their manipulation amount to abstract data types.

Usually there are many ways to implement an ADT. A large part of the study of data 
structures and algorithms is learning about alternative ways to implement ADTs and 
evaluating the alternatives to determine their advantages and disadvantages. Typically some 
alternatives will be better for certain applications and other alternatives will be better for 
other applications. Knowing how to do such evaluations to make good design decisions is 
an essential part of becoming an expert programmer.

As we have noted, a data type in a programming languages is an implementation of an 
abstract data type. Thus the set of values in a data type is a set of representations of the 
values in the carrier set of the corresponding ADT. But we are usually more interested in 
the values represented than the representations themselves, so when we refer to the carrier 
set of a data type, we will (usually) mean the set of values from the corresponding ADT 
represented in the data type. Similarly, a data type has implementations of algorithms in 
its method set, but when we refer to the method set of a data type we will (usually) mean 
the operations of the corresponding ADT. For example, the carrier set of the int8 data 
type in Go is the set of integers between -128 and 127, and the method set of this data 
type includes addition, subtraction, multiplication, and so on.
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1.2	 STRUCTURE OF THE BOOK

In this book we will begin by studying fundamental data types that are usually implemented 
for us in programming languages. Then we will consider how to use these fundamental 
types and other programming language features (such as pointers, structs, and interfaces) 
to implement more complicated ADTs. Along the way we will construct a classification of 
complex ADTs that will serve as the basis for a library of implementations. We will also 
learn how to measure an algorithm’s efficiency and use this skill to study algorithms for 
searching and sorting, which are very important in making our programs efficient when 
they must process large data sets.

1.3	 THE GO PROGRAMMING LANGUAGE

Although the data structures and algorithms we study are not tied to any program or 
programming language, we need to write particular programs in particular languages to 
practice implementing and using the data structures and algorithms that we learn. In this 
book, we will use the Go programming language.
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Go is a compiled language designed for systems programming. It has few control structures 
and built-in types, and it is not object-oriented, so it is fairly small and simple. On the 
other hand, Go is a modern programming language with a sophisticated type system and 
powerful features like garbage collection and strings, arrays, slices, and maps. We use Go 
because it is simple but powerful, so it can be learned well enough to write substantial 
programs fairly quickly. Thus we will be able to learn Go and still have time to concentrate 
on data structures and algorithms, which is what we are really interested in. Also, Go’s type 
system makes a clear distinctions between carrier and method sets, thus lending itself to 
the study of data types. Finally, Go is free.

1.4	 REVIEW QUESTIONS

1.	What are the carrier set and some operations of the Character ADT?
2.	How might the Bit String ADT carrier set be represented on a computer in some 

high level language?
3.	How might the concatenation operation of the Bit String ADT be realized using 

the carrier set representation you devised for question two above?
4.	What do your answers to questions two and three above have to do with data 

structures and algorithms?

1.5	 EXERCISES

1.	Describe the carrier and method sets for the following ADTs:
a)	 The Real numbers
b)	The Rational numbers
c)	 The Complex numbers
d)	Ordered pairs of Integers
e)	 Sets of Characters
f )	 Grades (the letters A, B, C, D, and F)

2.	For each of the ADTs in exercise one, either indicate how the ADT is realized in 
some programming language, or describe how the values in the carrier set might 
be realized using the facilities of some programming language, and sketch how the 
operations in the method set might be implemented.
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1.6	 REVIEW QUESTION ANSWERS

1.	We must first choose a character set; suppose we use the ASCII characters. Then the 
carrier set of the Character ADT is the set of ASCII characters. Some operations 
of this ADT might be those to change character case from lower to upper and 
the reverse, classification operations to determine whether a character is a letter, a 
digit, whitespace, punctuation, a printable character, and so forth, and operations 
to convert between integers and characters.

2.	Bit String ADT values could be represented in many ways. For example, bit strings 
might be represented in character strings of “0”s and “1”s. They might be represented 
by arrays or lists of characters, Booleans, or integers.

3.	 If bit strings are represented as characters strings, then the bit string concatenation 
operation is realized by the character string concatenation operation. If bit strings 
are represented by arrays or lists, then the concatenation of two bit strings is a 
new array or list whose size is the sum of the sizes of the argument data structures 
consisting of the bits from the first bit string copied into the initial portion of the 
result array or list, followed by the bits from the second bit string copied into the 
remaining portion.

4.	The carrier set representations described in the answer to question two are data 
structures, and the implementations of the concatenation operation described in 
the answer to question three are (sketches of ) algorithms.
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2	 BUILT-IN TYPES

2.1	 SIMPLE AND STRUCTURED TYPES

Virtually every programming language has implementations of several ADTs built into it. 
We distinguish two kinds of built-in types:

Simple types: The values of the carrier set are atomic, that is, they cannot be divided 
into parts. Common examples of simple types are integer, Boolean, character, floating 
point, and enumerations. Some languages also provide string as a built-in simple type.

Structured types: The values of the carrier set are not atomic, consisting instead 
of several atomic or structured values arranged in some way. Common examples of 
structured types are arrays, records, classes, and sets. Some languages treat string as 
a built-in structured type.

Note that both simple and structured types are implementations of ADTs; the distinction 
is simply a question of how the programming language treats the values of the carrier set 
of the ADT in its implementation. The remainder of this chapter considers simple and 
structured types and uses the Go language to illustrate these ideas.

2.2	 SIMPLE TYPES IN GO

Go has a typical collection of simple types similar to those of many other popular imperative 
programming languages. Go has a rich collection of numeric types, including signed and 
unsigned integers represented with 8, 16, 32, or 64 bits, and floating point numbers 
represented with 32 or 64 bits. Go also has complex numbers represented with 64 or 128 
bits, but these have components (real and imaginary parts), so they are structured types. 
Characters are unsigned integers in Go (characters are discussed in more detail below). Go 
has a bool type with values true and false.

Pointer types are also simple types. A pointer is an address of a variable. Every pointer 
type has an associated base type, which is the type of value that can be stored in a variable 
to which a pointer refers. In Go, pointer types are designated *T where T is the base type. 
The carrier set of a pointer type *T is the set of all legitimate addresses of variables storing 
values of type T. In Go the special pointer value nil is the null address and is a member of 
the carrier set of every pointer type. The unary & operator in Go is the address-of operator: 
when applied to a variable, it returns its address, so the unary & operator generates pointer 
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values. The operations of a pointer type include equality comparison and the dereferencing 
or contents-of operation, designated in Go by the unary * operator. If x is a variable holding 
an address, then *x is the value stored in the variable whose address is x. Some languages 
(like C) allow many other operations on pointers, such as addition and subtraction, but 
Go does not support such pointer operations because they are prone to error.

Sub-programs can also be types. A sub-program in Go is called a function. A function type 
is determined by its parameter and result types, which form a unitary value, so function 
types are simple types. In languages with function types, function values can be stored in 
variables, returned by other functions, passed as parameters, and so forth, just like values 
of any other types. In Go, functions are legitimate values like any other.

Go allows programmers to construct new simple types from other simple types through 
type declarations. For example, in Go one might declare Farenheit and Celsius types 
as follows:

type Farenheit float64
type Celsius float64

These declarations create two new types with the same carrier and method sets as the built-
in simple type float64, but distinct from float64 and from each other: operations that 
mix these types will fail unless values are explicitly converted to the proper type. Additional 
functions can be added to the method sets of Farenheit and Celsius as well. For 
example, the method ToCelsius() could be added to Farenheit and the method 
ToFarenheit() could be added to Celsius to convert values between these two 
types. This is discussed in more detail in the next chapter.

2.3	 STRUCTURED TYPES IN GO

Go has a small but rich collection of structured types.

Array—A fixed length, ordered collection of values of the same type (called the 
element type) stored in contiguous memory locations. We discuss arrays further below.

Slices—A reference to a contiguous segment of an associated array. We discuss slices 
further below as well.
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Strings—The string type in Go is an immutable slice of an array of bytes that 
encodes characters using a variable length encoding. We consider the string type 
in some detail at the end of this chapter.

Structs—A record consisting of named fields of various types. Structs are used to 
group data of different types together into a single entity. Each field of a struct must 
be accessed by its name.

Maps—An unordered collection of elements, which are values of an element type. 
Each element is accessible using a key, which is a value of a key type. Maps are also 
called associative arrays because they resemble arrays in having elements accessible 
by a kind of indexing operation using keys. They are unlike arrays in that the key 
type need not be an integer value. The elements are associated with their keys, but 
are not stored in order.

Channels—A mechanism that concurrently executing functions can use to communicate 
with one another. We do not discuss channels further in this book.

Interfaces—A collection of function signatures. We discuss interfaces in the next 
chapter.
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Besides these built-in structured types, programmers can construct new structured types by 
combining other structured types. For example, an array can have elements that are pointers 
to structs with fields that are maps. Thus the number of different structured types that can 
be constructed in Go is virtually unlimited.

Go’s typing mechanism is central in implementing ADTs in Go, and the next chapter is 
devoted to discussing this topic. The remainder of this chapter first explores Go’s arrays and 
slices, and then characters and strings, in greater detail.

2.4	 ARRAYS

A structured type of fundamental importance in almost every imperative programming 
language is the array.

Array: A fixed length, ordered collection of values of the same type stored in 
contiguous memory locations; the collection may be ordered in several dimensions.

The values stored in an array are called elements. Elements are accessed by indexing into 
the array: an integer value is used to indicate the ordinal value of the element. For example, 
if a is an array with 20 elements, then a[6] is the element of a with ordinal value 6. 
Indexing may start at any number, but generally (and in Go in particular), it starts at 0. 
Thus a[6] is the seventh value in a when indexing start at 0.

Arrays are important because they allow many values to be stored in a single data structure 
while providing very fast access to each value. This is made possible by the fact that (a) 
all values in an array are the same type, and hence require the same amount of memory 
to store, and (b) elements are stored in contiguous memory locations. Accessing element 
a[i] requires finding the location where the element is stored. This is done by computing 
b + (i × m,) where m is the size of an array element, and b is the base address of array a. 
This computation is very fast. Furthermore, access to all the elements of the array can be 
done by starting a counter at b and incrementing it by m, thus yielding the location of 
each element in turn, which is also very fast.

Arrays are not abstract data types because their arrangement in the physical memory of a 
computer is an essential feature of their definition, while abstract data types abstract from 
all details of implementation on a computer. Nonetheless, we can discuss arrays in a “semi-
abstract” fashion that ignores some implementation details. The definition above omits details 
about how elements are stored in contiguous locations (which indeed does vary somewhat 
among languages). Also, arrays are typically types in procedural programming languages, so 
they are treated like realizations of abstract data types even though they are really not. In 
this book, we treat arrays as implementation mechanisms and not as ADTs.
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In some languages, the size of an array must be established once and for all when storage 
for the array is allocated and cannot change thereafter. Such arrays are called fixed or static 
arrays. A chunk of memory big enough to hold all the values in the array is allocated when 
the array is created, and thereafter elements are accessed using the fixed base location of the 
array. Static arrays are the fundamental array type in most older procedural languages, such 
as Fortran, Basic, and C, and in many newer object-oriented languages as well, such as Java.

Some languages provide arrays whose sizes are established at run-time and can change 
during execution. These dynamic arrays have an initial size used as the basis for allocating 
a segment of memory for element storage. Thereafter the array may shrink or grow. If the 
array shrinks during execution, then only an initial portion of allocated memory is used. But 
if the array grows beyond the space allocated for it, a more complex reallocation procedure 
must occur, as follows:

1.	A new segment of memory large enough to store the elements of the expanded 
array is allocated.

2.	 All elements of the original (unexpanded) array are copied into the new memory segment.
3.	The memory used initially to store array values is freed and the newly allocated 

memory is associated with the array variable or reference.

This reallocation procedure is computationally expensive, so systems are usually designed to 
do it as infrequently as possible. For example, when an array expands beyond its memory 
allocation, its memory allocation might be doubled even if space for only a single additional 
element is requested. It can be shown that such expansion policies are efficient on average.

Dynamic arrays are convenient for programmers because they can never be too small—
whenever more space is needed in a dynamic array, it can simply be expanded. One 
drawback of dynamic arrays is that implementing language support for them is more work 
for the compiler or interpreter writer. A potentially more serious drawback is that the 
expansion procedure is expensive, so there are circumstances when using a dynamic array 
can be dangerous. For example, if an application must respond in real time to events in its 
environment, and a dynamic array must be expanded when the application is in the midst 
of a response, then the response may be delayed too long, causing problems.

Go has fixed arrays. An array in Go must have its size specified as a constant in its declaration 
and this size cannot change during execution. For example, the declaration a [20]int 
declares a to be an array holding 20 int elements. Note that in Go the size of the array is 
always specified in square brackets before the type of the array’s elements. Go has a built-in 
function called len() that returns the size of an array, so len(a) is 20.
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2.5	 SLICES IN GO

Go arrays are useful, but because they are fixed arrays, their utility is somewhat limited. Go 
provides slices as a more powerful alternative to arrays. A slice is a reference to a contiguous 
segment of an array, called the underlying array. In Go, slices are created with a fixed length 
that can be set between zero and a capacity determined by the length of the underlying 
array. However, it is very easy to create slices from an array or another slice at runtime, 
so Go slices are much like dynamic arrays with all their advantages and conveniences. 
Furthermore, Go has a built-in append() operation that allows values to be added to the 
end of a slice, creating a new slice with a greater length. If the slice’s capacity is reached, 
append() creates a new slice with a larger underlying array and copies the old slice values 
to the new slice using the reallocation procedure discussed above. The append() operation 
thus makes using slices nearly as convenient as using dynamic arrays.

As noted, slices have both a length and a capacity. The length of a slice (returned by the 
built-in len() operation), is the number of values that can stored in the slice. The 
capacity of a slice (returned by the built-in cap() operation) is the number of values that 
could be stored in a slice using the slice’s underlying array—it is the number of locations 
between the start of the slice in the underlying array and the end of the underlying array, 
so it indicates how much larger a new slice can grow without the expense of creating and 
initializing a new underlying array.
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Slice types are declared like array types, but without size specifications. For example, the 
declaration s []int declares s to be a slice holding int values. This declaration creates 
a hidden empty underlying int array. Slices can be associated with non-empty underlying 
arrays in several ways. One way is to use the built-in make() function, which takes a 
slice type, a length, and an optional capacity, and returns a reference to a slice value. For 
example, the statement s := make([]int,10,20) declares s to be an int slice and 
assigns to it a reference to a slice of length 10 whose underlying int array has length 20 
(the slice’s capacity).

An important difference between array and slice types is that array types are value types 
and slice types are reference types.

Value type: A type whose variables hold data structures representing the values of 
the carrier set of the type.

Reference type: A type whose variables hold references to locations where data 
structures representing the values of the carrier set of the type are stored.

If a is an array variable, then the memory location associated with a holds all the values 
in the array. If s is a slice variable, then the memory location associated with s holds a 
reference to another memory location where the data in the slice is stored. This has important 
consequences for assignments and parameter passing. For example, the assignment b := 
a will create a new array in b that is a copy of the array in a—there are two distinct 
arrays—while the assignment t := s will create a new slice reference in t that refers to 
the same slice as s—both s and t refer to a single slice.

Despite the differences between arrays and slices, indexing and iterating over arrays and 
slices work the same way, so it as easy to work with slices as if they were arrays. The usual 
practice in Go is to work with slices rather than arrays because they are almost as efficient 
but provide the opportunity for expansion when necessary.

2.6	 CHARACTERS AND STRINGS

Characters and strings in Go provide an interesting illustration of the relationships between 
abstract data types and their implementations using data structures and algorithms; we will 
here be focussing in particular on the way ADT carrier sets are realized in data structures.
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The character ADT has a set of symbols as its carrier set and operations for classifying 
symbols (for example, as white space characters or as digits) and mapping them from one 
to another (for example, an operation to change a letter to uppercase) in its method set. 
The character ADT implemented in Go has as its carrier set the set of all symbols in the 
world’s languages, plus mathematical symbols and various decorative symbols. This set is 
described in the Unicode Standard, an international agreement about representing symbols 
in computers that is essentially an assignment of a number, called a Unicode code point, 
to every symbol included in the standard (see www.unicode.org). Currently the Unicode 
standard specifies over 110,000 symbols and code points.

Unicode specifies a (very simple) data structure to represent all the values in the carrier set 
of the character ADT. Unicode code points range from 0 to 1,114,111; many of these values 
are assigned to the same symbol, and some are disallowed, but most are unused, leaving room 
for expansion of the standard over time. For our purposes, however, the main point is that 
characters are represented as non-negative integers that may be as large as 1,114,111. This 
number is 10FFFF in hexadecimal, so it requires 18 bits when represented in base two. It 
is natural to use 32-bit integers to hold Unicode code points, and that is exactly what Go 
does: the rune type in Go holds Unicode code points; rune is a synonym for int32.

Go has a standard package (called unicode) that provides implementations of the operations 
in the character ADT method set. These operations are based on the Unicode standard and 
they classify characters in various ways, and map characters to other characters in useful ways.

Strings are sequences of characters. The carrier set of a string type is the set of all strings 
over some character set. Go strings contain Unicode characters, so the carrier set of the 
string ADT implemented in Go is the set of all sequence of characters from the Unicode 
character set.

One way to implement strings would be to use arrays whose elements are representations 
of characters. In Go, for example, string values could be represented as slices of rune 
values, that is, as the type []rune. This would work, but in many cases it would waste 
a lot of space. In Unicode, the Latin characters have values between 0 and 127, which can 
be represented in 7 bits. Thus in a slice of rune values, 25 of the 32 bits of each element 
would be zero for most texts in English, wasting three quarters of the space in the slice. As 
an alternative, the designers of Go decided to represent characters in strings using the UTF-8 
encoding of Unicode. To explain UTF-8, it helps to think of elements in the carrier set of 
the string ADT not as sequences of symbols but as sequences of Unicode code points (that 
is, sequences of integers between 0 and 1,114,111). The data representation problem then 
becomes one of encoding sequences of integers as bit strings. If these integers are usually 
small values, then it is most efficient to use an encoding that employs fewer bits for small 
values and more bits for longer values—in other words, to use a variable-length encoding.
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UTF-8 (which stand for Universal Character Set Transformation Format-8 bit) is the leading 
variable-length encoding of the Unicode character set. It is the standard for the world-wide 
web and is increasingly being used in operating systems and programming languages. UTF-8 
uses one byte for Unicode code points between 0 and 127 characters, two bytes for code 
points between 128 and 2047, three bytes for code points between 2048 and 65,535, and 
four bytes for code points between 65,536 and 1,114,111. Thus UTF-8 uses far fewer bits 
in many cases (such as English text) than would a straightforward recording of code points 
as 32-bit integers. But UTF-8 is an encoding, which means that certain bits in the bytes 
encoding values are control bits, not data bits. For example, if the first four bits in a UTF-
8 encoded byte is 1110, then this is the first byte of a three byte encoding. The next two 
bytes should each begin with 10, and the remaining bits in the three bytes together form 
the value of a code point in base two.

In Go, the string type represents each value in the carrier set of the string ADT as 
an array of bytes that uses UTF-8 to encode Unicode characters. Hence a character in a 
string is represented differently than a character in a rune. Two techniques are used 
to represent characters in Go; similar values in the carrier sets of two ADTs are represented 
by two different data structures to achieve certain goals. For the rune type, space is not 
an issue so the most time-efficient representation is used; for the string type, space is a 
concern so a more space-efficient but less time-efficient representation is used. In Go, slices 
of runes (that is, values of type []rune) and string values can be converted between 
one another using built-in type conversions. These conversions switch between characters 
represented as Unicode code points and UTF-8 encoded bytes.

When indexed or sliced, string values are treated as if they were arrays of bytes. Go has 
built-in mechanisms for string concatenation and iterating over the characters in a string. 
The fmt and strings packages have many functions for manipulating strings. Thus the 
string ADT is fully implemented as the string type in Go.

2.7	 REVIEW QUESTIONS

1.	What is the difference between a simple and a structured type?
2.	List the built-in simple and structured types of Go.
3.	What is the relationship between the address-of and dereferencing or contents-of 

operators in Go?
4.	Explain the difference between fixed and dynamic arrays.
5.	Explain the difference between value and reference types.
6.	Explain the difference between a slice of runes and a string in Go.
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2.8	 EXERCISES

1.	Choose a language that you know well and list its simple and structures types.
2.	Go was created by some of the same people who invented the C programming 

language; compare the simple and structured types of C and Go.
3.	List the value and reference types of Go. Choose some other language that you 

know well and compare its value and reference types to those of Go.
4.	Write Go code to illustrate at least three ways to create a slice whose capacity is five.
5.	Write a small Go program to investigate how the append() operation makes 

larger underlying arrays when a slice’s capacity is exceeded. In particular, what 
rule does the append() operation use to determine how big to make a new 
underlying array?

6.	How are slices or runes converted to strings in Go? How are strings 
converted to slices of runes?

7.	Write a Go program to print the Unicode characters between 0 and 1023. Each line 
should display the value as a Unicode code point in the format U+hhhh (where h is 
a hexadecimal symbol), followed by the character as a glyph, followed by the UTF-8 
encoding for the character. Hint: use the data display features of the Printf() 
function in the fmt package.
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2.9	 REVIEW QUESTION ANSWERS

1.	The values of a simple type cannot be divided into parts, while the values of a 
structured type can be. For example, the values of the Go int type cannot be 
broken into parts, while the values of a Go array can be (the parts are the elements 
of the array).

2.	The built-in simple types of Go are int8, int16, int32 (rune), int64, 
uint8 (byte), uint16, uint32, uint64, float32, float64, uintptr, 
and bool. The built-in structured types of Go are complex64, complex128, 
arrays, slices, strings, maps, channels, structs, and interfaces.

3.	The address-of and dereferencing or contents-of operators in Go are inverses. If x 
is a variable, then *&x == x. (However, &*x is generally an error because *x 
produces a value, not a location whose address can be taken using the & operator.)

4.	A fixed array is an array whose size is determined when the array is created and 
cannot be changed thereafter. A dynamic array is an array whose size can be changed 
at any time during execution. Go has fixed arrays and slices of fixed length. A slice 
is not a dynamic array because (a) it is not an entity in its own right like a dynamic 
array, but a designated portion of a fixed array, and (b) its size cannot be changed 
arbitrarily at runtime (though it is easy to make a new slice at any time using the 
same or another underlying fixed array).

5.	A value type is a type whose values are stored in memory locations associated 
with variables of the type. For example, the Go rune type is a value type. If r 
is a rune variable, then the memory location associated with r stores the actual 
rune value (a 32-bit integer). A reference type is a type whose values are stored in 
some memory location not associated with variables of the type; memory locations 
associated with variables of the type instead store references (that is, addresses) of 
the memory location where the data is stored. For example, in Go the string 
type is a reference type. If s is a string variable, then the memory location 
associated with s stores a reference to the memory location where the string 
data is stored.

6.	A slice of runes is a reference to a (portion of ) an array of 32-bit integers ostensibly 
storing Unicode code points, that is, numbers between 0 and 1,114,111. A string, 
on the other hand, is an array of bytes that uses the UTF-8 encoding scheme to 
store representations of sequences of Unicode code points. UTF-8 encodings of code 
points range from one to four bytes in length, so a string contains bytes that may 
represent characters on their own, or in conjunction with the bytes around them. 
Thus a slice of runes is one way to represent a sequence of Unicode characters 
(one that uses more space but allows faster processing of individual characters), and 
a string is another way to represent a sequence of Unicode characters (one that 
uses less space but leads to slower processing of individual characters).
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3	 IMPLEMENTING ADTS IN GO

3.1	 SPECIFYING CARRIER AND METHOD SETS IN GO

Go’s built-in types have carrier and method sets, as we have discussed. Type declarations 
allow programmers to create new, user-defined types in the language. The carrier set of a 
user-defined type is determined by the type specification in its type declaration. To illustrate, 
consider the following examples:

type Integer int—This declaration creates a new type called Integer whose 
carrier set is the same as the int carrier set. The operations of the int type (such 
as addition, subtraction, and so forth) are also in the Integer type method set.

type Natural Integer—This declaration creates a new type called Natural 
whose carrier set is the same as the Integer carrier set and whose operations are 
those of the int type.

type Wind [2]float64—This declaration creates a new type called Wind 
whose carrier set is the set of all arrays of two float64 values. These two floating 
point numbers might represent wind direction and wind speed. Array operations 
(like indexing) are also available in the Wind method set.

type WindData map[string]Wind—This declaration creates a new type 
called WindData whose carrier set is a mapping from string to Wind values, 
that is, to arrays of two float64s. The elements of the carrier set are ordered pairs 
of string and Wind values, for example <“Chicago”, [248.8, 8.6]>.

The carrier set of a user-defined type is thus determined in its type declaration, based on 
the carrier sets of its constituent types. The method sets of new types are a determined ina 
more complex way.

To begin with, every new type’s method set automatically includes all the fundamental 
operations of its underlying built-in types. Thus, for example, the Integer and Natural 
types include addition, subtraction, multiplication, two division operations, and comparison 
operations derived from the int type. The Wind type derives indexing and len() 
operations from the array type, and the WindData type derives access, len(), and 
delete() operations from the map type. In addition, methods can be added to a new 
type’s method set.
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3.2	 IMPLEMENTING ADT S IN GO

In Go, a receiver is a value passed to a function as an implicit parameter when the function 
is called; when it has a pointer type, a receiver may be modified by a function and thus 
may also be an implicit result of the function. A function is specified to have a receiver in 
its declaration. When a function is declared to have a receiver, it is called a method, and 
it is added to the method set of the type of the receiver. Thus we can add a method to a 
method set by specifying a receiver in the method’s declaration. To illustrate, consider the 
following method declaration.

func (n Integer) IsOdd() bool 
{
return n % 2 == 1

}

Figure 1: A Method Declaration

This declaration adds IsOdd() to the Integer method set. Methods are called using a 
receiver and the dot operator, so if x is an Integer variable with value 5, then x.IsOdd() 
will run the IsOdd() method with the receiver x, and the result will be true.
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In Go, methods cannot be added to any of the built-in types, and methods added to a user 
defined type are not passed on to other user-defined types defined from it. For example, 
even if IsOdd() is added to the Integer method set, it will not be in the Natural 
method set unless it is put there by an explicit declaration of IsOdd() with a Natural 
receiver.

In summary, Go has a two-part mechanism for defining new types:

•	 A type declaration specifies the carrier set of the new type in terms of the carrier 
sets of previously defined types, and basic operations of the new type are derived 
from the built-in types on which it is based.

•	 Explicit declarations of methods with receivers of the new type add methods to 
the new type’s method set.

3.3	 A SIMPLE ADT IMPLEMENTATION

Now that we know the rudiments of creating types in Go, we show how to use Go’s type 
definition mechanism to implement a simple ADT. The YFI ADT records non-negative 
distances in yards, feet, and inches, to the nearest inch. The carrier set of the YFI ADT is 
the set of all triples (y, f, i) where y, f, and i are natural numbers such that f < 3 and i < 
12. The method set of the YFI ADT includes the following operations.

set(y, f, i)—Return a YFI value representing a distance of y yards, f feet, and i inches. 
If 36*y + 12*f + i < 0, then the result of this function is undefined.

get(m)—Return the the YFI value m as a triple (y, f, i) where y is the number of 
yards, f the number of feet, and i the number of inches in m. In this result, i, f, and 
y are natural numbers, i < 12, and f < 3.

m == n—Return true if and only if m and n represent the same distance.

m + n—Return a new YFI value that represents a distance that is the sum of the 
distances represented by m and n.

m - n—Return a new YFI that represents a distance that is m less n. The result of 
this function is undefined if the distance represented by m is less than the distance 
represented by n.
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Lets consider how we might implement this ADT in Go. We need a data structure to 
represent the values in the carrier set. We might do this in many ways, but suppose we 
simply create a new type derived from int with the type declaration type YFI int. 
Values of type YFI will record the number of inches in a distance; inches can be converted 
to inches, feet, and yards as necessary.

One big advantage of this way of representing YFI values is that the YFI type automatically 
includes the comparison, addition, and subtraction operations that we need to implement 
the YFI ADT. Only the Get() and Set() methods need to be added to the YFI 
method set to complete the implementation of the ADT. Figure 2 below shows the complete 
implementation.

type YFI int

func (m YFI) Get() (yards, feet, inches 
int) {
yards = int(m)/36
feet = (int(m) - yards*36) / 12
inches = (int(m) - yards*36 - feet*12)
return

}

func (m *YFI) Set(inches, feet, yards int) {
*m = YFI(inches + feet*12 + yards*36)

}

Figure 2: An Implementation of the YFI ADT

This code begins with the type declaration for YFI, which establishes its carrier set and 
the portion of its method set derived from int (that is, its fundamental operations). Then 
the Get() and Set() methods are declared. Notice that each declaration has a YFI or 
*YFI receiver (the receiver must be a pointer if the YFI value is changed). Using a YFI 
receiver adds these functions to the YFI and *YFI method sets, while using *YFI adds 
the function only to the *YFI method set. This code provides a way to represent YFI ADT 
values and implementations of all the operations of the YFI ADT.

You might notice that the argument of the get() method in the YFI ADT method set and 
the Get() method in the Go implementation are different. The YFI value m that is an 
argument of the get() method in the ADT method set becomes the receiver for the Get() 
method in the Go code. We could make the ADT method set more like the Go code method 
set if we specify ADT methods assuming an implicit carrier set value (the receiver) available 
to the functions in the ADT method set. The receiver can be accessed in the function and 
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may also be a result of the function. We call such method sets implicit-receiver method 
sets. We will generally specify implicit-receiver method sets when we discuss ADTs in later 
chapters just to make the relationship between ADT method sets and Go method sets clearer.

As this example shows, Go’s typing facilities are adequate for implementing ADTs because 
they provide means to specify both the carrier and method sets of new types. In addition, 
however, Go provides powerful shortcuts that make implementing new types faster and 
easier when type values are stored in structs. We consider these next.

3.4	 STRUCT TYPES IN GO

As mentioned in the last chapter, a struct is a record consisting of named fields of various 
types. Structs are used to group data of different types together into a single entity, and 
as such they are perhaps the most important data structuring mechanism available in Go. 
User-defined types are often defined as structs. For example, we can improve on the Wind 
type defined above using a struct rather than an array as follows.
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type Wind struct 
{
direction 
float64
speed float64

}

Figure 3: Using a struct to Record Wind Direction and Speed

If w is a Wind value, then w.direction and w.speed refer to the two fields of the 
Wind struct. As with any user-defined type, operations can be declared and added to the 
method sets of the Wind or *Wind type by giving the method a Wind or *Wind receiver.

func (w *Wind) Set(direction, speed float64) {
w.direction = direction
w.speed = speed

}

func (w Wind) WindData() (float64 float64) {
return w.direction, w.speed

}

Figure 4: Two Wind Methods

Now suppose that we want to define a type to record city weather data; we might define 
a type such as the following.

type CityWeatherData struct {
name string
temperature float64
humidity float64
wind Wind

}

Figure 5: A Type to Record City Weather Data

In this code, a Wind struct is included inside the CityWeatherData struct. This sort 
of nested declaration is called struct aggregation. This declaration works, but it requires 
us to define new functions to access the wind data (as well as the other data in the struct) 
in the way we have done before.
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Alternatively, we could define this type as follows.

type CityWeatherData struct {
name string
temperature float64
humidity float64
Wind

}

Figure 6: Another Type to Record City Weather Data

Notice that the code in Figure 6 uses only the name of the Wind type without giving it a 
field a name, thus creating an anonymous field in the CityWeatherData struct. This 
is called struct embedding, and it is useful for two reasons: first, it causes all the fields of 
the embedded struct to be included in the embedding struct without having to write them 
out. Second, and more importantly, when one struct is embedded in another, the embedded 
struct’s methods are automatically added to the method set of the embedding struct. Hence 
in Figure 6, the direction and speed fields of the Wind type are included in the 
CityWeatherData type, and the two Wind methods declared in Figure 4 are added 
to the CityWeatherData type’s method set as well. If d is a CityWeatherData 
or *CityWeathervalue, then we can call d.WindData() to obtain the direction 
and speed of the wind for city d. Behind the scenes, Go extracts the anonymous Wind 
field of d and uses it as the receiver of the call to WindData(), thus passing the correct 
type of data as the receiver for Wind type methods.

If we do not want to use a method derived from an embedded struct, a new method with 
the same name can be declared with the embedding struct as its receiver. Go will then use 
the outer method when called with the embedding struct as receiver, and the inner method 
when called with an embedded struct value as receiver. This provides a way to override 
derived methods. For example, consider the following declaration.

func (d *CityWeatherData) Set(name string,
temperature, humidity, direction, speed float64) {

d.name = name
d.temperature = temperature
d.humidity = humidity
d.direction = direction
d.speed = speed

}

Figure 7: Overriding the Set() Method
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This declaration overrides the Set() method derived from the embedded Wind field. If d 
is a *CityWeatherData value, then d.Set(„Phoenix“, 102, 32, 220.1, 
8.6) will call the method declared in Figure 7, but d.Wind.Set(-80.3,15.3) will 
call the method declared in Figure 4.

Struct embedding provides a way for one user-defined type to derive fields and methods from 
another user-defined type. This saves a great deal of work because it allows code reuse. If you 
are familiar with object-oriented programming, you will recognize that structs are similar 
to classes, and that struct embedding is similar to class inheritance. But struct embedding 
is simpler than class inheritance, and it provides the reuse benefits of inheritance without 
the complicated mechanisms of an object-oriented language.

3.5	 INTERFACES

An interface is a collection of function signatures. A function signature is a specification 
of a function’s name, the number and types of its parameters, and the number and types 
of its return values. Function signatures don’t specify function bodies, that is, the code 
that actually executes when a function is called. A function signature therefore specifies an 
abstract function; a concrete function is a function with both a signature and a body. An 
interface can be regarded as a special kind of type with an empty carrier set and a method 
set containing abstract rather than concrete methods. A type implements an interface when 
its method set includes concrete functions implementing all the abstract functions in the 
interface’s method set. For example, suppose we declare the BulkStorer interface as 
follows.

type BulkStorer interface {
Capacity() int
Quantity() int
Add(amount int) (int, bool)
Remove(amount int) (int, bool)

}

Figure 8: The BulkStorer Interface

Any type whose method set includes the four functions in the BulkStorer interface, 
no matter what they actually do, implements this interface.
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Interfaces are types, so variables can be declared with an interface type. Suppose variable or 
parameter b is declared to be a BulkStorer. Then any value of a type that implements 
this interface can be assigned to the variable or passed as parameter b. For example, suppose 
we write code that balances loads among a collection of BulkStorers. Then we can use 
this code on any collection of BulkStorer values, be they values of type DumpTruck, 
Silo, WarehousePallet, GroceryStoreBin, and so forth.

The use of interfaces is encouraged by the ability to embed types in interfaces, which includes 
the signatures of the embedded type in the embedding interface. Hierarchies of interfaces 
are easy to construct, providing flexibility in the use of interfaces.

3.6	 SUMMARY AND CONCLUSION

Programmers can implement ADTs in Go in two steps. First a type declaration establishes 
the values in the new type’s carrier set and the basic operations in its method set. Additional 
functions are added to the method set by declaring them with the new type as the method 
receiver. This process is made easier by the ability to embed structs in other structs, which 
automatically adds the embedded struct’s methods to the embedding struct type.
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Interfaces provide a means to generalize variables so that they can store values of any type 
that implements an interface.

3.7	 REVIEW QUESTIONS

1.	How are the carrier and method sets of a user-defined type determined in Go?
2.	What is an implicit-receiver method set?
3.	What is the difference between aggregating and embedding structs?
4.	What is a receiver and why is it important?
5.	 If I is a struct type embedded in struct type O, m() is a method of I, and x 

is of type O, what is the type of the receiver passed to m() when the statement 
x.m() is executed?

6.	What is an interface?

3.8	 EXERCISES

1.	Write the methods Succ() and Pred() for the Natural type declared in 
the text. These functions return the successor and the predecessor of a Natural 
number. The Succ() function should panic if its receiver is less than zero, and 
the Pred() method should panic if its receiver is less than one.

2.	Suppose we decide to use a struct to implement the YFI ADT discussed in the text. 
In this case, the addition and subtraction operations will have to be implemented 
explicitly, as well as the set() and get() operations. Write Go code to implement 
the YFI ADT using a struct.

3.	 In Go, write code for a struct-based type called BulkStore that keeps track of 
its capacity and current quantity. Add the following methods to this type:
Capacity() int—Return the capacity.
Quantity() int—Return the current quantity.
Add(amount int) (int, error)—Increase the quantity by the amount 
up to at most the capacity and return the amount actually added to the BulkStore 
and nil if the amount argument is non-negative, and zero and an error value 
if the amount argument is negative.
Remove(amount int) (int, error)—Decrease the quantity by the 
amount down to at least zero, and return the amount actually removed and nil 
if the amount argument is non-negative, and zero and an error value if the 
amount is negative.
Also create a function with the signature NewBulkStore(n int) *BulkStore 
that creates a returns a pointer to a new BulkStore value with a capacity of n.
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4.	Add the BulkStorer interface as specified in Figure 8 to the code you wrote in 
the previous Exercise. Declare a variable store as a BulkStorer, assign it a 
value using the NewBulkStore() function, and write code to test the store.

5.	Extend the code you wrote in the previous exercise by defining a GroceryStoreBin 
type as a struct with a serial number field; the struct should also embed BulkStore. 
Write a function that returns a pointer to a new GroceryStoreBin value with serial 
number serial and capacity n with signature NewGroceryStoreBin(serial, 
n int) *GroceryStoreBin. Modify your test code from the last exercise 
to assign store the result of a call to NewGroceryStoreBin(). What 
should happen?

3.9	 REVIEW QUESTION ANSWERS

1.	The carrier set of a user-defined type is determined by the type declaration for 
the new type: the carrier set is the set of values that satisfies the type specification 
at the end of the declaration. The method set is determined in part by the type 
declaration and in part by method declarations: all operations of built-in types that 
are specified in the user-defined type declaration are included in the user-defined 
type’s method set. In addition, all functions declared with a receiver whose base 
type is the user-defined type are included in the new type’s method set.

2.	An implicit-receiver method set is an ADT method set whose functions are assumed 
to have access to an unnamed carrier set value, the receiver. It can access and modify 
the receiver, which can also be a result of the function.

3.	When a struct is aggregated within another, the inner struct is the type of a named 
field of the outer struct and it treated like any other named field; in particular, 
its methods are not added to the method set of the outer struct. When a struct 
is embedded in another, its fields are treated as if they were added as fields of the 
outer struct, and the inner struct’s methods are added to the method set of the 
outer struct.

4.	A receiver is a value passed as an implicit parameter to a function. Declaring a 
function to have a receiver does two things: (a) it makes the function into a method 
that can be called using the dot operator, and (b) it adds the function as a method 
to the method set of the base type of the receiver.

5.	Suppose that I is a struct type embedded in struct type O, m() is a method of 
I, and x is of type O. If x.m() is executed, then x is the apparent receiver for 
m(), but m() is declared to have a receiver of type I, so there is a type conflict. 
Go resolves this conflict by extracting the (anonymous) field of type I from O and 
making it the receiver for the call of m().
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6.	An interface is a collection of function signatures, which are specifications of a 
function’s name, parameter types, and return types. A type implements an interface 
when its method set includes the functions in the interface. An interface is a type, 
so variables and parameters may have interface types. This means that any value 
of a type that implements the interface can be stored in a variable or passed as a 
parameter of the interface type, providing great flexibility while retaining strong type 
checking. One interesting interface type is interface{}, the empty interface. 
The empty interface is the empty set of functions, so it is included the every method 
set of every type. Thus a variable of type interface{} can store a value of any 
type! This turns out to be quite useful in many situations.
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4	 CONTAINERS

4.1	 INTRODUCTION

Simple abstract data types are useful for manipulating simple sets of values, like Integers or 
Strings, but more complex abstract data types are crucial for most applications. A category 
of complex ADTs that has proven particularly important is containers.

Container: An entity that holds finitely many other entities.

Just as containers like boxes, baskets, bags, pails, cans, drawers, and so forth are important 
in everyday life, containers such as lists, stacks, and queues are important in programming.

4.2	 VARIETIES OF CONTAINERS

Various containers have become standard in programming over the years; these are distinguished 
by three properties:

Structure—Some containers hold elements in some sort of structure, and some do 
not. Containers with no structure include sets and bags. Containers with linear 
structure include stacks, queues, and lists. Containers with more complex structures 
include multidimensional matrices.

Access Restrictions—Structured containers with access restrictions only allow clients 
to add, remove, and examine elements at certain locations in their structure. For 
example, a stack only allows element addition, removal, and examination at one 
end, while lists allow access at any point. A container that allows client access to all 
its elements is called traversable, enumerable, or iterable.

Keyed Access—A collection may allow its elements to be accessed by keys. For example, 
maps are unstructured containers that allow their elements to be accessed using keys.

4.3	 A CONTAINER TAXONOMY

It is useful to place containers in a taxonomy to help understand their relationships to 
one another and as a basis for implementation using a type hierarchy. The root of the 
taxonomy is Container. A Container may be structured or not, so it cannot make 
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assumptions about element location (for example, there may not be a first or last element 
in a container). A Container may or may not be accessible by keys, so it cannot make 
assumptions about element retrieval methods (for example, it cannot have a key-based search 
method). Finally, a Container may or may not have access restrictions, so it cannot have 
addition and removal operations (for example, only stacks have a Push() operation), or 
membership operations.

The only things we can say about Containers is that they have some number of 
elements. Thus a Container can have a Size() operation. We can also ask (somewhat 
redundantly) whether a Container is empty, so there should be an Empty() operation. 
And although a Container cannot have specific addition and removal operations, it can 
have an operation for emptying it completely, which we call Clear().

A Container is a broad category whose instances are all more specific things; there is never 
anything that is just a Container. This is perhaps most evident in the fact that a Container 
is characterized by its operations alone. In Go, a Container is an interface type.

UML, the Unified Modeling Language, is a notation developed for object-oriented modeling, 
but UML can be used for procedural modeling as well. In UML, the icon for an interface 
is a compartmentalized rectangle with the interface name in the top compartment, along 
with a stereotype keyword interface placed between guillemet symbols, and the operations in 
the interface in the second compartment. A UML diagram for the Container interface 
is shown in Figure 1 below.

«interface» 

Container

Size() : integer

Empty() : boolean

Clear()

Figure 1: The Container Interface

There are many ways that we could construct our container taxonomy from here; one way 
that works well is to make a fundamental distinction between traversable and non-traversable 
containers:

Collection: A traversable container.

Dispenser: A non-traversable container.
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Collections include lists, sets, and maps; dispensers include stacks and queues. With 
this addition, our container hierarchy appears in Figure 2.

«interface» 

Container
Size() : integer

Empty() : boolean

Clear()

«interface» 

Dispenser

«interface» 

Collection

Figure 2: Top of the Container Taxonomy

In UML the sub-interface symbol is a hollow rectangle, so this diagram says that the 
Collection and Dispenser interfaces are sub-interfaces of Container. We will 
late consider what operations, if any, belong in the Collection and Dispenser 
sub-interfaces, so for now we leave the method compartment out of the icons for these 
interfaces in our diagram.
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Dispensers are linearly ordered and have access restrictions. As noted, Dispensers 
include stacks and queues. We turn in the next chapter to detailed consideration of these 
non-traversable containers.

4.4	 IMPLEMENTING CONTAINERS IN GO

We will implement our container hierarchy in Go. We first construct a Container 
interface containing the Size(), Empty(), and Clear() functions. These names are 
all capitalized so that they are visible outside their package. We will make a single package, 
called containers, for the entire container hierarchy. Implementations of various 
containers will go in different files in this package. The Container interface goes in a 
file called containers.go.

4.5	 REVIEW QUESTIONS

1.	Are sets structured? Do sets have access restrictions? Do sets have keyed access?
2.	 If c is a Container and c.Clear() is called, what does c.Empty() 

return? What does c.Size() return?

4.6	 EXERCISES

1.	Consider a kind of Container called a Log that is an archive for summaries 
of transactions. Summaries can be added to the end of a Log, but once appended, 
they cannot be deleted or changed. When a summary is appended to a Log, it is 
time-stamped, and summaries can be retrieved from a Log by their time stamps. 
The summaries in a Log can also be examined in arbitrary order.

a)	 Is a Log structured? If so, what kind of structure does a Log have?
b)	Does a Log have access restrictions?
c)	 Does a Log provide keyed access? If so, what is the key?
d)	In the container hierarchy, would a Log be a Collection or a Dispenser?

2.	Consider a kind of Container called a Shoe used in an automated Baccarat 
program. When a Shoe instance is created, it contains eight decks of Cards in 
random order. Cards can be removed one at a time from the front of a Shoe. 
Cards cannot be placed in a Shoe, modified, or removed from any other spot. 
No Cards in a Shoe can be examined.
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a)	 Is a Shoe structured? If so, what kind of structure does a Shoe have?
b)	Does a Shoe have access restrictions?
c)	 Does a Shoe provide keyed access? If so, what is the key?
d)	In the container hierarchy, would a Shoe be a Collection or a Dispenser?

3.	Consider a kind of Container called a Randomizer used to route packets in 
an anonymizer. Packets go into the Randomizer at a single input port, and come 
out randomly at one of n output ports, each of which sends packets to different 
routers. Packets can only go into a Randomizer at the single input port, and 
can only come out one of the n output ports. Packets come out of a single output 
port in the order they enter a Randomizer. Packets cannot be accessed when 
they are inside a Randomizer.

a)	 Is a Randomizer structured? If so, what kind of structure does a 
Randomizer have?

b)	Does a Randomizer have access restrictions?
c)	 Does a Randomizer provide keyed access? If so, what is the key?
d)	In the container hierarchy, would a Randomizer be a Collection or 

a Dispenser?

4.7	 REVIEW QUESTION ANSWERS

1.	Sets are not structured—elements appear in sets or not; they do not have a position 
or location in the set. Sets do not have access restrictions: elements can be added 
or removed arbitrarily. Elements in sets do not have keys (they are simply values), 
so there is no keyed access to elements of a set.

2.	When a Container c is cleared, it contains no values, so c.Empty() returns 
true, and c.Size() returns 0.
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5	 ASSERTIONS

5.1	 INTRODUCTION

At each point in a program, there are usually constraints on the computational state that 
must hold for the program to be correct. For example, if a certain variable is supposed to 
record a count of how many changes have been made to a file, this variable should never be 
negative. It helps human readers to know about these constraints. Furthermore, if a program 
checks these constraints as it executes, it may find faults almost as soon as they occur. For 
both these reasons, it is advisable to record constraints about program state in assertions.

Assertion: A statement that must be true at a designated point in a program.

5.2	 TYPES OF ASSERTIONS

There are three sorts of assertions that are particularly useful:

Preconditions—A precondition is an assertion that must be true at the initiation 
of an operation. For example, a square root operation cannot accept a negative 
argument, so a precondition of this operation is that its argument be non-negative. 
Preconditions most often specify restrictions on parameters, but they may also specify 
that other conditions have been established, such as a file having been created or a 
device having been initialized. Often an operation has no preconditions, meaning 
that it can be executed under any circumstances.

Post conditions—A post condition is an assertion that must be true at the completion 
of an operation. For example, a post condition of the square root operation is that 
its result, when squared, is within a small amount of its argument. Post conditions 
usually specify relationships between the arguments and the results, or restrictions on 
the results. Sometimes they specify that the arguments do not change, or that they 
change in certain ways. Finally, a post condition may specify what happens when a 
precondition is violated (for example, that an exception will be thrown).

Type invariants—A type invariant is an assertion that must be true of any value of 
a type before and after calls of its exported methods. Usually type invariants specify 
properties of fields and relationships between the fields in a struct. For example, 
suppose a Bin type models containers of discrete items, like apples or nails. The Bin 
type might be a struct with currentSize, spaceLeft, and capacity fields. 

Download free eBooks at bookboon.com



GO DATA STRUCTURES AND ALGORITHMS Assertions

4949

One of its type invariants is that currentSize and spaceLeft must always 
be between zero and capacity; another is that currentSize + spaceLeft 
= capacity.

A type invariant might not be true during execution of a public method, but it 
must be true between executions of public methods. For example, a method to 
add something to a container must increase the currentSize and decrease the 
spaceLeft fields, and for a moment during execution of this operation their 
sum might not be correct, but when the method is done, their sum must be the 
capacity of the container.

Other sorts of assertions may be used in various circumstances. An unreachable code 
assertion is an assertion that is placed at a point in a program that should not be executed 
under any circumstances. For example, the cases in a switch statement often exhaust the 
possible values of the switch expression, so execution should never reach the default case. 
An unreachable code assertion can be placed at the default case; if it is ever executed, then 
the program is in an erroneous state. A loop invariant is an assertion that must be true 
at the start of a loop on each of its iterations. Loop invariants are used to prove program 
correctness. They can also help programmers write loops correctly, and understand loops 
that someone else has written.
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5.3	 ASSERTIONS AND ABSTRACT DATA TYPES

Although we have defined assertions in terms of programs, the notion can be extended to 
abstract data types (which are mathematical entities). An ADT assertion is a statement 
that must be true of the carrier set values or the method set operations of the ADT. ADT 
assertions can describe many things about an ADT, but usually they help describe the 
operations of the ADT. Especially helpful in this regard are operation preconditions, which 
usually constrain the parameters of operations, operation post conditions, which define 
the results of the operations, and axioms, which make statements about the properties of 
operations, often showing how operations are related to one another. For example, consider 
the Natural ADT whose carrier set is the set of non-negative integers and whose operations 
are the usual arithmetic operations. A precondition of the mod (%) operation is that the 
modulus not be zero; if it is zero, the result of the operation is undefined. A post condition 
of the mod operation is that its result is between zero and one less than the modulus. An 
axiom of this ADT is that for all natural numbers a, b, and m > 0,

(a+b) % m = ((a % m) + b) % m

This axiom shows how the addition and mod operations are related.

We will often use ADT assertions, and especially preconditions, in specifying ADTs. Usually, 
ADT assertions translate into assertions about the data types that implement the ADTs, 
which helps insure that our ADT implementations are correct.

5.4	 USING ASSERTIONS

As a rule, when writing code programmer should state pre- and subtle post conditions for 
public functions, state type invariants, and insert unreachable code assertions and loop 
invariants wherever appropriate.

Some languages have facilities to support assertions directly and some do not. If a language 
does not directly support assertions, then the programmer can mimic their effect. For 
example, the first statements in a function can test the preconditions of the function and 
throw an exception or return an error indication if they are violated. Post conditions can be 
checked in a similar manner. Type invariants are more awkward to check because code for 
them must be inserted at the start and end of every exported method. This is usually not 
practical. Unreachable code assertions occur relatively infrequently and are easy to insert, 
so they should always be used. Loop invariants are mainly for documenting and proving 
code, so they can be stated in comments at the tops of loops.
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Often efficiency issues arise. For example, the precondition of a binary search is that the 
array searched is sorted, but checking this precondition is so expensive that one would be 
better off using a sequential search. Similar problems often occur with post conditions. 
Hence many assertions are stated in comments and are not checked in code, or are checked 
during development and then removed or disabled when the code is compiled for release.

Languages that support assertions often provide different levels of support. For example, 
Java has an assert statement that takes a boolean argument; it throws an exception 
if the argument is not true. Assertion checking can be turned off with a compiler switch. 
Programmers can use the assert statement to write checks for pre- and post conditions, 
class invariants, and unreachable code, but this is all up to the programmer.

The languages Eiffel and D provide constructs in the language for invariants and pre- and 
post conditions that are compiled into the code and are propagated down the inheritance 
hierarchy. Thus Eiffel and D make it easy to incorporate these checks into programs. A 
compiler switch can disable assertion checking for released programs.

5.5	 ASSERTIONS IN GO

Go provides no support for assertions. Furthermore, Go has a modest exception mechanism 
and discourages the use of exceptions (panics) in favor of returning explicit error indications. 
This puts the burden of assertion checking firmly on the Go programmer, but with support 
in the form of multiple return values, a built-in error type, and mechanisms to help with 
return value checking in conditionals and loops.

Functions with preconditions should either return an error (the norm) or panic (in 
unusual circumstances). Programmers should always check preconditions at the top of a 
function. If preconditions are met, then the error return value is conventionally nil, 
meaning everything is ok. If the precondition is violated, it is explained in an error value 
that indicates the problem. Preconditions are usually explained in comments that document 
the meaning of function return values.

For example, suppose that function f(x int) must have a non-zero argument. We can 
document this preconditions in comments and incorporate a check of the precondition in 
this function’s definition, as shown below.
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// Explanation of what f(x) computes
// Pre: x != 0
// Pre violation: error is non-nil
// Normal return: result is nil
func f(x int) error
if x == 0 { return errors.New("x cannot be 0") }
...
return nil
}

Figure 1: Checking a Precondition in Go

Post conditions are usually explained in comments documenting the normal processing done 
by the function. Type invariants should be explained in comments at the point where the 
type is declared. Loop invariants can be stated in comments at the tops of loops. Unreachable 
code assertions should almost always be realized as panics.

We will use assertions frequently when discussing ADTs and the data structures and 
algorithms that implement them, and we will design functions that return error indications 
when preconditions are violated and put code in functions to check preconditions. We will 
also state pre- and post conditions and type invariants in comments.

5.6	 REVIEW QUESTIONS

1.	Name and define in your own words three kinds of assertions.
2.	What is an axiom?
3.	How can programmers check preconditions of an operation in a language that does 

not support assertions?
4.	Should a program attempt to catch assertion exceptions or panics?

5.7	 EXERCISES

1.	Consider the Integer ADT with the method set { +, -, *, /, %, = }. Write preconditions 
for those operations that need them, post conditions for all operations, and at least 
four axioms.

2.	Consider the Real ADT with the method set { +, -, *, /, n√x, xn }, where x is a real 
number and n is an integer. Write preconditions for those operations that need 
them, post conditions for all operations, and at least four axioms.
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Use the Go code fragment on the following page to answer the remaining questions.
3.	Write a type invariant comment for the LockerManager type.
4.	Write precondition comments, modify the return values, and write Go code to 

check preconditions for all the LockerManager methods that need them. The 
precondition checking code may use other LockerManager methods.

5.	Write post condition comments for all LockerManager methods that need them.
6.	Complete implementation of all the LockerManager methods. Write code to 

test your implementation.

const NumLockers = 138

type LockerManager struct {
isLockerRented [NumLockers]bool
numLockersRented int

}

// Find an empty locker, mark it as rented, return its number
func (m *LockerManager) func Rent() (lockerNumber int) {
...

}

// Mark a locker as no longer rented
func (m *LockerManager) Release(lockerNumber int) {
...

} 

// Say whether a locker is available for rent
func (m *LockerManager) IsFree(lockerNumber int) bool {
...

} 

// Say whether any lockers are left to rent
func (m *LockerManager) IsAvailable() bool {
...

}

This class keeps track of the lockers in a storage facility at an airport. Lockers have 
numbers that range from 0 to 137. The bool array keeps track of whether a locker 
is rented.
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5.8	 REVIEW QUESTION ANSWERS

1.	A precondition is an assertion that must be true when an operation begins to 
execute. A post condition is an assertion that must be true when an operation 
completes execution. A type invariant in an assertion that must be true between 
executions of the methods that a type makes available to clients. An unreachable 
code assertion is an assertion stating that execution should never reach the place 
where it occurs. A loop invariant is an assertion true whenever execution reaches 
the top of the loop where it occurs.

2.	An axiom is a statement about the operations of an abstract data type that must 
always be true. For example, in the Integer ADT, it must be true that for all Integers 
n, n * 1 = n, and n + 0 = n, in other words, that 1 is the multiplicative identity 
and 0 is the additive identity in this ADT.

3.	Preconditions can be checked in a language that does not support assertions by using 
conditionals to check the preconditions, and then throwing an exception, returning an 
error value, calling a special error or exception operation to deal with the precondition 
violation, or halting execution of the program when preconditions are not met.

4.	 Programs should not attempt to catch assertion exceptions or panics because they 
indicate errors in the design and implementation of the program, so it is better that 
the program fail than that it continue to execute and produce possibly incorrect results.
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6	 STACKS

6.1	 INTRODUCTION

Stacks have many physical metaphors: shirts in a drawer, plates in a plate holder, box-cars 
in a dead-end siding, and so forth. The essential features of a stack are that it is ordered 
and that access to it is restricted to one end.

Stack: A dispenser holding a sequence of elements that can be accessed, inserted, or 
removed at only one end, called the top.

Stacks are also called last-in-first-out (LIFO) lists. Stacks are important in computing because 
of their applications in recursive processing, such as language parsing, expression evaluation, 
runtime function call management, and so forth.

6.2	 THE STACK ADT

Stacks are containers, and as such they hold values of some type. We must therefore speak 
of the ADT stack of T, where T is the type of the elements held in the stack. The carrier set 
of this type is the set of all stacks holding elements of type T. The carrier set thus includes 
the empty stack, the stacks with one element of type T, the stacks with two elements of type 
T, and so forth. The essential operations of the type are shown in the following implicit-
receiver method set, where e is a T value. If an operation’s precondition is not satisfied, its 
behavior is undefined.

push(e)—Add e at the top of the (implicit) stack.

pop()—Remove and return the top element of the stack. The precondition of the 
pop() operation is that the stack is not empty.

empty()—Return the Boolean value true just in case the stack is empty.

top()—Return the top element of that stack without removing it. Like pop(), this 
operation has the precondition that the stack is not empty.

Besides the precondition assertions mentioned in the explanation of the stack ADT operations 
above, we can also state some axioms to help us understand the stack ADT. For example, 
consider the following axioms.
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For any stack s and element e, s.push(e).pop() = s.

For any stack s and element e, s.push(e).top() = e.

For any stack s, and element e, s.push(e).empty() = false.

The first axiom tells us that the pop() operation undoes what the push() operation achieves. 
The second tells us that when an element is pushed on a stack, it becomes the top element 
on the stack. The third tells us that pushing an element on an empty stack can never 
make it empty. With the right axioms, we can completely characterize the behavior of 
ADT operations without having to describe them informally in English (the problem is to 
know when we have the right axioms). Generally, we will not pursue such an axiomatic 
specification of ADTs, though we may use some axioms from time to time to explain some 
ADT operations.

6.3	 THE STACK INTERFACE

We can easily convert the stack of T implicit-receiver method set into an interface, as shown 
in Figure 1.

The Stack interface is a sub-interface of Dispenser, which is a sub-interface of 
Container, so it already contains an Empty() operation derived from Container. 
The Stack interface need only add operations for pushing elements, popping elements, 
and peeking at the top element of the stack.

«interface»

Stack

Push( e : T )

Pop() : T, Error	{ not Empty() }

Top() : T, Error	{ not Empty() }

T

Figure 1: The Stack Interface

Note that a generic or type parameter T is used to generalize the interface for any element 
type, shown in UML as a dashed box in the upper right-hand corner of the interface icon. 
In Go, we can specify a „generic“ type as interface{}; in other words, when we see a 
generic type T in a UML diagram, we can interpret this as the type interface{} in Go. 
Note also that the preconditions of operations that need them are shown as UML properties 
enclosed in curly brackets to the right of the operation signatures. The operations with 
preconditions return an Error indication as well as a value of type T so that precondition 
violations can be noted.
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Go code implementing this interface is shown below in Figure 2.

type Stack interface {
containers.Container
Push(e interface{})
Pop() (interface{}, error)
Top() (interface{}, error)

}

Figure 2: Go Stack Interface

Note how directly the UML specification translates into Go code.

6.4	 AN EXAMPLE USING STACKS

When sending a document to a printer, one common option is to collate the output, in 
other words, to print the pages so that they come out in the proper order. Generally, this 
means printing the last page first, the next to last next, and so forth. Suppose a program 
sends several pages to a print spooler (a program that manages the input to a printer) with 
the instruction that they be collated. Assuming that the first page arrives at the print spooler 
first, the second next, and so forth, the print spooler must keep the pages in a container 
until they all arrive so that it can send them to the printer in reverse order. One way to 
do this is with a Stack. Consider the Go-like pseudocode in Figure 3 describing the 
activities of the print spooler.

func PrintCollated(j Job) {
stack Stack
for each Page p in j { stack.Push(p) }
for v, err := stack.Pop(); err == nil {
print(v)

}
}

Figure 3: Using A Stack to Collate Pages for Printing

A Stack is the perfect container for this job because it naturally reverses the order of the 
data placed into it.
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6.5	 CONTIGUOUS IMPLEMENTATION OF THE STACK ADT

There are two approaches to implementing the carrier set for the stack ADT: a contiguous 
implementation using arrays, and a linked implementation using singly linked lists; we 
consider each in turn.

Implementing stacks of elements of type T using arrays requires a T array to hold the 
contents of the stack and a marker to keep track of the top of the stack. The marker can 
record the location of the top element, or the location where the top element would go on 
the next Push() operation; it does not matter as long as the programmer is clear what 
the marker denotes and writes code accordingly.

If a static (fixed-size) array is used, then the stack can become full; if a dynamic (resizable) 
array is used, then the stack is essentially unbounded. Usually, resizing an array is an expensive 
operation because new space must be allocated, the contents of the old array copied to the 
new, and the old space deallocated, so this flexibility is acquired at a cost.

We will use a dynamic array called store to hold stack elements. The size of the store 
will be the size of the stack, and we will resize the dynamic array when elements are pushed 
or popped from the stack. We choose this design because resizing slices is inexpensive in 
Go (unless the underlying array needs to be expanded). Figure 4 below illustrates this data 
structure. Note that when array indices begin at zero, the array size also happens to be the 
array location where the top element will go the next time Push() is executed.

The diagram shows two elements in the stack, designated by the cross-hatched array locations, 
and the length of the store variable. Note how the length of the store array indicates 
the array location where the next element will be stored when it is pushed onto the stack.

0

1

store

length(store) == 2

Figure 4: Implementing a Stack With a Dynamic Array

Implementing the operations of the Stack interface using this data structure is straightforward. 
For example, to implement the Push() operation, the length of the store is recorded 
(say as top), the store is expanded by one location, and then the pushed value is assigned 
to location store[top].

We will not often display code that completely implements a container, but we do so in 
this case because this is the first container we are considering, so it may help to see how 
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to approach such a problem. A Go implementation of ArrayStack type is shown in 
Figure 5. We have removed comments to save space.

type ArrayStack struct {
store []interface{} // top is always at store[len(store)-1]

}

func (s *ArrayStack) Size() int { return len(s.store) }
func (s *ArrayStack) Empty() bool { return len(s.store) == 0 } 
func (s *ArrayStack) Clear() { s.store = make([]interface{},0,10) }

func (s *ArrayStack) Push(e interface{}) {
s.store = append(s.store, e)

}

func (s *ArrayStack) Pop() (interface{}, error) {
if len(s.store) == 0 { 
return nil, errors.New("Pop: the stack cannot be empty")

}   
result := s.store[len(s.store)-1]
s.store = s.store[:len(s.store)-1]
return result, nil 

}

func (s *ArrayStack) Top() (interface{}, error) {
if len(s.store) == 0 { 
return nil, errors.New("Top: stack cannot be empty")

}   
return s.store[len(s.store)-1], nil 

}

Figure 5: Implementation of a Contiguous Stack

The ArrayStack struct has a store slice holding the stack data as its only private 
field; we resize this slice as the stack grows and shrinks so that it is always exactly the 
right size to hold the stack data. When pushing a value on an ArrayStack, the slice 
append() operation can be used to both expand store and add the new value to its 
end; append() also allocates a larger underlying array when necessary. Popping an element 
is done by simply slicing store to remove the last element.
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6.6	 LINKED IMPLEMENTATION OF THE STACK ADT

A linked implementation of a stack ADT uses a linked data structure to represent values 
of the ADT carrier set. Lets review the basics of linked data structures.

Node: An aggregate variable with data and link (pointer or reference) fields.

Linked (data) structure: A collection of nodes formed into a whole through its 
constituent node link fields.

Nodes may contain one or more data and link fields depending on the need, and the 
pointers may form a collection of nodes into linked data structures of arbitrary shapes and 
sizes. Among the most important linked data structures are the following.

Singly linked list: A linked data structure whose nodes each have a single link 
field used to form the nodes into a sequence. Each node link but the last contains 
a pointer to the next node in the list; the link field of the last node contains nil (a 
special pointer value that does not refer to anything).
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Doubly linked list: A linked structure whose nodes each have two link fields used 
to form the nodes into a sequence. Each node but the first has a predecessor link 
field containing a pointer to the previous node in the list, and each node but the 
last has a successor link containing a pointer to the next node in the list.

Linked tree: A linked structure whose nodes form a tree.

The linked structure needed for a stack is very simple, requiring only a singly linked list, 
so list nodes need only contain a value of type T and a link to the next node. The top 
element of the stack is stored at the head of the list, so the only data that the stack data 
structure must keep track of is the pointer to the head of the list. Figure 6 below illustrates 
this data structure.

topPtr nextitem

Figure 6: Implementing a Stack With a Singly Linked List

The pointer to the head of the list is called topPtr. Each node has an item field holding 
a value of type T and a next field holding a link. The figure shows a stack with three 
elements; the top of the stack, of course, is the first node on the list. The stack is empty 
when topPtr is nil; the stack never becomes full (unless memory is exhausted).

Again we show the entire implementation of a LinkedStack to demonstrate the similarities 
to and differences from an ArrayStack. We begin with code for the list nodes in Figure 7.

type node struct {
item 
interface{}
next *node

}

Figure 7: Singly Linked List Node Code

Note that the name of the node struct is not capitalized so that this declaration is private. 
The code for a LinkedStack appears in Figure 8, which once again contains no comments 
to save space.
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type LinkedStack struct {
topPtr *node // singly-linked list of values
count  int   // how many elements are present

}

func (s *LinkedStack) Size() int { return s.count }
func (s *LinkedStack) Empty() bool { return s.count == 0 }
func (s *LinkedStack) Clear() { s.count = 0 s.topPtr = nil }

func (s *LinkedStack) Push(e interface{}) {
s.topPtr = &node{e, s.topPtr}
s.count++

}

func (s *LinkedStack) Pop() (interface{}, error) {
if s.count == 0 {
return nil, errors.New("Pop: the stack cannot be empty")

}
result := s.topPtr.item
s.topPtr = s.topPtr.next
s.count--
return result, nil

}

func (s *LinkedStack) Top() (interface{}, error) {
if s.count == 0 {
return nil, errors.New("Top: the stack cannot be empty")

}
return s.topPtr.item, nil

}

Figure 8: Implementation of a Linked Stack

The LinkedStack struct has a private topPtr field of type *node, and also a private 
count field to keep track of the size of the stack. As new nodes are needed when values 
are pushed onto the stack, new node instances are created and linked into the list. If you 
are not familiar with linked data structures, you should draw pictures and execute this code 
by hand a few times to make sure you understand how it works.

When values are popped off the stack, node instances are released and eventually their 
space reclaimed by the garbage collector. A LinkedStack thus uses only as much space 
as is needed for the elements it holds.
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6.7	 SUMMARY AND CONCLUSION

Both contiguous and linked implementations of stacks are simple and efficient, but the 
contiguous implementation either places a size restriction on the stack or uses an expensive 
reallocation technique if a stack grows too large. If contiguously implemented stacks are 
made extra large to make sure that they don’t overflow, then space may be wasted.

A linked implementation is essentially unbounded, so the stack never becomes full. It is 
also very efficient in its use of space because it only allocates enough nodes to store the 
values actually kept in the stack. Overall, then, the linked implementation of stacks seems 
slightly better than the contiguous implementation.

6.8	 REVIEW QUESTIONS

1.	Why does the interface{} type appear so often in the Go code in this chapter?
2.	The nodes in a LinkedStack hold a link for every stack element, increasing the 

space needed to store data. Does this fact invalidate the claim that a LinkedStack 
uses space more efficiently than an ArrayStack?

6.9	 EXERCISES

1.	State three more axioms about the stack of T ADT.
2.	Suppose that an ArrayStack is implemented so that the top elements is always 

stored at store[0]. What are the advantages or disadvantages of this approach?
3.	When implementing methods of the Stack interface in Go, what should happen 

if a precondition of a Stack operation is violated?
4.	How can a Go programmer who is using an ArrayStack or a LinkedStack 

make sure that his or her code will not fail because it violates a precondition?
5.	Write an implementation of ArrayStack that manages its own memory, that 

is it creates underlying arrays for the store slice when necessary instead of using 
append().

6.	How would the code for a LinkedStack have to be modified if there was not 
a count attribute?

7.	State a class invariant relating the count and topPtr fields of a LinkedStack.
8.	Could the top element be stored at the tail of a LinkedStack? What consequences 

would this have for the implementation?
9.	A LinkedStack could be implemented using a doubly-linked list. What are the 

advantages or disadvantages of this approach?

Download free eBooks at bookboon.com



GO DATA STRUCTURES AND ALGORITHMS Stacks

6464

6.10	 REVIEW QUESTION ANSWERS

1.	Go does not have generics or templates, but it is the case that by definition every 
type is assignable to a variable of type interface{}. Hence interface{} 
serves in Go as a sort of universal or generic type. Consequently we use it whenever 
we need a variable that can hold arbitrary values, like store in ArrayStack or 
the item field of an ArrayList node. We also must use this type for parameters 
and return values that can be any type.

2.	Each node in a LinkedStack contains both an element and a link, so a 
LinkedStack does use more space (perhaps twice as much space) as an 
ArrayStack to store a single element. On the other hand, an ArrayStack 
typically allocates more space than it uses at any given moment to store data—
often there will be at least as many unused elements of the store array as there are 
used elements. This is because the ArrayStack must have enough capacity to 
accommodate the largest number of elements ever pushed on the stack, even when 
many elements have subsequently been popped from the stack. On balance, then, 
an ArrayStack will typically use more space than a LinkedStack.
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7	 QUEUES

7.1	 INTRODUCTION

Queues are what we usually refer to as lines, as in “please get in line for a free lunch.” The 
essential features of a queue are that it is ordered and that access to it is restricted to its 
ends: things can enter a queue only at the rear and leave the queue only at the front.

Queue: A dispenser holding a sequence of elements that allows insertions only at 
one end, called the back or rear, and deletions and access to elements at the other 
end, called the front.

Queues are also called first-in-first-out, or FIFO, lists. Queues are important in computing 
because of the many cases where resources provide service on a first-come-first-served basis, 
such as jobs sent to a printer, or processes waiting for the CPU in a operating system.

7.2	 THE QUEUE ADT AND INTERFACE

Queues are containers holding values of some type. We must therefore speak of the ADT 
queue of T, where T is the type of the elements held in the queue. The carrier set of this 
type is the set of all queues holding elements of type T. The carrier set thus includes the 
empty queue, the queues with one element of type T, the queues with two elements of 
type T, and so forth. The implicit-receiver method set of the type is the following, where 
e is a T value.

enter(e)—Add e to at the rear of the queue.

leave(q)—Remove and return the front element of the queue. The precondition of 
the leave() operation is that the queue is not empty.

empty(q)—Return the Boolean value true just in case the queue is empty.

front(q)—Return the front element of the queue without removing it. Like leave(), 
this operation has the precondition that the queue is not empty.

A Queue interface is a sub-interface of Dispenser, which is a sub-interface of Container, 
so it already contains an Empty() operation inherited from Container. The Queue 
interface need only add operations for entering elements, removing elements, and peeking 
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at the front element of the queue. The diagram in Figure 1 shows the Queue interface. As 
with stacks, a generic or template is used to generalize the interface for any element type. 
Preconditions have been added for the operations that need them, along with Error return 
values to indicate precondition violations.

«interface»

Queue

Enter( e : T )

Leave() : T, Error	 { not Empty() }

Front() : T, Error	 { not Empty() }

T

Figure 1: The Queue Interface

7.3	 AN EXAMPLE USING QUEUES

When sending a document to a printer, it may have to be held until the printer finishes 
whatever job it is working on. Holding jobs until a printer is free is generally the responsibility 
of a print spooler (a program that manages the input to a printer). Print spoolers hold jobs 
in a Queue until the printer is free. This provides fair access to the printer and guarantees 
that no print job will be held forever. The pseudocode in Figure 2 describes the main 
activities of a print spooler.

var queue Queue

func Spool(d Document) {
queue.Enter(NewJob(d))

}

func Run() {
for {
if printer.IsFree() {
if j, err = queue.Leave(); err == nil {
printer.Print(j)

}
}

}
}

Figure 2: Using A Queue to Spool Pages for Printing
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The print spooler has a job queue stored in the variable queue. A client can ask the spooler 
to print a document for it using the Spool() operation and the spooler will add the 
document to its job queue. Meanwhile, the spooler is continuously checking the printer 
and its job queue; whenever the printer is free and there is a job in queue, it will remove 
the job from queue and send it to the printer.

7.4	 CONTIGUOUS IMPLEMENTATION OF THE QUEUE ADT

There are two approaches to implementing the carrier set for the queue ADT: a contiguous 
implementation using arrays, and a linked implementation using singly linked lists; we 
consider each in turn.

Implementing queues of elements of type T using arrays requires a T array to hold the 
contents of the queue and some way to keep track of the front and the rear of the queue. 
We might, for example, decide that the front element of the queue would always be stored 
at location 0, and record the count of the elements in the queue, implying that the rear 
element would be at location couont-1. This approach requires that the data be moved 
forward in the array every time an element leaves, which is not very efficient.
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A clever solution to this problem is to allow the data in the array to “float” upwards as 
elements enter and leave, and then wrap around to the start of the array when necessary. It 
is as if the locations in the array are in a circular rather than a linear arrangement. Figure 
3 illustrates this solution. Queue elements are held in the store array. The variable 
frontIndex keeps track of the array location holding the element at the front of the 
queue, and size holds the number of elements in the queue. The capacity is the size 
of the array and hence the number of elements that can be stored in the queue.

0

1

2

capacity-1

3

count

...2

frontIndex

store

34

5
XXX

Figure 3: Implementing a Queue With a Circular Array

In Figure 3, data occupies the regions with an X in them: there are three elements in the 
queue, with the front element at store[2] (as indicated by the frontIndex variable) 
and the rear at store[4] (because frontIndex+count-1 is 4). The next element 
entering the queue would be placed at store[5]; in general, elements enter the queue at

store[(frontIndex+count) % capacity]

The modular division is what makes the queue values wrap around the end of the array to 
its beginning. This trick of using a circular array is the standard approach to implementing 
queues in contiguous locations.

If a static array is used, then the queue can become full; if a dynamic array is used, then 
the queue is essentially unbounded. As we have mentioned before, resizing an array is an 
expensive operation because new space must be allocated, the contents of the array copied, 
and the old space deallocated, so this flexibility has a cost. Care must also be taken to move 
elements properly to the expanded array—remember that the front of the queue may be 
somewhere in the middle of the full array, with elements wrapping around to the front.
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Implementing the operations of the queue ADT using this data structure is quite 
straightforward. For example, to implement the Leave() operation, a check is first made 
that the precondition of the operation (that the queue is not empty) is not violated by 
testing whether count equals 0. If not, then the value at store[frontIndex] is saved 
in a temporary variable, frontIndex is set to (frontIndex+1) % capacity, 
count is decremented, and the value stored in the temporary variable is returned.

A type realizing this implementation in Go might be a struct type called ArrayQueue. It 
would implement the Queue interface and have store slice, and integer frontIndex 
and count variables as private fields. The Enter() method can increase the slice size as 
necessary so that the slice always has room for the data it needs to store.

7.5	 LINKED IMPLEMENTATION OF THE QUEUE ADT

A linked implementation of a queue ADT uses a linked data structure to represent values 
of the ADT carrier set. A singly linked list is all that is required, so list nodes need only 
contain a value of type T and a link to the next node. We could keep a pointer to only 
the head of the list, but this would require moving down the list from its head to its tail 
whenever an operation required manipulation of the other end of the queue, so it is more 
efficient to keep a pointer to each end of the list. We will thus use both frontPtr and 
rearPtr variables to keep track of both ends of the list.

If rearPtr refers to the head of the list and frontPtr to its tail, it will be impossible 
to remove elements from the queue without walking down the list from its head; in other 
words, we will have gained nothing by using an extra pointer. Thus we must have frontPtr 
refer to the head of the list, and rearPtr to its tail. Figure 4 illustrates this data structure. 
Each node has an item field (for values of type T) and a next field (for the links). The 
figure shows a queue with three elements. The queue is empty when the frontPtr and 
rearPtr pointers are nil; the queue never becomes full (unless memory is exhausted).

frontPtr item

rearPtr

next

Figure 4: Implementing a Queue With a Linked List
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Implementing the operations of the Queue ADT using a linked data structure is quite 
simple, though some care is needed to keep frontPtr and rearPtr synchronized. For 
example, to implement the Leave() operation, a check is first made that the queue is 
not empty—if it is then an error indication is returned immediately. If not, then the item 
field of the front node is assigned to a temporary variable. The frontPtr variable is then 
assigned the next field of the first node, which removes the first node from the list. If 
frontPtr is nil, then the list has become empty, so rearPtr must also be assigned 
nil. Finally, the value saved in the temporary variable is returned.

A type realizing this implementation in Go might be a struct type called LinkedQueue. 
It would implement the Queue interface and have frontPtr and rearPtr fields, 
and perhaps also a count field. The package could also contain an unexported struct type 
called node with item and next fields used for list nodes.

7.6	 SUMMARY AND CONCLUSION

Both queue implementations are simple and efficient, but the contiguous implementation 
either places a size restriction on the queue or uses an expensive reallocation technique if a 
queue grows too large. If contiguously implemented queues are made extra large to make 
sure that they don’t overflow, then space may be wasted.

A linked implementation is essentially unbounded, so the queue never becomes full. It is 
also very efficient in its use of space because it only allocates enough nodes to store the 
values actually kept in the queue. Overall, the linked implementation of queues is preferable 
to the contiguous implementation.

7.7	 REVIEW QUESTIONS

1.	Which operations of the queue ADT have preconditions? Do these preconditions 
translate to the Queue interface?

2.	Why should storage be thought of as a circular rather than a linear arrangement of 
storage locations when implementing a queue using contiguous memory locations?

3.	Why is there a pointer to both ends of the linked list used to store the elements 
of a queue?
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7.8	 EXERCISES

1.	 In the contiguous storage implementation of a queue, is it possible to keep track 
of only the location of the front element (using a variable frontIndex) and 
the rear element (using a variable rearIndex), with no count variable? If so, 
explain how this would work.

2.	Write a type invariant for a LinkedQueue type whose attributes are frontPtr, 
rearPtr, and count.

3.	Write an implementation of the LinkedQueue type that does not have a count 
field.

4.	A circular singly linked list is a singly linked list in which the last node in the list 
holds a pointer to the first element rather than nil. It is possible to implement a 
LinkedQueue efficiently using only a single pointer into a circular singly linked 
list rather than two pointers into a (non-circular) singly linked list as we did in the 
text. Explain how this works.

5.	A LinkedQueue could be implemented using a doubly-linked list. What are the 
advantages or disadvantages of this approach?

6.	Write the Queue interface in Go.
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7.	Extend the code you wrote in the previous exercise to implement an ArrayQueue 
type in Go. Use slices so that the queue never becomes full. The Queue interface 
methods should have *ArrayQueue receivers. The zero value of an ArrayQueue 
should be an empty queue.

8.	Extend the code you wrote in the previous exercise to implement a LinkedQueue 
type in Go. Use a singly linked list. The Queue interface methods should have 
*LinkedQueue receivers. The zero value of an LinkedQueue should be an 
empty queue.

7.9	 REVIEW QUESTION ANSWERS

1.	The leave() and front() operations both have as their precondition that the queue 
q not be empty. This translates directly into the precondition of the Leave() 
and Front() operations of the Queue interface that the queue not be empty. 
Furthermore, both operations return both a value and an error indication; the latter 
reports whether the operations’ preconditions have been violated.

2.	 If storage is linear, then the data in a queue will “bump up” against the end of the 
array as the queue grows, even if there is space at the beginning of the array for 
queue elements. This problem can be solved by copying queue elements downwards 
in the array (inefficient), or by allowing the queue elements to wrap around to the 
beginning of the array, which effectively treats the array as a circular rather than a 
linear arrangement of memory locations.

3.	 In a queue, alterations are made to both ends of the container. It is not efficient to 
walk down the entire linked list from its beginning to get to the far end when an 
alteration must be made there. Keeping a pointer to the far end of the list obviates 
this inefficiency and makes all queue operations very fast.
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8	 STACKS AND RECURSION

8.1	 INTRODUCTION

Before moving on from discussing dispensers to discussing collections, we must explore the 
strong connection between stacks and recursion. Recall that recursion involves operations 
that call themselves.

Recursive operation: An operation that either calls itself directly or calls other 
operations that call it.

Recursion and stacks are intimately related in the following ways:

•	 Every recursive operation (or group of mutually recursive operations) can be rewritten 
without recursion using a stack.

•	 Every algorithm that uses a stack can be rewritten without a stack using one
•	 or more recursive operations.

To establish the first point, note that computers do not support recursion at the machine 
level—most processors can move data around, do a few simple arithmetic and logical 
operations, and compare values and branch to different points in a program based on the 
result, but that is all. Yet many programming languages support recursion. How is this 
possible? At runtime, compiled programs use a stack that stores data about the current 
state of execution of a sub-program, called an activation record. When a sub-program is 
called, a new activation record is pushed on the stack to hold the sub-program’s arguments, 
local variables, return address, and other book-keeping information. The activation record 
stays on the stack until the sub-program returns, when it is popped off the stack. Because 
every call of a sub-program causes a new activation record to be pushed on the stack, this 
mechanism supports recursion: every recursive call of a sub-program has its own activation 
record, so the data associated with a particular sub-program call is not confused with that 
of other calls of the sub-program. Thus the recursive calls can be recorded onto the stack, 
and a non-recursive machine can implement recursion.

The second point is not quite so easy to establish, but the argument goes like this: when 
an algorithm would push data on a stack, a recursive operation can preserve the data that 
would go on the stack in local variables and then call itself to continue processing. The 
recursive call returns just when it is time to pop the data off the stack, so processing can 
continue with the data in the local variables just as it would if the data had been popped 
off the stack.
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In some sense, then, recursion and stacks are equivalent. It turns out that some algorithms 
are easier to write with recursion, some are easier to write with stacks, and some are just as 
easy (or hard) one way as the other. But in any case, there is always a way to write algorithms 
either entirely recursively without any stacks, or without any recursion using stacks.

In the remainder of this chapter we will illustrate the theme of the equivalence of stacks and 
recursion by considering a few examples of algorithms that need either stacks or recursion, 
and we will look at how to implement these algorithms both ways.

8.2	 BALANCED BRACKETS

Because of its simplicity, we begin with an example that doesn’t really need a stack or 
recursion, but illustrates how both can be used with equal facility: determining whether a 
string of brackets is balanced or not. The strings of balanced brackets are defined recursively 
as follows:

1.	The empty string is a string of balanced brackets.
2.	 If A is a string of balanced brackets, then so it “[”A“]”.
3.	 If A and B are strings of balanced brackets, then so is AB.
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So, for example, [[[][]][]] is a string of balanced brackets, but [[[]][]][]] is not.

The recursive algorithm in Figure 1 (in Go) checks whether a string of brackets is balanced.

func IsBalancedRecursive(s string) bool {
var (
scan scanner.Scanner
ch rune
isBalanced func() bool

)

isBalanced = func() bool {
if ch == scanner.EOF { return true }
if ch != '[' { return false }
ch = scan.Next()
if ch == '[' {
if !isBalanced() { return false }

}
if ch != ']' { return false }
ch = scan.Next()
if ch == '[' { return isBalanced() }
return true

}

scan.Init(strings.NewReader(s))
ch = scan.Next()
return isBalanced() && ch == scanner.
EOF

}

Figure 1: Recursive Algorithm For Checking Strings of Balanced Brackets

This code is divided across two functions: a public outer function that sets up the data for 
recursive processing, and a private inner recursive function that does most of the work. The 
IsBalancedRecursive() function sets up a string scanner (from the standard library) 
and reads the first token in the string—this is just an easy way to process the characters 
in the string across recursive function calls. Then, it calls isBalanced() to do most 
of the work. Finally, it checks that the string is exhausted when isBalanced() returns. This 
check takes care of the case of extra characters at the end of an otherwise legitimate string 
of balanced brackets.

The isBalanced() method is based on the recursive definition of balanced brackets. If 
the source string is empty, corresponding to the first clause of the recursive definition, then 
the string is balanced. If it is not empty, and the first character is a left bracket, then the left 
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bracket is consumed. If the next character is also a left bracket, then isBalanced() is 
called to check for nested balanced brackets. If the recursive call returns true, then a check 
is made for the right bracket matching the initial left bracket. This takes care of the second 
clause in the definition of balanced brackets. If the right bracket matches a left bracket, 
then the right bracket is consumed. The final check to see whether the next character is a 
left bracket, and a call of IsBalanced() if it is, accounts for the case of a sequence of 
balanced brackets, as allowed by the third clause in the definition

This same job could be done just as well with a non-recursive algorithm using a stack. In 
the Go code in Figure 2 below, a stack is used to hold left brackets as they are encountered. 
If a right bracket is found for every left bracket on the stack, then the string of brackets 
is balanced. Note that the stack must be checked to make sure it is not empty as we go 
along (which would mean there are too many right brackets), and that it is empty once the 
entire string is processed (not being empty would mean there are too many left brackets).

func IsBalancedStack(s string) bool {
var (
scan  scanner.Scanner
stack stack.LinkedStack

)
scan.Init(strings.NewReader(s))
for ch := scan.Next(); ch != scanner.EOF; ch = scan.Next() {
switch ch {
case '[':
stack.Push(ch)

case ']':
if stack.Empty() { return false }
stack.Pop()

default:
return false

}
}
return stack.Empty()

}

Figure 2: Non-Recursive Algorithm For Checking Strings of Balanced Brackets

In this case the recursive algorithm is about as complicated as the stack-based algorithm. 
In the examples below, we will see that sometimes the recursive algorithm is simpler, and 
sometimes the stack-based algorithm is simpler, depending on the problem.
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8.3	 INFIX, PREFIX, AND POSTFIX EXPRESSIONS

The arithmetic expressions we learned in grade school are infix expressions, but other kinds 
of expressions, called prefix or postfix expressions, might also be used.

Infix expression: An expression in which the operators appear between their operands.

Prefix expression: An expression in which the operators appear before their operands.

Postfix expression: An expression in which the operators appear after their operands.

In a prefix expression, the operands of an operator appear immediately to its right, while in 
a postfix expression, they appear immediately to its left. For example, the infix expression 
(4 + 5) * 9 can be rewritten in prefix form as * + 4 5 9 and in postfix form as 4 5 + 9 *. 
An advantage of pre- and postfix expressions over infix expressions is that the latter don’t 
need parentheses.

Many students are confused by prefix and postfix expressions the first time they encounter 
them, so lets consider a few more examples. In the expressions in the table below, all 
numbers are one digit long and the operators are the usual binary integer operations. All 
the expressions in a row are equivalent.
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Infix Prefix Postfix

(2 + 8) * (7 % 3) * + 2 8 % 7 3 2 8 + 7 3 % *

((2 * 3) + 5) % 4 % + * 2 3 5 4 2 3 * 5 + 4 %

((2 * 5) % (6 / 4)) + (2 * 3) + % * 2 5 / 6 4 * 2 3 2 5 * 6 4 / % 2 3 * +

1 + (2 + (3 + 4)) + 1 + 2 + 3 4 1 2 3 4 + + +

((1 + 2) + 3) + 4 + + + 1 2 3 4 1 2 + 3 + 4 +

Note that all the expressions have the digits in the same order. This is necessary because 
order matters for the subtraction and division operators. Also notice that the order of 
the operators in a prefix expression is not necessarily the reverse of its order in a postfix 
expression; sometimes operators are in the opposite order in these expressions, but not 
always. The systematic relationship between the operators is that the main operator always 
appears within the fewest number of parentheses in the infix expression, is first in the prefix 
expression, and is last in the postfix expression. Finally, in every expression, the number of 
constant arguments (digits) is always one more than the number of operators. Let’s consider 
the problem of evaluating prefix and postfix expressions. It turns out that sometimes it is 
much easier to write a recursive evaluation algorithm, and sometimes it is much easier to 
write a stack-based evaluation algorithm. In particular, 

•	 It is very easy to write a recursive prefix expression evaluation algorithm, but 
somewhat harder to write this algorithm with a stack.

•	 It is very easy to write a stack-based postfix expression evaluation algorithm, but 
very hard to write this algorithm recursively.

To establish these claims, we will consider a few of the algorithms. An algorithm in Go 
to evaluate prefix expressions recursively appears in Figure 3 below. The main operation, 
EvalPrefixRecursive(), accepts a string as an argument. Its job is to initialize a 
scanner (as was done with the balanced brackets algorithm), call the private recursive helper 
function eval() to do the real work, and finally to make sure that the string has all been 
read (if not, then there are extra characters at the end of the expression).
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func EvalPrefixRecursive(s string) (int, error) {
var (
scan scanner.Scanner
ch   rune
eval func() (int, error)

)

eval = func() (int, error) {
if ch == scanner.EOF {
return 0, errors.New("Missing argument")

}

if isDigit(ch) {
result := int(ch - '0')
ch = scan.Next()
return result, nil 

}

op := ch
ch = scan.Next()
leftArg, err := eval()
if err != nil { return 0, err }
rightArg, err := eval()
if err != nil { return 0, err }
return applyOperator(op, leftArg, rightArg)

}

scan.Init(strings.NewReader(s))
ch = scan.Next()
result, err := eval()
if err == nil && ch != scanner.EOF {
return 0, errors.New("Extra characters at the end")

}
return result, err 

}

Figure 3: Recursive Algorithm to Evaluate Prefix Expressions

As noted, the real work is done by the eval() operation. It helps to consider the recursive 
definition of a prefix expression to understand this function:

A prefix expression is either a digit, or if A and B are prefix expressions and op is an 
operator, then an expression of the form op A B.

The eval() function first checks to see whether the string is exhausted and returns an 
error if it is (because the empty string is not a prefix expression). Otherwise, it checks 
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whether the current character is a digit (the basis case of the recursive definition of a prefix 
expression), and if it is, returns the integer value of the digit. Otherwise (according to the 
recursive definition), the expression must be an operator followed by two prefix expressions, 
so the current token must be an operator. This operator is saved, and the function calls 
itself to get the values of the left and right arguments that must follow the operator. Finally, 
it calls the applyOperator() function to apply the saved operator to the arguments 
and returns the result.

This recursive algorithm is quite simple, yet is does a potentially very complicated job. In 
contrast, consider the code to evaluate prefix expressions using a stack shown in Figure 4.

This algorithm has two stacks: one for (integer) values, and one for (rune) operators. The strategy 
is to process each character from the string in turn, pushing operators on the operator stack 
as they are encountered and values on the value stack to retain left arguments. Left argument 
placement is marked on the operator stack with a v marker. Operators are applied whenever 
both left and right arguments are available, and the result is pushed back on the value stack 
and marked on the operator stack. Once the string is exhausted, the result value should be 
stored in the value stack and only a v marker should remain on the operator stack. The best 
way to understand how this algorithm works is to run through a few examples by hand.
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func EvalPrefixStack(s string) (int, error) {
if len(s) == 0 { return 0, errors.New("Missing argument") }
var (
opStack, valStack stack.LinkedStack
scan scanner.Scanner

)
scan.Init(strings.NewReader(s))

for ch := scan.Next(); ch != scanner.EOF; ch = scan.Next() {
switch {
case isOperator(ch):
opStack.Push(ch)

case isDigit(ch):
rightArg := int(ch - '0')
op, err := opStack.Top()
for err == nil && op == 'v' {
opStack.Pop()
if op, err = opStack.Pop(); err != nil {
return 0, errors.New("Missing operator")

}
var leftArg int // argument from the stack
if elem, err := valStack.Pop(); err != nil {
return 0, errors.New("Missing left argument")

} else {
leftArg = elem.(int)

}
rightArg, err = applyOperator(op.(rune), leftArg, rightArg)
if err != nil { return 0, err }
op, err = opStack.Top()

}
valStack.Push(rightArg)
opStack.Push('v')

default:
return 0, errors.New(fmt.Sprintf("Illegal character %v", ch))

}
}

if op, err := opStack.Pop(); err != nil || op != 'v' {
return 0, errors.New("Missing argument")

}
if !opStack.Empty() { return 0, errors.New("Missing argument") }

result, err := valStack.Pop()
if err != nil { return 0, errors.New(„Missing argument“) }
if !valStack.Empty() { return 0, errors.New(„Too many arguments“)
return result.(int), nil

}

Figure 4: Stack-Based Algorithm to Evaluate Prefix Expressions
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Clearly, this stack-based evaluation algorithm is more complicated than the recursive 
evaluation algorithm. In contrast, a stack-based evaluation algorithm for postfix expressions 
is quite simple, while a recursive algorithm is quite complicated. To illustrate, consider the 
stack-based postfix expression evaluation algorithm in Figure 5 below.

func EvalPostfixStack(s string) (int, error) {
var (
stack stack.LinkedStack
scan  scanner.Scanner

)

scan.Init(strings.NewReader(s))
for ch := scan.Next(); ch != scanner.EOF; ch = scan.Next() {
if isDigit(ch) {
stack.Push(int(ch - '0'))

} else {
rightArg, err := stack.Pop()
if err != nil {
return 0, errors.New("Missing right argument")

}
leftArg, err := stack.Pop()
if err != nil {
return 0, errors.New("Missing left argument")

}
value, err := applyOperator(ch, leftArg.(int), rightArg.(int))
if err == nil {
stack.Push(value)

} else {
return 0, err

}
}

}
result, err := stack.Pop()
if err != nil { return 0, errors.New("Missing expression") }
if !stack.Empty() {
return 0, errors.New("Too many arguments")

}
return result.(int), nil

}

Figure 5: Stack-Based Algorithm to Evaluate Postfix Expressions

The strategy of this algorithm is quite simple: there is a single stack that holds arguments, 
and values are pushed on the stack whenever they are encountered in the input string. 
Whenever an operator is encountered, the top two values are popped of the stack, the 
operator is applied to them, and the result is pushed back on the stack. This continues 
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until the string is exhausted, at which point the final value should be on the stack. If the 
stack becomes empty along the way, or there is more than one value on the stack when the 
input string is exhausted, then the input expression is not well-formed.

As noted, the recursive algorithm for evaluating postfix expressions is quite complicated. 
The strategy is to remember arguments in local variables, making recursive calls as necessary 
until an operator is encountered. We leave this algorithm as a challenging exercise.

The lesson of all these examples is that although it is always possible to write an algorithm 
using either recursion or stacks, in some cases a recursive algorithm is easier to develop, 
and in other cases a stack-based algorithm is easier. Each problem should be explored by 
sketching out both sorts of algorithms, and then choosing the one that appears easiest for 
detailed development.

8.4	 TAIL RECURSIVE ALGORITHMS

We have claimed that every recursive algorithms can be replaced with a non-recursive 
algorithm using a stack. This is true, but it overstates the case: sometimes a recursive 
algorithm can be replaced with a non-recursive algorithm that does not even use a stack. 
If a recursive algorithm is such that at most one recursive call is made as the final step in 
each execution of the algorithm’s body, then the recursion can be replaced with a loop. 
No stack is needed because data for additional recursive calls is not needed—there are no 
additional recursive calls. A simple example is a recursive algorithm to search a slice for a 
value like the one in Figure 6.

func RecursiveSearch(slice []int, value int) bool {
if slice == nil || len(slice) == 0 { return 
false }
if slice[0] == value { return true }
return RecursiveSearch(slice[1:], value)

}

Figure 6: A Recursive Slice Search Algorithm

The recursion in this algorithm can be replaced with a simple loop as shown in Figure 7.
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func Search(slice []int, value int) bool {
for _,v := range slice {
if v == value { return true }

}
return false

}

Figure 7: A Non-Recursive Slice Search Algorithm

Algorithms that call themselves at most once as the final step in every execution of their 
bodies, like the search algorithm in Figure 6, are called tail-recursive.

Tail recursive algorithm: A recursive algorithm that calls itself at most once as the 
last step in every execution of its body.

Recursion can always be removed from tail-recursive algorithms without using a stack. We 
will see another example of tail-recursion when we consider binary search.
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8.5	 SUMMARY AND CONCLUSION

Algorithms that use recursion can always be replaced by algorithms that use a stack, and 
vice versa, so stacks and recursion are in some sense equivalent. However, some algorithms 
are much easier to write using recursion, while others are easier to write using a stack. 
Which is which depends on the problem. Programmers should evaluate both alternatives 
when deciding how to solve individual problems.

8.6	 REVIEW QUESTIONS

1.	Which of the algorithms for determining whether a string of brackets is balanced 
is easiest to for you to understand?

2.	What characteristics do prefix, postfix, and infix expressions share?
3.	Which is easier: evaluating a prefix expression with a stack or using recursion?
4.	Which is easier: evaluating a postfix expression with a stack or using recursion?
5.	 Is the recursive algorithm to determine whether a string of brackets is balanced tail 

recursive? Explain why or why not.

8.7	 EXERCISES

1.	We can slightly change the definition of strings of balanced brackets to exclude the 
empty string. Restate the recursive definition and modify the algorithms to check 
strings of brackets to see whether they are balanced to incorporate this change.

2.	Fill in the following table with equivalent expressions in each row.

Infix Prefix Postfix

(((2 * 3) - 4) * (8 / 3)) + 2

% + 8 * 2 6 - 8 4

8 2 - 3 * 4 5 + 8 % /

3.	Write a recursive algorithm to evaluate postfix expressions as discussed in this chapter.
4.	Write a recursive algorithm to evaluate infix expressions. Assume that operators have 

equal precedence and are left-associative so that, without parentheses, operations 
are evaluated from left to right. Parentheses alter the order of evaluation in the 
usual way.
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5.	Write a stack-based algorithm to evaluate infix expressions as defined in the last 
exercise.

6.	Which of the algorithms for evaluating infix expressions is easier to develop?
7.	Write a non-recursive algorithm that does not use a stack to determine whether a 

string of brackets is balanced. Hint: count brackets.

8.8	 REVIEW QUESTION ANSWERS

1.	This answer depends on the individual, but most people probably find the stack-
based algorithm a bit easier to understand because its strategy is so simple.

2.	Prefix, postfix, and infix expressions list their arguments in the same order. The 
number of operators in each is always one less than the number of constant 
arguments. The main operator in each expression and sub-expression is easy to 
find: the main operator in an infix expression is the left-most operator inside the 
fewest number of parentheses; the main operator of a prefix expression is the first 
operator; the main operator of a postfix expression is the last operator.

3.	Evaluating a prefix expression recursively is much easier than evaluating it with a 
stack.

4.	Evaluating a postfix expression with a stack is much easier than evaluating it 
recursively.

5.	The recursive algorithm to determine whether a string of brackets is balanced calls 
itself at most once on each activation, but the recursive call is not the last step in 
the execution of the body of the algorithm—there must be a check for the closing 
right bracket after the recursive call. Hence this operation is not tail recursive and 
it cannot be implemented without a stack. (There is a non-recursive algorithm to 
check for balanced brackets without using a stack, but it uses a completely different 
approach from the recursive algorithms—see exercise 7).
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9	 COLLECTIONS AND ITERATORS

9.1	 INTRODUCTION

Recall that we have defined a collection as a type of container that is traversable, that is, a 
container that allows access to all its elements. The process of accessing all the elements of 
a collection is also called iteration. Iteration over a collection may be supported in several 
ways depending on the agent that controls the iteration and where the iteration mechanism 
resides. In this chapter we examine iteration design alternatives and discuss how collections 
and iteration work in Go. Based on this discussion, we will decide how to support collection 
iteration in our container hierarchy, and how to add collections to the hierarchy.

9.2	 ITERATION DESIGN ALTERNATIVES

There are two ways that iteration may be controlled.

Internal iteration—When a collection controls iteration over its elements, then 
iteration is said to be internal. A client wishing to process each element of a 
collection packages the process in some way (typically in a function), and passes it 
to the collection, perhaps with instructions about how iteration is to be done. The 
collection then applies the processing to each of its elements. This mode of control 
makes it easier for the client to iterate over a collection, but with less flexibility in 
dealing with issues that may arise during iteration.

External iteration—When a client controls iteration over a collection, the iteration 
is said to be external. In this case, the client must be provided with operations that 
allow an iteration to be initialized, to obtain the current element from the collection, 
to move on to the next element in the collection, and to determine when iteration 
is complete. This mode of control imposes a burden on the client in return for more 
flexibility in dealing with the iteration.

In addition to issues of control, there are also alternatives concerning where the iteration 
mechanism resides.

In the language—An iteration mechanism may be built into a language. For example, 
Java, Ruby, and Go (to name just a few examples) have special looping control 
structures that provide means for external iteration over collections.
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In the collection—An iteration mechanism may reside in a collection. In the case 
of a collection with an external iteration mechanism, the collection must provide 
operations to initialize iteration, return the current element, advance to the next 
element, and indicate when iteration is complete. In the case of a collection with an 
internal iteration mechanism, the collection must provide an operation that accepts 
a packaged process and applies it to each of its elements.

In an iterator—An iteration mechanism may reside in a separate entity whose job is 
to iterate over an associated collection. In this case the operations mentioned above 
to support internal or external iteration are in the iterator and the collection usually 
has an operation to create iterators.

Combining these design alternatives gives six ways that iteration can be done: internal 
iteration residing in the language, in the collection, or in an iterator, and external iteration 
residing in the language, in the collection, or in an iterator. Each of these alternatives has 
advantages and disadvantages, and various languages and systems have incorporated one or 
more of them. For example, most object-oriented languages have external iteration residing 
in iterator objects (this is known as the Iterator design pattern). Nowadays many languages 
provide external iteration in control structures, as mentioned above. We will now consider 
the Iterator design pattern, and then internal and external iteration in Go.

Download free eBooks at bookboon.com Click on the ad to read more
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

http://www.deloitte.ca/careers


GO DATA STRUCTURES AND ALGORITHMS Collections and Iterators

89

9.3	 THE ITERATOR DESIGN PATTERN

A software design pattern is an accepted solution to a common design problem that is 
proposed as a model for solving similar problems.

Software design pattern: A model proposed for imitation in solving a software 
design problem.

Design patterns occur at many levels of abstraction. For example, an algorithm or data 
structure is a low-level design pattern, and the overall structure of a very large program 
(such as a client-server structure) is a high-level design pattern. The Iterator pattern is a 
mid-level object-oriented design pattern that specifies the composition and interactions of 
several classes and interfaces.

The Iterator pattern consists of an Iterator class whose instances are created by an 
associated collection and provided to clients. The Iterator instances house an external 
iteration mechanism. Although Iterator class functionality can be packaged in various 
ways, Iterator classes must provide the following functionality.

Initialization—Prepare the Iterator object to traverse its associated collection. 
This operation will set the current element (if there is one).

Completion Test—Indicate whether traversal by this Iterator is finished.

Current Element Access—Provide the current collection element to the client. The 
precondition for this operation is that iteration is not complete.

Current Element Advance—Make the next element in the collection the current 
element. This operation has no effect once iteration is complete. However, iteration 
may become complete when it is invoked—in other words, if the current item is 
the last, executing this operation completes the iteration, and calling it again does 
nothing.

The class diagram in Figure 1 below presents the static structure of the Iterator pattern. 
The four operations in the Iterator interface correspond to the four functions listed above. 
The NewIterator() operation in the Collection interface creates and returns a 
new concrete iterator for the particular collection in which it occurs; this is called a factory 
method because it manufactures a class instance.
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The interfaces and classes in this pattern are templated with the type of the elements held in 
the collection. The arrow from the ConcreteIterator to the ConcreteCollection 
indicates that the ConcreteIterator must have some sort of reference to the collection 
with which it is associated so that it can access its elements.

«interface» 

Iterator

Reset()

Empty() : Boolean

Current() : T	  { not Empty() }

Next()

«interface» 

Collection

NewIterator() : Iterator

ConcreteIterator
T

T
T

ConcreteCollection
T

Figure 1: The Iterator Design Pattern

A client uses an iterator by asking a ConcreteCollection for one by calling its 
NewIterator() operation. The client can then reset the iterator and use a for loop to 
access its elements. The Go code below in Figure 2 illustrates how this is done.

c := NewConcreteCollection()
...
i := c.NewIterator()
for i.Reset; !i.Empty(); i.Next() {
element := i.Current()
// process element

}

Figure 2: Using an Iterator

Note that if the programmer decided to switch from one ConcreteCollection to 
another, only one line of this code would have to be changed: the first. Because of the use 
of interfaces, the code would still work even though a different ConcreteIterator 
would be used to access the elements of the collection.
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9.4	 ITERATION IN GO

Go supports external iteration over the collections that are built into the language in the 
form of the for-range loop: the for-range loop provides access in the body of the loop to 
every element of an array, slice, or map, along with array and slice indices or map keys if 
desired. Unfortunately, there is no way to use the for-range loop for collections constructed 
by programmers. Furthermore, although Go provides no explicit support for internal iteration, 
because functions can be passed as arguments, programmers can build internal iterators for 
their own collections. Consequently we will consider how to provide external and internal 
iterators for collection types in Go.

Let’s first consider external iteration. An external iteration mechanism could be provided 
as part of a collection, but this clutters up the collection interface, and what is worse, it 
makes it difficult to do more than one iteration at a time. A better solution is to put the 
iteration mechanism into iterators. The Iterator design pattern provides a model that we 
can copy in Go: we can create an Iterator interface and a Collection interface 
that includes a NewIterator() method that returns an Iterator value. Figure 3 
below shows the Go code for the Iterator interface.

Download free eBooks at bookboon.com Click on the ad to read more
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

TMP PRODUCTION NY026057B

PSTANKIE

gl/rv/rv/baf

ACCCTR0005

Bookboon Ad Creative

4

6 x 4

12/13/2013

Bring your talent and passion to a
global organization at the forefront of
business, technology and innovation.
Discover how great you can be. 

Visit accenture.com/bookboon

©
2013 Accenture. 

All rights reserved.

http://s.bookboon.com/accentureCZintl


GO DATA STRUCTURES AND ALGORITHMS Collections and Iterators

92

type Iterator interface {
Reset()
Done() bool
Next() (interface{}, bool)

}

Figure 3: Go Iterator Interface

The Reset() function prepares for a new iteration. The Done() function returns true if 
iteration is complete and false otherwise. The Next() function either returns the next element 
in the collection and true, or nil and false when there are no more elements in the 
collection. Note that the Next() function combines three of the four iterator operations 
into one, making it easy to control a loop using this method, as demonstrated in Figure 4.

c := NewConcreteCollection()
...
iter := c.NewIterator()
for e,ok := iter.Next(); ok; e,ok = iter.Next() {
// process a collection element e

}

Figure 4: Using a Go External Iterator

Internal iteration could be done with an iterator or by adding this capability to the collection. 
In either case, it requires the addition of only a single method that takes a processing 
function as its argument. It is so easy to add this to the Collection interface that there 
does not seem to be any point in making a separate iterator to handle it. Consequently 
we will simply add an Apply() method to the Collection interface. The Apply() 
function takes a function as its only argument. This argument function must accept a value 
from the collection as its only argument.

The code in Figure 5 illustrates how to use an internal iterator in Go. In this example, 
Collection c invokes function f() on every element it holds when Apply(f) is called.

c := NewConcreteCollection()
...
func f(e interface{}) {
// process a collection element

}
...
c.Apply(f)

Figure 5: Using a Go Internal Iterator
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9.5	 COLLECTIONS, ITERATORS, AND CONTAINERS

There are many sorts of collections, including simple linear sequences (lists), unordered 
aggregates (sets), and aggregates with keyed access (maps). There are not many operations 
common to this wide variety of collections that should be included in the Collection 
interface. For example, although one must be able to add elements to every collection, how 
elements are added varies. Adding an element to an unordered collection simply involves the 
element added. Adding to a list requires specifying where the element is to be added, and 
adding to a map requires that the access key be specified. Only one common operation comes 
to mind: we may ask of any collection whether it contains some element. Consequently, we 
add a collection containment query operation to the Collection interface.

The Collection interface also should contain operations for creating new external iterators 
and an Apply() operation for internal iteration. Figure 6 is a UML diagram showing 
the final Collection interface and its place in the Container hierarchy. In UML, 
a dashed arrow indicates a dependency between elements—in this case, the Collection 
interface depends on the Iterator interface because the NewIterator() operation 
returns an Iterator value. The Iterator interface in this diagram is modelled on 
the Go Iterator interface discussed earlier.
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«interface» 

Collection

Contains(e : T) : Boolean

NewIterator() : Iterator

Apply(f : func(e : T))

«interface» 

Dispenser

«interface» 

Container

Size() : integer

Empty() : Boolean

Clear()

T

«interface» 

Iterator

Reset()

Done() : Boolean

Next() : T, Boolean

T

Figure 6: The Collection Interface in the Container Hierarchy

9.6	 SUMMARY AND CONCLUSION

Collections are traversable containers and hence require some sort of iteration facility. There 
are many alternative designs for such a facility. The Iterator design pattern, a way to use 
external iterator objects, is a good model for external iterators and we have used it as a 
guide in specifying Collection and Iterator interfaces. Internal iteration is also a 
powerful tool, so we have included an internal iteration mechanism in our Collection 
interface as well.

Collections should also include a collection containment query operation, so this also appears 
in our Collection interface.

9.7	 REVIEW QUESTIONS

1.	What are the alternatives for controlling iteration?
2.	Where might iteration mechanisms reside?
3.	What are the six alternatives for designing collection iteration facilities?
4.	What is a software design pattern?
5.	What functions must an external Iterator object provide in the Iterator pattern?
6.	What sort of support does Go provide for collection iteration?
7.	What does the Contains() operation return when a Collection is empty?
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9.8	 EXERCISES

1.	What is the point of an iterator when each element of a list can already be accessed 
one by one using indices?

2.	Explain why a Dispenser does not have an associated iterator.
3.	 Java has iterators, but the Java Iterator interface does not have a Reset() 

operation. Why not?
4.	Would it be possible to have an Iterator interface with only a single operation? 

If so, how could the four Iterator functions be realized?
5.	How might external iterators residing in built-in collections be added to Go?
6.	How might internal iteration be added to the Go Iterator interface?
7.	Write a Go implementation of the Collection Contains() operation using

a)	 an internal collection iterator
b)	an external iterator
c)	 an internal iterator

8.	What happens to an iterator (any iterator) when its associated collection changes 
during iteration?

9.	Consider the problem of checking whether two collections contain the same values. 
Can this problem be solved using collection internal iterators? Can it be solved 
using external iterators?

9.9	 REVIEW QUESTION ANSWERS

1.	There are two alternatives for controlling iteration: the collection may control it 
(internal iteration) or the client may control it (external iteration).

2.	 Iteration mechanisms can reside in three places: in the language (in the form of 
control structures), in the collection (as a set of operations), or in a separate iterator 
(with certain operations).

3.	The six alternatives for designing collection iteration facilities are generated by 
combining control alternatives with residential alternatives, yielding the following 
six possibilities: (1) internal control residing in the language, (2) external control 
residing in a language, (3) internal control residing in the collection, (4) external 
control residing in the collection, (5) internal control residing in an iterator, (6) 
external control residing in an iterator.

4.	A software pattern is model proposed for imitation in solving a software design 
problem. In other words, a pattern is a way of solving a design or implementation 
problem that has been found to be successful, and that can serve as a template for 
solving similar problems.
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5.	An Iterator must provide four functions: a way to initialize the Iterator to 
prepare to traverse its associated Collection, a way to fetch the current element 
of the Collection, a way to advance to the next element of the Collection, 
and a way to indicate that all elements have been accessed.

6.	Go provides support for external iteration over built-in collections (arrays, slices, 
and maps) in the form of the for-range loop, but that is all. However, the Go 
language supports creation of user-defined types and allows functions to be passed 
as parameters, so powerful external and internal iteration mechanisms can be built 
for user-defined collection types.

7.	 If a Collection is empty, then it contains nothing so the Contains() 
operation returns false no matter what its argument.
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10	 LISTS

10.1	 INTRODUCTION

Lists are linearly ordered collections. Some things we refer to in everyday life as lists, such 
as shopping lists or laundry lists, are really sets because their order doesn’t matter. Order 
matters in lists. A to-do list is really a list if the tasks to be done are in the order in which 
they are supposed to be completed (or some other order).

List: An ordered linear collection.

Because order matters in lists, we must specify a location, or index, of elements when we 
modify the list. Indices can start at any number, but we will follow convention and give 
the first element of a list index 0, the second index 1, and so forth.

10.2	 THE LIST ADT AND INTERFACE

Lists are collections of values of some type, so the ADT is list of T, where T is the type of 
the elements in the list. The carrier set of this type is the set of all sequences or ordered 
tuples of elements of type T. The carrier set thus includes the empty list, the lists with one 
element of type T (one-tuples), the lists with two elements of type T (ordered pairs), and 
so forth. Hence the carrier set of this ADT is the set of all tuples of type T, including the 
empty tuple.

There are many functions that may be included in a list ADT; the following is a typical list 
ADT implicit-receiver method set. The result of a function is undefined if its precondition 
is violated.

size()—Return the length of list the list.

insert(i,e)—Place e into the list at index i, moving elements with larger indices up 
in the list, if necessary. The precondition of this operation is that i be a valid index 
position: 0 ≤ i ≤ size(). When i is 0, e is inserted at the front of the list, and when 
i is size(), e is appended to the end of the list.

delete(i)—Remove the element at index i from the list and return the deleted element. 
The precondition of this operation is that i be a valid index position: 0 ≤ i < size().
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get(i)—Return the value at index i of the list. Its precondition is that i be a valid 
index position: 0 ≤ i < size().

put(i,e)—Replace the element at index i of the list with e. The precondition is that 
i be a valid index position: 0 ≤ i < size().

index(e)—Return the index of the first occurrence of e in the list. The precondition 
of the operation is that e is in the list.

slice(i, j)—Return a new list that is a slice of the list whose first element is the value 
at index i of the list and whose last value is at index j-1 of the list. The precondition 
of this operation is that i and j are are valid: 0 ≤ i ≤ j ≤ size(). Note that the slice 
may be empty if i = j.

equal(s)—Return true if and only if lists s have the same elements in the same order 
as the (receiver) list.

As with the ADTs we have studied before, an implementation of these operations as methods 
that allows receivers will include the list as an implicit parameter, so the signatures of these 
operations will vary somewhat when they are implemented in Go.

A List interface is a sub-interface of Collection, which is a sub-interface of 
Container, so it has several operations that it inherits from its ancestors. The UML 
diagram in Figure 1 shows the List interface. As usual, a template parameter is used to 
generalize the interface for any element type, and preconditions and Error returns values 
to report precondition violations have been added.

Insert(i : Integer, e : T) : Error	{ 0 <= i <= Size() }

Delete(i : Integer) : T, Error	 { 0 <= i < Size() }

Get(i : Integer) : T, Error		  { 0 <= i < Size() }

Put(i : Integer, e : T) : Error	 { 0 <= i < Size() }

Index(e : T) : Integer, Boolean

Slice(i, j : Integer) : List, Error	{ 0 <= i <= j <= Size() }

Equal(t : List) : Boolean

«interface» 

List

T

Figure 1: The List Interface
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10.3	 AN EXAMPLE OF USING LISTS

Suppose a calendar program has a to-do list whose elements are ordered by precedence, 
so that the first element on the list must be done first, the second next, and so forth. The 
items in the to-do list are all visible in a scrollable display; items can be added, removed, 
or moved around in the list freely. Mousing over list items displays details about the item, 
which can be changed. Users can ask to see or print sub-lists (like the last ten items on 
the list), or they can ask for details about a list item with a certain precedence (like the 
fifth element).

Clearly, a List is the right sort of container for to-do lists. Iteration over a List to display 
its contents is easy with an internal or external iterator. The Insert() and Delete() 
operations allow items to be inserted into the list, removed from it, or moved around in 
it. The Get() operation can be used to obtain a list element for display during a mouse-
over event, and the Put() operation can replace a to-do item’s record if it is changed. 
The Slice() operation produces portions of the list for display or printing, and the 
Index() operation can determine where an item lies in the list.
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10.4	 CONTIGUOUS IMPLEMENTATION OF THE LIST ADT

Lists are very easy to implement with arrays. Static arrays impose a maximum list size, while 
dynamic arrays allow lists to grow without limit. The implementation is similar in either 
case. An array is allocated to hold the contents of the list, with the elements placed into the 
array in order so that the element at index i of the list is at index i of the array. A counter 
maintains the current size of the list. Elements added at index i require that the elements in 
the slice from i to the end of the list be moved upwards in the array to make a “hole” into 
which the inserted value is placed. When element i is removed, the slice from i+1 to the 
end of the list is copied down to close the hole left when the value at index i is removed.

Static arrays have their size set at compile time so an implementation using a static array 
cannot accommodate lists of arbitrary size. In contrast, an implementation using a dynamic 
array can allocate a larger array if a list exceeds the capacity of the current array during 
execution. Reallocating the array is an expensive operation because the new, larger array must 
be created, the contents of the old, smaller array must be copied into the new array, and 
the old array must be deallocated. To avoid this expense, the number of array reallocations 
should be kept to a minimum. One popular approach is to double the size of the array 
whenever it needs to be made larger. For examples, suppose a list begins with a capacity of 
10. As it expands, its capacity is changed to 20, then 40, then 80, and so forth. The array 
never becomes smaller.

Iterators for lists implemented with an array are also very easy to code. The iterator need 
merely keep a pointer to the list and the current index during iteration, which acts as a 
cursor marking the current element during iteration.

Cursor: A variable marking a location in a data structure.

Accessing the element at index i of an array is almost instantaneous, so the Get() and 
Put() list operations are very fast using a contiguous implementation. But adding and 
removing elements requires moving slices of the list up or down in the array, which can be 
very slow. Hence for applications where list elements are often accessed but not too often 
added or removed, the contiguous implementation will be very efficient; applications that 
have the opposite behavior will be much less efficient, especially if the lists are long.

10.5	 LINKED IMPLEMENTATION OF THE LIST ADT

A linked implementation of the list ADT uses a linked data structure to represent values of 
the ADT carrier set. A singly- or multiply-linked list may be used, depending on the needs 
of clients. We will consider using singly- or doubly-linked lists to illustrate implementation 
alteratives.
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Suppose a singly-linked list is used to hold list elements. It consists of a pointer, traditionally 
called head, pointing to the first node in the list. This first node may contain data for 
the first element in the list, or it may be a dummy node (thought of as being at location 
-1) that is always present, even when the list is empty. Using a dummy node wastes a bit 
of space, but it greatly simplifies various list manipulation algorithms, so we will use one 
in our implementations. In any case, when the list is empty, either head or the link field 
of the dummy node is nil. The length of list is also typically recorded.

Most list operations take an index i as an argument, so most algorithms to implement these 
operations will have to begin from head and walk from node to node down the list to 
locate the node at position i or position i-1. (Why i-1? Because for addition and removal, 
the link field in the node preceding node i will have to be changed.) In any case, if lists 
are long and there are many changes towards the end of the list, much processing must be 
done simply finding the right spot in the list to do things.

This difficulty can be alleviated by keeping a cursor consisting of an index number and 
a pointer into the list. The cursor is used to find the node that some operation needs to 
do its job. The next time an operation is called, it may be able to use the existing value 
of the cursor, or use it with slight changes, thus saving time. For example, suppose that a 
value is added at the end of the list. The cursor is used to walk down to the end of the list 
and make the addition; when this task is done, the cursor marks the node at, let us say, 
location Size()-2 in the list. If another addition is made, the cursor only needs to be 
moved forward one node to the end of the list to mark the node whose link field must be 
changed—the walk down the list from its beginning has been avoided.

It may also be useful to maintain a pointer to the end of the list. Then operations at the end 
of the list can be done quickly in exchange for the slight additional effort of maintaining 
the extra pointer. If a client does many operations at the end of a list, the extra work will 
be justified.

Another way to make list operations faster is to store elements in a doubly-linked list in 
which each node (except those at the ends) has a link to both its successor and its predecessor 
nodes. A dummy first node may be used as well. Figure 2 below illustrates this setup (with 
a dummy first node).

head succ

item

pred

dummy 0 21

Figure 2: A Doubly-Linked List
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Using a cursor with a doubly-linked list can speed things up considerably because the links 
make it possible to move both backwards and forwards in the list. If an operation needs 
to get to node i and the cursor marks node j, which is closer to node i than node i is to 
the head of the list, following links from the cursor can get to node i more quickly than 
following links from the head of the list. Keeping a pointer to the end of the list makes 
things faster still: it is possible to start walking toward a node from three points: the front 
of the list, the back of the list, or the cursor, which is often somewhere in the middle of 
the list.

Another trick is to make the list circular: have the pred link of the first node point to 
the last node rather than containing nil, and have the succ link of the last node point to 
the first node rather than containing nil. Then there is no need for a separate pointer to 
the end of the list: the head pointer can be used to get to both the front and the rear of 
the list. This obviates the need for a pointer to the end of the list.

To illustrate, consider the code in Figure 3 below for setting the cursor in a doubly-linked 
circular list with a dummy node. Setting the cursor is done in almost every list operation, 
so it is important to make this code efficient.
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func (list *LinkedList) setCursor(index int) {
if index <= list.count/2 {
if index+1 < abs(index-list.cursorIdx) {
list.cursorIdx, list.cursorPtr = -1, list.head

}
} else {
if list.count-index < abs(list.cursorIdx-index) {
list.cursorIdx, list.cursorPtr = list.count, list.head

}   
}   
for index < list.cursorIdx { // go backwards
list.cursorIdx = list.cursorIdx-1
list.cursorPtr = list.cursorPtr.pred

}   
for list.cursorIdx < index { // go forwards
list.cursorIdx = list.cursorIdx+1
list.cursorPtr = list.cursorPtr.succ

}   
}

Figure 3: Setting the Cursor in a Doubly-Linked Circular List with a Dummy Node

The conditionals determine whether the current cursor position (marked jointly by 
cursorPtr and cursorIdx), the front of the list, or the end of the list is closer to 
the target index, and either leaves the cursor alone or sets it to the front or the end of 
the list. Note that the dummy node (pointed to by head) is both just before the front 
of the list (at location -1) and just after the end of the list (at location count) because 
the list is circular. The for loops then either march the cursor forward or backward to the 
target position. Note that only one of these for loops executes in a call of this method. 
This code is somewhat tricky, so it may help to work through a few examples to see exactly 
how it works.

Iterators for the linked implementation of lists must obtain a pointer to the head of the 
list; this can be passed to the new Iterator object by the factory function that creates 
it. Then it is merely a question of maintaining a cursor and walking down the list whenever 
the Iterator.Next() operation is called.

Modifying lists with a linked implementation is very fast once the nodes to operate on have 
been found, and using doubly-linked lists with cursors can make node finding fairly fast. As 
a rule, a linked implementation of a list allows for faster list modifications than a contiguous 
implementation, but slower list element access than a contiguous implementation. Hence a 
linked implementation will generally be a better choice when a list is modified frequently 
but accessed relatively infrequently.
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10.6	 EXAMPLE: MODIFYING A DOUBLY-LINKED CIRCULAR LIST

Doubly-linked lists have many links, and sometimes it is confusing to see how to modify 
them when performing list operations. Consequently Figure 4 shows code for inserting and 
deleting in a doubly-linked circular list with a dummy node.

func (list *LinkedList) Insert(i int, e interface{}) error {
if i < 0 || list.count < i {
return fmt.Errorf("Insert: index out of bounds: %d", i)

}
list.init()
list.setCursor(i)
newNode := &node{e, list.cursorPtr.pred, list.cursorPtr}
list.cursorPtr.pred.succ = newNode
list.cursorPtr.pred = newNode
list.cursorPtr = newNode
list.count++
return nil

}

func (list *LinkedList) Delete(i int) (interface{}, error) {
if i < 0 || list.count <= i {
return nil, fmt.Errorf("Delete: index out of bounds: %d", i)

}
var result interface{}
list.init()
list.setCursor(i)
result = list.cursorPtr.item
list.cursorPtr.pred.succ = list.cursorPtr.succ
list.cursorPtr.succ.pred = list.cursorPtr.pred
list.cursorPtr = list.cursorPtr.succ
list.count--
return result, nil

}

Figure 4: Modifying a Doubly-Linked Circular List with a Dummy Node

Both Insert() and Delete() begin by ensuring that the index at which the operation 
is to take place are in range. Then the private method init() is called. The default value 
of a LinkedList struct has a nil value for the head pointer, but the linked list is 
supposed to have a dummy node. The init() method creates and assigns a dummy node 
if head is nil, thus ensuring that a newly created list is initialized properly. Then both 
methods set the cursor to the node where the insertion or deletion is to occur.
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For an insertion, the node at which cursorPtr points will be the successor of the 
inserted node. Consequently a new node is created whose predecessor is the predecessor of 
the cursor node (pointed to by cursorPtr.pred) ,, and whose successor is the cursor 
node (pointed to by cursorPtr). Then the cursor node’s predecessor’s successor pointer 
and the cursor node’s predecessor pointer are both set to the new node. Finally, the cursor 
is updated to point at the current node, and the list size is incremented. You should execute 
this code by hand on a few example lists to see how it works; it works best to draw a picture 
of the list like the one in Figure 2 and modify it as you run through the code. Be sure to 
try it on an empty list to see how the dummy node works in this case (note that when the 
list is empty, the dummy node pointers point to the dummy node itself, cursorIdx is 
-1 and cursorPtr points at the dummy node).

After setting the cursor to the deleted node, the Delete() method saves its item value to 
be returned later. Removing the deleted node requires setting the predecessor node’s successor 
pointer to the cursor node’s successor, and setting the successor node’s predecessor pointer 
to the cursor node’s predecessor. To finish up, the method sets cursorPtr to what will 
now be the ith node, decrements the list size, and returns the value stored in the deleted 
node. Again, you will understand this code better if you run by hand on a few examples.
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10.7	 SUMMARY AND CONCLUSION

The contiguous implementation of lists is easy to program and efficient for element access, 
but slow for element insertion and removal. The linked implementation is considerably more 
difficult to program, and can be slow if operations must always locate nodes by walking 
down the list from its head, but if double links and a cursor are used, list operations can 
be quite fast across the board. Using a dummy node simplifies the code. The contiguous 
implementation is preferable for lists that don’t change often but must be accessed quickly, 
while the linked implementation is better when these characteristics don’t apply.

10.8	 REVIEW QUESTIONS

1.	Does it matter where list element numbering begins?
2.	What does the list ADT index(e) operation return when e is not in the list? What 

does the Index() operation in the List interface do in a such a situation?
3.	What is a cursor?
4.	Under what conditions does the contiguous implementation of the list ADT not 

perform well?
5.	What advantage does a doubly-linked list provide over a singly-linked list?
6.	What advantage does a circular doubly-linked list provide over a non-circular list?
7.	What advantage does a cursor provide in the linked implementation of lists?
8.	 In an application where long lists are changed infrequently but access to the middle 

of the lists are common, would a contiguous or linked implementation be better?

10.9	 EXERCISES

1.	Do we really need iterators for lists? Explain why or why not.
2.	Would it be worthwhile to maintain a cursor for a contiguously implemented list? 

Explain why or why not.
3.	What should happen if a precondition of a List operation is violated?
4.	 In the List interface, why does the precondition for the Insert() operation 

differ from the preconditions for the Delete(), Get(), and Put() operations?
5.	A ListIterator is a kind of Iterator that (a) allows a client to start 

iteration at the end of list and go through it backwards, (b) change the direction 
of iteration during traversal, and (c) obtain the index as well as the value of the 
current element. Write an interface for ListIterator that is a sub-interface 
of Iterator.

6.	Write a List interface in Go.
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7.	Write an ArrayList implementation in Go implementing the List interface from 
the previous exercise. Note that you will also have to create an arrayListIterator 
type that implements the Iterator interface and return a pointer to an instance 
of this type from the NewIterator() method in the Collection interface.

8.	 Write an arrayListListIterator in Go to go along with the code in the 
previous exercise. Add a NewListIterator() method to the arrayList type.

9.	Write a LinkedList implementation in Go that uses a singly-linked list, no 
pointer to the end of the list, and a cursor.

10.	Write a linkedListListIterator to go along with the linkedList 
type in the previous exercise.

10.10	 REVIEW QUESTION ANSWERS

1.	 It does not matter where list element numbering begins: it may begin at any value. 
However, it is usual in computing to start at zero, and in everyday life to start at 
one, so one of these values is preferable.

2.	The list ADT index(e) operation cannot return an index when e is not in the list. 
Its result is undefined in this case. The Index() operation in the List interface 
returns an innocuous index value and false to indicate that e is not in the collection, 
thus always returning a meaningful value.

3.	A cursor is a variable marking a location in a data structure. In the case of a 
List, a cursor is a data structure marking a particular element in the List. For 
an arrayList, a cursor might be simply an index. For a linkedList, it is 
helpful for the cursor to hold both the index and a pointer to the node where the 
item is stored.

4.	A contiguous implementation of the list ADT does not perform well when the list 
is long and is often changed near its beginning. Every change near the beginning 
of a long contiguously implemented list requires that many list elements be copied 
up or down the list, which is expensive.

5.	A doubly-linked list makes it faster to move from node to node than in a singly-
linked list, which can speed up the most expensive part of linked list operations: 
finding the nodes in the list where the operation must do its job.

6.	A circular doubly-linked list makes it possible to follow links quickly from the list 
head to the end of the list. This can only be done in a non-circular list if a pointer 
to the end of the list is maintained.

7.	A cursor helps speed up linked list operations by often making it faster to get to 
the nodes where the operations must do their work. Even in a circular doubly-
linked list, it is expensive to get to the middle of the list. If a cursor is present and 
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it ends up near the middle of a list after some list operations, then it can be used 
to get to a node in the middle of the list very quickly.

8.	 In an application where long lists are changed infrequently but are accessed near 
their middle often, a contiguous implementation will likely be better than a linked 
implementation because access to the middle of a contiguously implemented list 
(no matter how long) is instantaneous, while access to the middle of a linked list 
will almost always be slower, and could be extremely slow (if link following must 
begin at one end of the list).
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11	 ANALYZING ALGORITHMS

11.1	 INTRODUCTION

We have so far been developing algorithms in implementing ADTs without worrying too 
much about how good the algorithms are, except perhaps to point out in a vague way that 
certain algorithms will be more or less efficient in certain circumstances than others. We 
have not considered in any rigorous and careful way how efficient our algorithms are in 
terms of how much work they need to do and how much memory they consume; we have 
not done a careful algorithm analysis.

Algorithm analysis: The process of determining, as precisely as possible, how much 
of various resources (such as time and memory) an algorithm consumes when it 
executes.

In this chapter we will lay out an approach for analyzing algorithms and demonstrate how 
to use it on several simple algorithms. We will mainly be concerned with analyzing the 
amount of work done by algorithms; occasionally we will consider how much memory they 
consume as well.

11.2	 MEASURING THE AMOUNT OF WORK DONE

An obvious measure of the amount of work done by an algorithm is the amount of time 
the algorithm takes to do some task. Before we get out our stopwatches, however, we need 
to consider several problems with this approach.

To measure how much time an algorithm takes to run, we must code it up in a program. 
This introduces the following difficulties:

•	 A program must be written in a programming language. How can we know that 
the language or its compiler or interpreter have not introduced some factors that 
artificially increase or decrease the running time of the algorithm?

•	 The program must run on a machine under the control of an operating system. 
Machines differ in their speed and capacity, and operating systems may introduce 
delays; other processes running on the machine may interfere with program timings.

•	 Programs must be written by programmers; some programmers write very fast code 
and others write slower code.
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Without finding some way to eliminate these confounding factors, we cannot have trustworthy 
measurements of the amount of work done by algorithms—we will only have measurements 
of the running times of various programs written by particular programmers in particular 
languages run on certain machines with certain operating systems supporting particular loads.

In response to these difficulties, we begin by abandoning direct time measurements of 
algorithms altogether, instead focussing on algorithms in abstraction from their realization in 
programs written by programmers to run on particular machines running certain operating 
systems. This immediately eliminates most of the problems we have considered, but it leads 
to the question: if we can’t measure time, what can we measure?

Another way to think about the amount of work done by an algorithm is to consider how 
many operations the algorithm executes. For example, consider the subtraction algorithm 
that elementary children learn. The input comes in the form of two numbers written one 
above the other. The algorithm begins by checking whether the value in the units column 
of the bottom number is greater than the value in the units column of the top number (a 
comparison operation). If the bottom number is greater, a borrow is made from the tens 
column of the top number (a borrow operation). Then the bottom value is subtracted from 
the top values and the result written beneath the bottom number (a subtraction operation). 
These steps are repeated for the tens column, then the hundreds column, and so forth, until 
the entire top number has been processed. For example, subtracting 284 from 305 requires 
three comparisons, one borrow, and three subtractions, for a total of seven operations.

In counting the number of operations required to do this task, you probably noticed that 
the number of operations is related to the size of the problem: subtracting three digit 
numbers requires between six and eight operations (three comparison, three subtractions, 
and zero to two borrows), while subtracting nine digit numbers requires between 18 and 
26 operations (nine comparisons, nine subtractions, and zero to eight borrows). In general, 
for n digit numbers, between 2n and 3n-1 operations are required.

How did the algorithm analysis we just did work? We simply figured out how many 
operations were done in terms of the size of the input to the algorithm. We will adopt this 
general approach for deriving measure of work done by an algorithm:

To analyze the amount of work done by an algorithm, produce measures that express a 
count of the operations done by an algorithm as a function of the size of the input to 
the algorithm.
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11.3	 THE SIZE OF THE INPUT

How to specify the size of the input to an algorithm is usually fairly obvious. For example, 
the size of the input to an algorithm that searches a list will be the size of the list, because 
it is obvious that the size of the list, as opposed to the type of its contents, or some other 
characteristic, is what determines how much work an algorithm to search it will do. Likewise 
for algorithms to sort a list. An algorithm to raise b to the power k (for some constant b) 
obviously depends on k for the amount of work it will do.

11.4	 WHICH OPERATIONS TO COUNT

In most cases, certain operations are done far more often than others by an algorithm. For 
example, in searching and sorting algorithms, although some initial assignment and arithmetic 
operations are done, the operations that are done by far the most often are loop control 
variable increments, loop control variable comparisons, and key comparisons. These are 
(usually) each done approximately the same number of times, so we can simply count key 
comparisons as a stand-in for the others. Thus counts of key comparisons are traditionally 
used as the measure of work done by searching and sorting algorithms.
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This technique is also part of the standard approach to analyzing algorithms: one or perhaps 
two basic operations are identified and counted as a measure of the amount of work done.

Basic operation: An operation fundamental to an algorithm used to measure the 
amount of work done by the algorithm.

As we will see when we consider function growth rates, not counting initialization and 
bookkeeping operations (like loop control variable comparison and incrementing operations), 
does not affect the overall efficiency classification of an algorithm.

11.5	 BEST, WORST, AND AVERAGE CASE COMPLEXITY

Algorithms don’t always do the same number of operations on every input of a certain size. 
For example, consider the following algorithm to search an array for a value.

func find(key int, array []int) bool {
for _, element := range array {
if key == element { return true }

}
return false

}

Figure 1: An Array Searching Algorithm

The measure of the size of the input is the array size, which we will label n. Let us count 
the number of comparisons between the key and the array elements made in the body of 
the loop. If the key is the very first element of the array, then the number of comparisons is 
only one; this is the best case complexity. We use B(n) to designate the best case complexity 
of an algorithm on input of size n, so in this case B(n) = 1.

In contrast, suppose that the key is not present in the array at all, or is the last element in 
the array. Then exactly n comparisons will be made; this is the worst case complexity, which 
we designate W(n), so for this algorithm, W(n) = n.

Sometimes the key will be in the array, and sometimes it will not. When it is in the array, it 
may be at any of its n locations. The number of operations done by the algorithm depends 
on which of these possibilities obtains. Often we would like to characterize the behavior 
of an algorithm over a wide range of possible inputs, thus producing a measure of its 
average case complexity, which we designate A(n). The difficulty is that it is often not clear 
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what constitutes an “average” case. Generally an algorithm analyst makes some reasonable 
assumptions and then derives a measure for the average case complexity. For example, 
suppose we assume that the key is in the array, and that it is equally likely to be at any 
of the n array locations. Then the probability that it is in position i, for 0 ≤ i < n, is 1/n. 
If the key is at location zero, then the number of comparisons is one; if it is at location 
one, then the number of comparisons is two; in general, if the key is at position i, then 
the number of comparisons is i+1. Hence the average number of comparisons is given by 
the following equation.

A(n) = ∑i=0 to n-1 1/n ∙ (i+1) = 1/n ∙ ∑i=1 to n i

You may recall from discrete mathematics that the sum of the first n natural numbers is 
n(n+1)/2, so A(n) = (n+1)/2. In other words, if the key is in the array and is equally likely 
to be in any location, then on average the algorithm looks at about half the array elements 
before finding it, which makes sense.

Lets consider what happens when we alter our assumptions about the average case. Suppose 
that the key is not in the array half the time, but when it is in the array, it is equally likely 
to be at any location. Then the probability that the key is at location i is 1/2 ∙ 1/n = 1/2n. 
In this case, our equation for A(n) is the sum of the probability that the key is not in the 
list (1/2) times the number of comparisons made when the key is not in the list (n), and 
the sum of the product of the probability that the key is in location i times the number 
of comparisons made when it is in location i:

A(n) = n/2 + ∑i=0 to n-1 1/2n ∙ (i+1) = n/2 + 1/2n ∙ ∑i=1 to n i = n/2 + (n+1)/4 = (3n+1)/4

In other words, if the key is not in the array half the time, but when it is in the array it 
is equally likely to be in any location, then the algorithm looks about three-quarters of 
the way through the array on average. Said another way, it looks all the way through the 
array half the time (when the key is absent), and half way through the array half the time 
(when the key is present), so overall it looks about three quarters of the way through the 
array. This makes sense too.

We have now completed an analysis of the algorithm above, which is called sequential search.

Sequential search: An algorithm that looks through a list from beginning to end 
for a key, stopping when it finds the key.
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Sometimes a sequential search returns both an indication of whether the key is in the list 
and, if its is, its index as well—the index() operation in our List interface is intended 
to embody such a version of the sequential search algorithm.

Not every algorithm has behavior that differs based on the content of its inputs—some 
algorithms behave the same on inputs of size n in all cases. For example, consider the 
algorithm in Figure 2.

func max(array []int) int {
if len(array) == 0 { panic("Can't find the max of nothing") }
m := array[0]
for index := 1; index < len(array); index++ {
if m < array[index] { m = array[index] }
}

return m
}

Figure 2: Maximum-Finding Algorithm
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This algorithm, the maximum-finding algorithm, always examines every element of the array 
after the first (as it must, because the maximum value could be in any location). Hence on 
an input of size n (the array size), it always makes n-1 comparisons (the basic operation 
we are counting). The worst, best, and average case complexity of this algorithm are all 
the same. The every-case complexity of an algorithm is a the number of basic operations 
performed by the algorithm when it does the same number of basic operations on all inputs 
of size n. We will use C(n) to designate every-case complexity, so for the maximum-finding 
algorithm, C(n) = n-1.

11.6	 SUMMARY AND CONCLUSION

We define the various kinds of complexity we have discussed as follows.

Computational complexity: The time (and perhaps the space) requirements of an 
algorithm.

Every-case complexity C(n): The number of basic operations performed by an 
algorithm as a function of the size of its input n when this value is the same for any 
input of size n.

Worst case complexity W(n): The maximum number of basic operations performed 
by an algorithm for any input of size n.

Best case complexity B(n): The minimum number of basic operations performed 
by an algorithm for any input of size n.

Average case complexity A(n): The average number of basic operations performed 
by an algorithm for all inputs of size n, given assumptions about the characteristics 
of inputs of size n.

We can summarize the process for analyzing an algorithm as follows:

1.	Choose a measure for the size of the input.
2.	Choose a basic operation to count.
3.	Determine whether the algorithm has different complexity for various inputs of 

size n; if so, then derive measures for B(n), W(n), and A(n) as functions of the 
size of the input; if not, then derive a measure for C(n) as a function of the size 
of the input.

We will consider how to do step 3 in more detail later.
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11.7	 REVIEW QUESTIONS

1.	Give three reasons why timing programs is insufficient to determine how much 
work an algorithm does.

2.	How is a measure of the size of the input to an algorithm determined?
3.	How are basic operations chosen?
4.	Why is it sometimes necessary to distinguish the best, worst and average case 

complexities of algorithms?
5.	Does best case complexity have anything to do with applying an algorithm to 

smaller inputs?

11.8	 EXERCISES

1.	Determine measures of the size of the input and suggest basic operations for 
analyzing algorithms to do the following tasks.

a)	 Finding the average value in a list of numbers.
b)	Finding the number of 0s in a matrix.
c)	 Searching a text for a string.
d)	Finding the shortest path between two nodes in a network
e)	 Finding a way to color the countries in a map so that no adjacent countries 

are the same color.

2.	Write a Go sequential search method that returns both whether a key is present in 
an array (as a boolean) and the index of the key if it is present. It should return 
-1 as the index if the key is not present in the array.

3.	Consider the Go code below.

func maxCharSequence(s string) int {
if len(s) == 0 { return 0 }
var (maxLen int
thisLen int = 1
lastChar rune)

for _, thisChar := range s {
if thisChar == lastChar {
thisLen += 1  

} else {
if maxLen < thisLen { maxLen = thisLen }
thisLen = 1

}
lastChar = thisChar

}
if maxLen < thisLen { maxLen = thisLen }
return maxLen

}

Download free eBooks at bookboon.com



GO DATA STRUCTURES AND ALGORITHMS Analyzing Algorithms

117

a)	 What does this algorithm do?
b)	In analyzing this algorithm, what would be a good measure of input size?
c)	 What would be a good choice of basic operation?
d)	Does this algorithm behave differently for different inputs of size n?
e)	 What are the best and worst case complexities of this algorithm?

4.	Compute the average case complexity of sequential search under the assumption 
that the likelihood that the key is in the list is p (and hence the likelihood that 
it is not in the list is 1-p), and that if in the list, the key is equally likely to be at 
any location.

11.9	 REVIEW QUESTION ANSWERS

1.	Timing depends on actual programs running on actual machines. The speed of a 
real program depends on the skill of the programmer, the language the program is 
written in, the efficiency of the code generated by the compiler or the efficiency of 
program interpretation, the speed of the hardware, and the ability of the operating 
system to accurately measure the CPU time consumed by the program. All of these 
are confounding factors that make it very difficult to evaluate algorithms by timing 
real programs.

2.	The algorithm analyst must choose a measure that reflects aspects of the input 
that most influence the behavior of the algorithm. Fortunately, this is usually not 
hard to do.

3.	The algorithm analyst must choose one or more operations that are done most often 
during execution of the algorithm. Generally, basic operations will be those used 
repeatedly in inner loops. Often several operations will be done roughly the same 
number of times; in such cases, only one operation need be counted (for reasons 
to be explained in the next chapter about function growth rates).

4.	Algorithms that behave differently depending on the composition of inputs of size 
n can do dramatically different amounts of work, as we saw in the example of 
sequential search. In such cases, a single value is not sufficient to characterize an 
algorithm’s behavior, and so we distinguish best, worst, and average case complexities 
to reflect these differences.

5.	Best case complexity has to do with the behavior of an algorithm for inputs of 
a given size, not with behavior as the size of the input varies. The complexity 
functions we produce to count basic operations are already functions of the size 
of the input. Best, worst, average, and every-case behavior are about differences in 
behavior given input of a certain size.
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12	 FUNCTION GROWTH RATES

12.1	 INTRODUCTION

We have set up an approach for determining the amount of work done by an algorithm 
based on formulating functions expressing counts of basic operations in terms of the size of 
the input to the algorithm. By concentrating on basic operations, our analysis framework 
introduces a certain amount of imprecision. For example, an algorithm whose complexity is 
C(n) = 2n-3 may actually run slower than an algorithm whose complexity is C(n) = 12n+5, 
because uncounted operations in the former may slow its actual execution time. Nevertheless, 
both of these algorithms would surely run much more quickly than an algorithm whose 
complexity is C(n) = n2 as n becomes large; the running times of the first two algorithms 
are much closer to each other than they are to the third algorithm.

In comparing the efficiency of algorithms, we are more interested in big differences that 
manifest themselves as the size of the input becomes large than we are in small differences 
in running times that vary by a constant or a multiple for inputs of all sizes. The theory of 
the asymptotic growth rate of functions, also called the order of growth of functions, provides 
a basis for partitioning algorithms into groups with equivalent efficiency, as we will now see.
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12.2	 DEFINITIONS AND NOTATION

Our goal is to classify functions into groups by growth rates. Our notation describes groups 
of functions using a reference function (which may be any function). The three groups we 
distinguish are the following.

O(f ) (pronounced big-oh of f )—The set of functions that grow no faster than f(n) 
(that is, those that grow more slowly than f(n) or at the same rate as f(n)). For 
example, 8n+5 ∈ O(n), 8n+5 ∈ O(n2), and 6n2+23n-14 ∈ O(4n2-18n+65).

Ω(f ) (pronounced big-omega of f )—The set of functions that grow at least as fast 
as f(n) (that is, those that grow more quickly than f(n) or at the same rate as f(n)). 
For example, 8n+5 ∈ Ω(n), n2 ∈ Ω(8n+5), and 6n2+23n-14 ∈ Ω(4n2-18n+65).

Θ(f ) (pronounced big-theta of f )—The set of functions that grow at the same rate as 
f(n). For example, 8n+5 ∈ Ω(n), n2 ∈ Θ(7n2-987), and 6n2+23n-14 ∈ Θ(4n2-18n+65).

These three groups overlap: the intersection of O(f ) and Ω(f ) is Θ(f ).

Formally, let f(n) and g(n) be functions from the natural numbers to the non-negative real 
numbers.

Definition: The function g is in the set O(f), denoted g ∈ O(f), if there exist some 
positive constant c and non-negative integer n0 such that

g(n) ≤ c ∙ f(n) for all n ≥ n0

Definition: The function g is in the set Ω(f), denoted g ∈ Ω(f), if there exist some 
positive constant c and non-negative integer n0 such that

g(n) ≥ c ∙ f(n) for all n ≥ n0

Definition: The function g is in the set Θ(f), denoted g ∈ Θ(f), if both g ∈ O(f) 
and g ∈ Ω(f).

In other words, g is in O(f) if at some point g(n) is never greater than some multiple of 
f(n); in this sense f  is a sort of upper bound for g. Similarly, g is in g ∈ Ω(f) if at some 
point g(n) is never less than some multiple of f (n); hence f  is a sort of lower bound for g. 
Finally, if g ∈ Θ(f), then no matter how large the argument to these functions grow, their 
values will always be within a constant factor of each other—this is the sense in which they 
grow at the same rate.
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It is important to realize the huge difference between the growth rates of functions in sets 
with different orders of growth. The table below shows the values of functions in sets with 
increasing growth rates. Blank spots in the table indicate absolutely enormous numbers. 
(The function lg n is log2n.)

n lg n n n lg n n2 n3 2n n!

10 3.3 10 33 100 1000 1024 3,628,800

100 6.6 100 660 10,000 1,000,000 1.3 ∙ 1030 9.3 ∙ 10157

1000 10 1000 10,000 1,000,000 109

10,000 13 10,000 130,000 108 1012

100,000 17 100,000 1,700,000 1010 1015

1,000,000 20 1,000,000 2 ∙ 107 1012 1018

Table 1: Values of Functions of Different Orders of Growth

As this table suggests, algorithms whose complexity is characterized by functions in the first 
several columns are quite efficient, and we can expect them to complete execution quickly 
for even quite large inputs. Algorithms whose complexity is characterized by functions in 
the last several columns must do enormous amounts of work even for fairly small inputs, 
and for large inputs, they simply will not be able to finish execution before the end of time, 
even on the fastest possible computers.

12.3	 ESTABLISHING THE ORDER OF GROWTH OF A FUNCTION

When confronted with the question of whether some function g is in O(f), Ω(f), or Θ(f), 
we can use the definitions directly to decide, but there is an easier way embodied in the 
following theorem.

Theorem: (1) g ∈ O(f) iff limn->∞ g(n)/f(n) = c, for c ≥ 0;
(2) g ∈ Ω(f) iff limn->∞ g(n)/f(n) = c, for c > 0, or limn->∞ g(n)/f(n) = ∞; and
(3) g ∈ Θ(f) iff limn->∞ g(n)/f(n) = c, for c > 0.

For example, to show that 3n2+2n-1 is in O(n2), Ω(n2),or Θ(n2),we need only determine 
limn->∞ (3n2+2n-1)/n2:

limn->∞ (3n2+2n-1)/n2 = limn->∞3n2/n2  + limn->∞2n/n2 - limn->∞ 1/n2

= limn->∞ 3 + limn->∞ 2/n - limn->∞ 1/n2 = 3
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Because this limit is a constant greater than 0, we can conclude that 3n2+2n-1 ∈ O(n2) 
and that 3n2+2n-1 ∈ Θ(n2).

A theorem that is very useful in solving limit problems is L’HÔpital’s Rule:

Theorem: If limn->∞  f(n) = limn->∞ g(n) = ∞, and the derivatives f’ and g’ exist, then 
limn->∞ f(n)/g(n) = limn->∞ f’(n)/g’(n).

To illustrate the use of L’HÔpital’s Rule, lets determine the relative orders of groth of n2 
and n lg n. First note that limn->∞ n2   = limn->∞ n lg n = ∞, and that the first derivatives of 
both of these functions exist, and L’HÔpital’s Rule applies.

limn->∞ n2/(n lg n) = limn->∞ n/(lg n)
= limn->∞ 1/((lg e)/n) (using L’HÔpital’s Rule)

= limn->∞ n/(lg e) = ∞

Because this limit is infinite, we know that n2 ∈ Ω(n lg n) but that n2 ∉ Θ(n lg n); in 
other words, we know that n2 grows faster than n lg n.
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12.4	 APPLYING ORDERS OF GROWTH

In our discussion of complexity we determined that for sequential search, W(n) = (n+1)/2, 
B(n) = 1, and A(n) = (3n+ 1)/4. Clearly, these functions are all in O(n); we say that sequential 
search is a linear algorithm because its worst case is in Θ(n). Similarly, we determined that 
for the maximum-finding algorithm, C(n) = n-1. This function is also in Θ(n), so this is 
also a linear algorithm. We will soon see algorithms whose complexity is in sets with higher 
orders of growth.

12.5	 SUMMARY AND CONCLUSION

Our algorithm analysis approach has three steps:

1.	Choose a measure for the size of the input.
2.	Choose a basic operation to count.
3.	Determine whether the algorithm has different complexity for various inputs of 

size n; if so, then derive measures for B(n), W(n), and A(n) as functions of the 
size of the input; if not, then derive a measure for C(n) as a function of the size 
of the input.

We now add a fourth step:

4.	Determine the order of growth of the complexity measures for the algorithm.

Usually this last step is quite simple. In evaluating an algorithm, we are often most interested 
in the order of its worst case complexity or (if there is no worst case) basic complexity 
because this places an upper bound on the behavior of the algorithm: though it may perform 
better, we know it cannot perform worse than this. Sometimes we are also interested in 
average case complexity, though the assumptions under which such analyses are done may 
sometimes not be very plausible.

12.6	 REVIEW QUESTIONS

1.	Why is the order of growth of functions pertinent to algorithm analysis?
2.	 If a function g is in O(f), can f also be in O(g)?
3.	What function is lg n?
4.	Why is L’HÔpital’s Rule important for analyzing algorithms?
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12.7	 EXERCISES

1.	Some algorithms have complexity lg lg n (that is lg (lg n)). Make a table like Table 1 
above showing the rate of growth of lg lg n as n becomes larger.

2.	Show that n3+n-4 ∉ O(2n2-3).
3.	Show that lg 2n ∈ O(n).
4.	Show that n lg n ∈ O(n2).
5.	Show that if a, b ≥ 0 and a ≤ b, then na ∈ O(nb).

12.8	 REVIEW QUESTION ANSWERS

1.	The order of growth of functions is pertinent to algorithm analysis because the 
amount of work done by algorithms whose complexity functions have the same 
order of growth is not very different, while the amount of work done by algorithms 
whose complexity functions have different orders of growth is dramatically different. 
The theory of the order of growth of functions provides a theoretical framework 
for determining significant differences in the amount of work done by algorithms.

2.	 If g and f grow at the same rate, then g ∈ O(f) because g grows no faster than f, 
and f  ∈ O(g) because f grows no faster than g. For any functions f and g with the 
same order of growth, f  ∈ O(g) and g ∈ O(f).

3.	The function lg n is log2n. that is, the logarithm base two of n.
4.	L’HÔpital’s Rule is important for analyzing algorithms because if makes it easier to 

compute the limit of the ratio of two functions of n as n goes to infinity, which is 
the basis for determining their comparative growth rates. For example, it is not clear 
what the value of limn->∞(lg n)2/n is. Using L’HÔpital’s Rule twice to differentiate 
the numerators and denominators, we get

limn->∞(lg n)2/n = limn->∞(2 lg e ∙ lg n)/n = limn->∞(2 (lg e)2)/n = 0.

This shows that (lg n)2 ∈ O(n).
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13	 BASIC SORTING ALGORITHMS

13.1	 INTRODUCTION

Sorting is a fundamental and important data processing task.

Sorting algorithm: An algorithm that rearranges records in lists so that they follow 
some well-defined ordering relation on values of keys in each record.

An internal sorting algorithm works on lists in main memory, while an external sorting 
algorithm works on lists stored in files. Some sorting algorithms work much better as internal 
sorts than external sorts, but some work well in both contexts. A sorting algorithm is stable 
if it preserves the original order of records with equal keys.

Many sorting algorithms have been invented; in this chapter we will consider the simplest 
sorting algorithms. In our discussion in this chapter, all measures of input size are the 
length of the sorted lists (slices in the sample code), and the basic operation counted is 
comparison of list elements (also called keys). Our implementations are in Go, and to keep 
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the algorithms simple, they are all framed as algorithms to sort slices of ints. We could 
generalize the algorithms to sort slices of other types, but this would distract attention 
from the essentials of sorting. Readers interested in seeing how this is done can examine 
the source code for the standard Go sort package.

13.2	 BUBBLE SORT

Bubble sort is one of the oldest sorting algorithms. The idea behind it is to make repeated 
passes through the list from beginning to end, comparing adjacent elements and swapping 
any that are out of order. After the first pass, the largest element will have been moved to 
the end of the list; after the second pass, the second largest will have been moved to the 
penultimate position; and so forth. The idea is that large values “bubble up” to the top of 
the list on each pass.

A Go implementation of bubble sort appears in Figure 1.

func BubbleSort(a []int) {
for j := len(a) - 1; 0 < j; j-- {
for i := 0; i < j; i++ {
if a[i+1] < a[i] {
a[i], a[i+1] = a[i+1], a[i]

}
}

}
}

Figure 1: Bubble Sort

It should be clear that the algorithm does exactly the same key comparisons no matter what 
the contents of the array, so we need only consider its every-case complexity.

On the first pass through the data, every element in the array but the last is compared with 
its successor, so n-1 comparisons are made. On the next pass, one less comparison is made, 
so n-2 comparisons are made. This continues until the last pass, where only one comparison 
is made. The total number of comparisons is thus given by the following summation.

C(n) = ∑i=1 to n-1i = n(n-1)/2

Clearly, n(n-1)/2 ∈ Θ(n2).
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Bubble sort is not very fast. Various suggestions have been made to improve it. For example, 
a Boolean variable can be set to false at the beginning of each pass through the list and 
set to true whenever a swap is made. If the flag is false when the pass is completed, then 
no swaps were done and the array is sorted, so the algorithm can halt. This gives exactly 
the same worst case complexity, but a best case complexity of only n. The average case 
complexity is still in Θ(n2), however, so this is not much of an improvement.

13.3	 SELECTION SORT

The idea behind selection sort is to make repeated passes through the list, each time finding 
the largest (or smallest) value in the unsorted portion of the list, and placing it at the end 
(or beginning) of the unsorted portion, thus shrinking the unsorted portion and growing 
the sorted portion. The algorithm works by repeatedly “selecting” the item that goes at one 
end of the unsorted portion of the list.

A Go implementation of selection sort appears in Figure 2.

func SelectionSort(a []int) {
for j := 0; j < len(a)-1; j++ {
minIndex := j
for i := j + 1; i < len(a); i++ {
if a[i] < a[minIndex] { minIndex = i }

}
a[j], a[minIndex] = a[minIndex], a[j]

}
}

Figure 2: Selection Sort

This algorithm finds the minimum value in the unsorted portion of the list n-1 times and 
puts it where it belongs. Like bubble sort, it does exactly the same thing no matter what 
the contents of the array, so we need only consider its every-case complexity.

On the first pass through the list, selection sort makes n-1 comparison; on the next pass, 
it makes n-2 comparisons; on the third, it makes n-3 comparisons, and so forth. It makes 
n-1 passes altogether, so its complexity is

C(n) = ∑i=1 to n-1i = n(n-1)/2

As noted before, n(n-1)/2 ∈ Θ(n2).
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Although the number of comparisons that selection sort makes is identical to the number 
that bubble sort makes, selection sort usually runs considerable faster. This is because bubble 
sort typically makes many swaps on every pass through the list, while selection sort makes 
only one. Nevertheless, neither of these sorts is particularly fast.

13.4	 INSERTION SORT

Insertion sort works by repeatedly taking an element from the unsorted portion of a list 
and inserting it into the sorted portion of the list until every element has been inserted. 
This algorithm is the one usually used by people when sorting piles of papers.

A Go implementation of insertion sort appears in Figure 3.

func InsertionSort(a []int) {
for j := 1; j < len(a); j++ {
element := a[j]
var i int
for i = j; 0 < i && element < a[i-1]; i-- {
a[i] = a[i-1]

}
a[i] = element

}
}

Figure 3: Insertion Sort

A list with only one element is already sorted, so the elements inserted begin with the second 
element in the array. The inserted element is held in the element variable and values in 
the sorted portion of the array are moved up to make room for the inserted element in the 
same loop that finds the right place to make the insertion. Once that spot is found, the 
loop ends and the inserted element is placed into the sorted portion of the array.

Insertion sort does different things depending on the contents of the list, so we must consider 
its worst, best, and average case behavior. If the list is already sorted, one comparison is 
made for each of n-1 elements as they are “inserted” into their current locations. So the 
best case behavior of insertion sort is

B(n) = n-1
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The worst case occurs when every inserted element must be placed at the beginning of the 
already sorted portion of the list; this happens when the list is in reverse order. In this case, 
the first element inserted requires one comparison, the second two, the third three, and so 
forth, and n-1 elements must be inserted. Hence

W(n) = ∑i=1 to n-1i = n(n-1)/2

To compute the average case complexity, let’s suppose that the inserted element is equally 
likely to end up at any location in the sorted portion of the list, as well as the position it 
initially occupies. When inserting the element with index j, there are j+1 locations where 
the element may be inserted, so the probability of inserting into each location is 1/(j+1). 
Hence the average number of comparison to insert the element with index j is given by 
the following expression.

1/(j+1) + 2/(j+1) + 3/(j+1) + ... + j/(j+1) + j/(j+1)
= 1/(j+1) ∙ ∑i=1 to j i + j/(j+1)
= 1/(j+1) ∙ j(j+1)/2 + j/(j+1)

= j/2 + j/(j+1)
≈ j/2 + 1
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The quantity j/(j+1) is always less than one and it is very close to one for large values of 
j, so we simplify the expression as noted above to produce a close upper bound for the 
count of the average number of comparisons done when inserting the element with index 
j. We will use this simpler expression in our further computations because we know that 
the result will always be a close upper bound on the number of comparisons.

We see that when inserting an element into the sorted portion of the list we have to make 
comparisons with about half the elements in that portion of the list, which makes sense.

Armed with this fact, we can now write down an equation for the approximate average 
case complexity:

A(n) ≈ ∑j=1 to n-1
 (j/2 + 1)

≈ ½ ∑j=1 to n-1 j + ∑j=1 to n-1 1
≈ ½ (n(n-1)/2) + (n-1)

≈ (n2 + 3n - 4)/4
≈ (n+4)(n-1)/4

In the average case, insertion sort makes about half as many comparisons as it does in the 
worst case. Unfortunately, both these functions are in Θ(n2), so insertion sort is not a great 
sort. Nevertheless, insertion sort is quite a bit better than bubble and selection sort on 
average and in the best case, so it is the best of the three Θ(n2) sorting algorithms.

Insertion sort has one more interesting property to recommend it: it sorts nearly sorted lists 
very fast. A k-nearly sorted list is a list all of whose elements are no more than k positions 
from their final locations in the sorted list. Inserting any element into the already sorted 
portion of the list requires at most k comparisons in a k-nearly sorted list. A close upper 
bound on the worst case complexity of insertion sort on a k-nearly sorted list is:

W(n) = ∑i=1 to n-1 k = k ∙ (n-1)

Because k is a constant, W(n) is in Θ(n), that is, insertion sort always sorts a nearly sorted 
list in linear time, which is very fast indeed.

13.5	 SHELL SORT

Shell sort is an interesting variation of insertion sort invented by Donald Shell in 1959. It 
works by insertion sorting the elements in a list that are h positions apart for some h, then 
decreasing h and doing the same thing over again until h = 1.
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A version of Shell sort in Go appears in Figure 4.

func ShellSort(a []int) {
h := 1
for h < len(a)/9 {
h = 3*h + 1

}

for 0 < h {
for j := h; j < len(a); j++ {
element := a[j]
var i int
for i = j; h <= i && element < a[i-h]; i -= h {
a[i] = a[i-h]

}
a[i] = element

}
h /= 3

}
}

Figure 4: Shell Sort

Although Shell sort has received much attention over many years, no one has been able 
to analyze it yet! It has been established that for many sequences of values of h (including 
those used in the code above), Shell sort never does more than n1.5 comparisons in the worst 
case. Empirical studies have shown that it is quite fast on most lists. Hence Shell sort is 
the fastest sorting algorithm we have considered so far.

13.6	 SUMMARY AND CONCLUSION

For small lists of less than a few hundred elements, any of the algorithms we have considered 
in this chapter are adequate. For larger lists, Shell sort is usually the best choice, except in 
a few special cases:

•	 If a list is nearly sorted, use insertion sort;
•	 If a list contains large records that are very expensive to move, use selection sort 

because it does the fewest number of data moves (of course, the fast algorithms we 
study in a later chapter are even better).

Never use bubble sort: it makes as many comparisons as any other sort, and usually moves 
more data than any other sort, so it is generally the slowest of all.
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13.7	 REVIEW QUESTIONS

1.	What is the difference between internal and external sorts?
2.	The complexity of bubble sort and selection sort is exactly the same. Does this 

mean that there is no reason to prefer one over the other?
3.	Does Shell sort have a best case different from its worst case?

13.8	 EXERCISES

1.	Rewrite the bubble sort algorithm to incorporate a check to see whether the array 
is sorted after each pass, and to stop processing when this occurs.

2.	An alternative to bubble sort is the Cocktail Shaker sort, which uses swaps to move 
the largest value to the top of the unsorted portion, then the smallest value to the 
bottom of the unsorted portion, then the largest value to the top of the unsorted 
portion, and so forth, until the array is sorted.

a)	 Write code for the Cocktail Shaker sort.
b)	What is the complexity of the Cocktail Shaker sort?
c)	 Does the Cocktail Shaker sort have anything to recommend it (besides its name)?
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3.	Adjust the selection sort algorithm presented above to sort using the maximum 
rather than the minimum element in the unsorted portion of the array.

4.	Every list of length n is n-nearly sorted. Using the formula for the worst case 
complexity of insertion sort on a k-nearly sorted list with k = n, we get W(n) = 
n(n-1). Why is this result different from W(n) = n(n-1)/2, which we calculated 
elsewhere?

5.	Shell sort is a modified insertion sort, and insertion sort is very fast for nearly 
sorted lists. Do you think Shell sort would sort nearly sorted lists even faster than 
insertion sort? Explain why or why not.

6.	The sorting algorithms presented in this chapter are written for ease of analysis and 
so are only suitable for sorting int slices. Rewrite the sorting algorithms so that 
they can be used for slices of arbitrary types.

7.	A certain data collection program collects data from seven remote stations that 
it contacts over the Internet. Every minute, the program sends a message to the 
remote stations prompting each of them to collect and return a data sample. Each 
sample is time stamped by the remote stations. Because of transmission delays, the 
seven samples do not arrive at the data collection program in time stamp order. 
The data collection program stores the samples in an array in the order in which 
it receives them. Every 24 hours, the program sorts the samples by time stamp and 
stores them in a database. Which sorting algorithm should the program use to sort 
samples before they are stored: bubble, selection, insertion, or Shell sort? Why?

13.9	 REVIEW QUESTION ANSWERS

1.	An internal list processes lists stored in main memory, while an external sorts 
processes lists stored in files.

2.	Although the complexity of bubble sort and selection sort is exactly the same, in 
practice they behave differently. Bubble sort tends to be significantly slower than 
selection sort, especially when list elements are large entities, because bubble sort 
moves elements into place in the list by swapping them one location at a time while 
selection sort merely swaps one element into place on each pass. Bubble sort makes 
Θ(n2) swaps on average, while selection sort Θ(n) swaps in all cases. Had we chosen 
swaps as a basic operation, this difference would have been reflected in our analysis.

3.	Shell sort does different things when the data in the list is different so it has best, 
worst, and average case behaviors that differ from one another. For example, it will 
clearly do the least amount of work when the list is already sorted, as is the case 
for insertion sort.
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14	 RECURRENCES

14.1	 INTRODUCTION

It is relatively easy to set up equations, typically using summations, for counting the basic 
operations performed in a non-recursive algorithm. But this won’t work for recursive 
algorithms in which much computation is done in recursive calls rather than in loops. How 
are basic operations to be counted in recursive algorithms?

A different mathematical techniques must be used; specifically, a recurrence relation must 
be set up to reflect the recursive structure of the algorithm.

Recurrence relation: An equation that expresses the value of a function in terms of 
its value at another point.

For example, consider the recurrence relation F(n) = n ∙ F(n-1), where the domain of F is 
the non-negative integers (all our recurrence relations will have domains that are either the 
non-negative integers or the positive integers). This recurrence relation says that the value 
of F is its value at another point times n. Ultimately, our goal will be to solve recurrence 
relations like this one by removing recursion, but as it stands, it has infinitely many 
solutions. To pin down the solution to a unique function, we need to indicate the value 
of the function at some particular point or points. Such specifications are called initial 
conditions. For example, suppose the initial condition for function F is F(0) = 1. Then we 
have the following values of the function.

F(0) = 1
F(1) = 1 ∙ F(0) = 1
F(2) = 2 ∙ F(1) = 2
F(3) = 3 ∙ F(2) = 6
...

We thus recognize F as the factorial function. A recurrence relation plus one or more initial 
conditions form a recurrence.

Recurrence: a recurrence relation plus one or more initial conditions that together 
recursively define a function.
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14.2	 SETTING UP RECURRENCES

Lets consider a few recursive algorithms to illustrate how to use recurrences to analyze them. 
The Go code in Figure 1 implements a recursive algorithm to reverse a string.

func Reverse(s string) string {
if len(s) <= 1 { return s }
return Reverse(s[1:]) + s[:1]

}

Figure 1: Recursively Reversing a String

If the string parameter s is a single character or the empty string, then it is its own reversal 
and it is returned. Otherwise, the first character of s is concatenated to the end of the 
result of reversing s with its first character removed.

The size of the input to this algorithm is the length n of the string argument. We will count 
string concatenation operations. This algorithm always does the same thing no matter the 
contents of the string, so we need only derive its every-case complexity C(n). If n is 0 or 1, 
that is, if the string parameter s of reverse() is empty or only a single character, then no 
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concatenations are done, so C(0) = C(1) = 0. If n > 1, then the number of concatenations 
is one plus however many are done during the recursive call on the substring, which has 
length n-1, giving us the recurrence relation

C(n) = 1 + C(n-1)

Putting these facts together, we have the following recurrence for this algorithm.

C(n) = 0 for n = 0 or n = 1
C(n) = 1 + C(n-1) for n > 1

Lets consider a slightly more complex example. The Towers of Hanoi puzzle is a famous 
game in which one must transfer a pyramidal tower of disks from one peg to another using 
a third as auxiliary, under the constraint that no disk can be placed on a smaller disk. The 
algorithm in Figure 2 solves this puzzle in the least number of steps.

func (s *HanoiState) MoveTower(src, dst, aux, n int) {
if n == 1 {
s.MoveDisk(src, dst)

} else {
s.MoveTower(src, aux, dst, n-1)
s.MoveDisk(src, dst)
s.MoveTower(aux, dst, src, n-1)
}

}

Figure 2: Towers of Hanoi Algorithm

A HanoiState is a struct that keeps track of the disks on each of the three pegs (not 
shown; we also do not show code for the MoveDisk() method). The last parameter of 
the MoveTower() method is the number of disks to move from the src peg to the 
dst peg. To solve the problem, one creates a HanoiState s with three pegs (A, B, 
C), n disks on peg A, and no disks on pegs B and C, and calls s.MoveTower(A, C, 
B, n).

Our measure of the size of the input is n, the number of disks on the source peg. The 
algorithm always does the same thing for a given value of n, so we compute the every-case 
complexity C(n). When n = 1, only one disk is moved, so C(1) = 1. When n is greater than 
one, then the number of disks moved is the number moved to shift the top n-1 disks to 
the auxiliary peg, plus one move to put the bottom disk on the destination peg, plus the 
number moved to shift n-1 disks from the auxiliary peg to the destination peg. This gives 
the following recurrence.
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C(1) = 1 for n = 1
C(n) = 1 + 2 ∙ C(n-1) for n > 1

Although recurrences are nice, they don’t tell us in a closed form the complexity of our 
algorithms—in other words, the only way to calculate the value of a recurrence for n is to 
start with the initial conditions and work our way up to the value for n using the recurrence 
relation, which can be a lot of work. We would like to come up with solutions to recurrences 
that don’t use recursion so that we can compute them easily.

14.3	 SOLVING RECURRENCES

There are several ways to solve recurrences but we will consider only one called the method 
of backward substitution. This method has the following steps.

1.	Expand the recurrence relation by substituting it into itself several times until a 
pattern emerges.

2.	Characterize the pattern by expressing the recurrence relation in terms of n and 
an arbitrary term i.

3.	Substitute for i an expression that will remove the recursion from the equation.
4.	Manipulate the result to achieve a final closed form for the defined function.

To illustrate this technique, we will solve the recurrences above, starting with the one for 
the string reversal algorithm. Steps one and two for this recurrence appear below.

C(n) = 1 + C(n-1)
= 1 + (1 + C(n-2)) = 2 + C(n-2)
= 2 + (1 + C(n-3)) = 3 + C(n-3)
= ...
= i + C(n-i)

The last expression characterizes the recurrence relation for an arbitrary term i. C(n-i) is 
equal to an initial condition for i = n-1. We can substitute this into the equation as follows.

C(n) = i + C(n-i)
= n-1 + C(n - (n-1))
= n-1 + C(1)
= n-1 + 0
= n-1

This solves the recurrence: the number of concatenations done by the Reverse() function 
on a string of length n is n-1 (which makes sense if you think about it).
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Now lets do the same thing for the recurrence we generated for the Towers of Hanoi 
algorithm:

C(n) = 1 + 2 ∙ C(n-1)
= 1 + 2 ∙ (1 + 2 ∙C(n-2))	 = 1 + 2 + 4 ∙C(n-2)
= 1 + 2 + 4 ∙ (1 + 2 ∙ C(n-3))	= 1 + 2 + 4 + 8 ∙ C(n-3)
= ...
= 1 + 2 + 4 + ... + 2i ∙ C(n-i)

The initial condition for the Towers of Hanoi problem is C(1) = 1, and if we set i to n-1, 
then we can achieve this initial condition and thus remove the recursion:

C(n) = 1 + 2 + 4 + ... + 2i ∙ C(n-i)
= 1 + 2 + 4 + ... + 2n-1 ∙ C(n-(n-1))
= 1 + 2 + 4 + ... + 2n-1 ∙ C(1)
= 2n - 1

Thus the number of moves made to solve the Towers of Hanoi puzzle for n disks is 2n - 1, 
which is obviously in O(2n).
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14.4	 SUMMARY AND CONCLUSION

Recurrences provide the technique we need to analyze recursive algorithms. Together with 
the summations technique we use with non-recursive algorithms, we are now in a position 
to analyze any algorithm we write. Often the analysis is mathematically difficult, so we may 
not always succeed in our analysis efforts. But at least we have techniques that we can use.

14.5	 REVIEW QUESTIONS

1.	Use different initial conditions to show how the recurrence equation F(n) = n ∙ 
F(n-1) has infinitely many solutions.

2.	Consider the recurrence relation F(n) = F(n-1) + F(n-2) for n > 1 with initial 
conditions F(0) = F(1) = 1. What well-known sequence of values is generated by 
this recurrence?

3.	What are the four steps of the method of backward substitution?

14.6	 EXERCISES

1.	Write the values of the following recurrences for n = 0 to 4.
a)	 C(n) = 2 ∙ C(n-1), C(0) = 1
b)	C(n) = 1 + 2 ∙ C(n-1), C(0) = 0
c)	 C(n) = b ∙ C(n-1), C(0) = 1 (b is some constant)
d)	C(n) = n + C(n-1), C(0) = 0

2.	Write the values of the following recurrences for n = 1, 2, 4, and 8.
a)	 C(n) = 2 ∙ C(n/2), C(1) = 1
b)	C(n) = 1 + C(n/2), C(1) = 0
c)	 C(n) = n + 2 ∙ C(n/2), C(1) = 0
d)	C(n) = n + C(n/2), C(1) = 1

3.	Use the method of backward substitution to solve the following recurrences.
a)	 C(n) = 2 ∙ C(n-1), C(0) = 1
b)	C(n) = 1 + 2 ∙ C(n-1), C(0) = 0
c)	 C(n) = b ∙ C(n-1), C(0) = 1 (b is some constant)
d)	C(n) = n + C(n-1), C(0) = 0
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4.	Use the method of backward substitution to solve the following recurrences. Assume 
that n = 2k to solve these equations.

a)	 C(n) = 2 ∙ C(n/2), C(1) = 1
b)	C(n) = 1 + C(n/2), C(1) = 0
c)	 C(n) = n + 2 ∙ C(n/2), C(1) = 0
d)	C(n) = n + C(n/2), C(1) = 1

5.	Write a complete Go program to solve the towers of Hanoi problem as outlined 
in the text. Have the MoveDisk() method write the state of the game after it 
moves a disk, so that when towers are moved the sequence of steps can be traced. 
Number the disks from 1 for the smallest to n for the largest. The HanoiState 
struct will need private fields to keep track of the contents of the towers A, B, and 
C (what would be a good data structures for this task?), and a String() method 
to create a string representation of the three towers. The main program can create 
an instance of HanoiState with four disks and then call MoveTower(Peg.A, 
Peg.C, Peg.B, 4) to move them.

14.7	 REVIEW QUESTION ANSWERS

1.	To see that F(n) = n ∙ F(n-1) has infinitely many solutions, consider the sequence 
of initial conditions F(0) = 0, F(0) = 1, F(0) = 2, and so on. For initial condition 
F(0) = 0, F(n) = 0 for all n. For F(0) = 1, F(n) is the factorial function. For F(0) 
= 2, F(n) is twice the factorial function, and in general for F(0) = k, F(n) = k ∙ n! 
Hence infinitely many functions are generated by choosing different initial conditions.

2.	This recurrence defines the Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, ... .
3.	The four steps of the method of backward substitution are (1) expand the recurrence 

relation several times until a pattern is detected, (2) express the pattern in terms of 
n and some index variable i, (3) Find a value for i that uses initial conditions to 
remove the recursion from the equation, (4) substitute the value for i and simplify 
to obtain a closed form for the recurrence.
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15	 MERGE SORT AND QUICKSORT

15.1	 INTRODUCTION

The sorting algorithms we have looked at so far are not very fast, except for Shell sort and 
Insertion sort on nearly-sorted lists. In this chapter we consider two of the fastest sorting 
algorithms known: merge sort and quicksort.

15.2	 MERGE SORT

Merge sort is a divide and conquer algorithm that solves a large problem by dividing 
it into parts, solving the resulting smaller problems, and then combining these solutions 
into a solution to the original problem. The strategy of merge sort is to sort halves of a 
list (recursively) then merge the results into the final sorted list. Merging is a pretty fast 
operation, and breaking a problem in half repeatedly quickly gets down to lists that are already 
sorted (lists of length one or zero), so this algorithm performs well. A Go implementation 
of merge sort appears in Figure 1 below.
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func MergeSort(a []int) {
auxiliary := make([]int, len(a))
copy(auxiliary, a)
mergeInto(a, auxiliary)

}

func mergeInto(dst []int, src []int) {
if len(dst) < 2 { return }
m := len(dst) / 2
mergeInto(src[:m], dst[:m])
mergeInto(src[m:], dst[m:])
j, k := 0, m
for i := 0; i < len(dst); i++ {
if j < m && k < len(src) {
if src[j] < src[k] {
dst[i], j = src[j], j+1

} else {
dst[i], k = src[k], k+1

}
} else if j < m {
dst[i], j = src[j], j+1

} else {
dst[i], k = src[k], k+1

}
}

}

Figure 1: Merge Sort

Merging requires a place to store the result of merging two lists: duplicating the original 
list provides space for merging. Hence this algorithm duplicates the original list and passes 
the duplicate to mergeInto(). This operation recursively sorts the two halves of the 
auxiliary list and then merges them back into the original list. Note that mergeInto() 
uses parallel segments of the two arrays and merges them back and forth into each other, 
which is tricky, but works. Although it is possible to sort and merge in place, or to merge 
using a list only half the size of the original, the algorithms to do merge sort this way are 
complicated and have a lot of overhead—it is simpler and faster to use an auxiliary list the 
size of the original, even though it requires a lot of extra space.

In analyzing this algorithm, the measure of the size of the input is, of course, the length of 
the list sorted, and the operations counted are key comparisons. Key comparison occurs in 
the merging step: the smallest items in the merged sub-lists are compared, and the smallest 
is moved into the target list. This step is repeated until one of the sub-lists is exhausted, in 
which case the remainder of the other sub-list is copied into the target list.
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Merging does not always take the same amount of effort: it depends on the contents of 
the sub-lists. In the best case, the largest element in one sub-list is always smaller than the 
smallest element in the other (which occurs, for example, when the input list is already 
sorted). If we make this assumption, along with the simplifying assumption that n = 2k, 
then the recurrence relation for the number of comparisons in the best case is

B(n) = n/2 + 2 ∙ B(n/2)
= n/2 + 2 ∙ (n/4 + 2 ∙ B(n/4)) = 2 ∙ n/2 + 4 ∙ B(n/4)
= 2 ∙ n/2 + 4 ∙ (n/8 + 2 ∙ B(n/8) = 3 ∙ n/2 + 8 ∙ B(n/8)
= ...
= i ∙ n/2 + 2i ∙ B(n/2i)

The initial condition for the best case occurs when n is one or zero, in which case no 
comparisons are made. If we let n/2i = 1, then i = k = lg n. Substituting this into the 
equation above, we have

B(n) = lg n ∙ n/2 + n ∙ B(1) = (n lg n)/2

Thus, in the best case, merge sort makes only about (n lg n)/2 key comparisons, which is 
quite fast. It is also obviously in Θ(n lg n).

In the worst case, making the most comparisons occurs when merging two sub-lists such 
that one is exhausted when there is only one element left in the other. In this case, every 
merge operation for a target list of size n requires n-1 comparisons. We thus have the 
following recurrence relation:

W(n) = n-1 + 2 ∙ W(n/2)
= n-1 + 2 ∙ (n/2-1 + 2 ∙ W(n/4)) = 2n - 3 + 4 ∙ W(n/4)
= 2n - 3 + 4 ∙ (n/4-1 + 2 ∙ W(n/8) = 3n - 7 + 8 ∙ W(n/8)
= ...
= i ∙ n - (2i - 1) + 2i ∙ W(n/2i)

The initial conditions are the same as before, so we may again let i = lg n to solve this 
recurrence.

W(n) = i ∙ n - (2i - 1) + 2i ∙ W(n/2i)
= n lg n - (2lg n - 1) + 2lg n ∙ W(1)
= n lg n - (n - 1)
= n lg n - n + 1

The worst case behavior of merge sort is thus also in Θ(n lg n).
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As an average case, lets suppose that each comparison of keys from the two sub-lists is 
equally likely to result in an element from one sub-list being moved into the target list as 
from the other. This is like flipping coins: it is as likely that the element moved from one 
sub-list will win the comparison as an element from the other. And like flipping coins, 
we expect that in the long run, about the same number of elements will be chosen from 
one list as from the other, so that the sub-lists will run out at about the same time. This 
situation is about the same as the worst case behavior, so on average, merge sort will make 
about the same number of comparisons as in the worst case.

Thus in all cases, merge sort runs in Θ(n lg n) time, which means that it is significantly 
faster than the other sorts we have seen so far. Its major drawback is that it uses Θ(n) extra 
memory locations to do its work.

15.3	 QUICKSORT

Quicksort was invented by C. A. R. Hoare in 1960, and it is still the fastest known algorithm 
for sorting random data by comparison of keys.
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Quicksort is a divide and conquer algorithm. It works by selecting a single element in the 
list, called the pivot element, and rearranging the list so that all elements less than or equal 
to the pivot are to its left, and all elements greater than or equal to it are to its right. This 
operation is called partitioning. Once a list is partitioned, the algorithm calls itself recursively 
to sort the sub-lists left and right of the pivot. Eventually, the sub-lists have length one or 
zero, at which point they are sorted, ending the recursion. 

The heart of quicksort is the partitioning algorithm. This algorithm must choose a pivot 
element and then rearrange the list as quickly as possible so that the pivot element is in its 
final position, all values greater than the pivot are to its right, and all values less than it are 
to its left. Although there are many variations of this algorithm, the general approach is to 
choose an arbitrary element as the pivot, scan from the left until a value greater than the 
pivot is found, and from the right until a value less than the pivot is found. These values 
are then swapped, and the scans resume. The pivot element belongs in the position where 
the scans meet. Although it seems very simple, the quicksort partitioning algorithm is quite 
subtle and hard to get right. For this reason, it is generally a good idea to copy it from a 
source that has tested it extensively.

A Go implementation appears in Figure 2.

func Quicksort(a []int) {
if len(a) < 2 { return }
ub := len(a)-1
pivot := a[ub]
i, j := -1, ub
for i < j {
for i++; a[i] < pivot; i++ {}
for j--; 0 < j && a[j] > pivot; j-- {}
a[i], a[j] = a[j], a[i]

}
a[j], a[i], a[ub] = a[i], pivot, a[j]
Quicksort(a[:i])
Quicksort(a[i+1:])

}

Figure 2: Quicksort

We analyze this algorithm using the list size as the measure of the size of the input, and 
using comparisons as the basic operation. Quicksort behaves very differently depending 
on the contents of the list it sorts. In the best case, the pivot always ends up right in the 
middle of the partitioned sub-lists. We assume, for simplicity, that the original list has 2k-1 
elements. The partitioning algorithm compares the pivot value to every other value, so it 
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makes n-1 comparisons on a list of size n. This means that the recurrence relation for the 
number of comparison is

B(n) = n-1 + 2 ∙ B((n-1)/2)

The initial condition is B(n) = 0 for n = 0 or 1 because no comparisons are made on lists 
of size one or empty lists. We may solve this recurrence as follows:

B(n) = n-1 + 2 ∙B((n-1)/2)
= n-1 + 2 ∙ ((n-1)/2 - 1 + 2 ∙ B(((n-1)/2 - 1)/2))
= n-1 + n-3 + 4 ∙ B((n-3)/4)
= n-1 + n-3 + 4 ∙ ((n-3)/4 - 1 + 2 ∙ B(((n-3)/4 - 1)/2))
= n-1 + n-3 + n-7 + 8 ∙ B((n-7)/8)
= ...
= n-1 + n-3 + n-7 + ... + (n-(2i-1) + 2i ∙ B((n-(2i-1))/2i)

If we let (n-(2i-1))/2i  = 1 and solve for i, we get i = k-1. Substituting, we have

B(n) = n-1 + n-3 + n-7 + ... + n-(2k-1-1)
= ∑ j = 1 to k-1 n - (2j - 1)
= ∑ j = 1 to k-1 n+1 - ∑ j = 1 to k-1  2

j

= (k-1) ∙ (n+1) +1 - ∑ j = 0 to k-1  2
j

= k ∙ (n+1) - n - (2k - 1)
= (n+1) lg (n+1) - 2n

Thus the best case complexity of quicksort is in Θ(n lg n).

Quicksort’s worst case behavior occurs when the pivot element always ends up at one end 
of the sub-list, meaning that sub-lists are not divided in half when they are partitioned, but 
instead one sub-list is empty and the other has one less element than the sub-list before 
partitioning. If the first or last value in the list is used as the pivot, this occurs when the 
original list is already in order or in reverse order. In this case the recurrence relation is

W(n) = n-1 + W(n-1)

This recurrence relation is easily solved and turns out to be W(n) = n(n-1)/2, which of 
course we know to be Θ(n2)!

The average case complexity of quicksort involves a recurrence that is somewhat hard to 
solve, so we simply present the solution: A(n) = 2(n+1) ∙ ln 2 ∙ lg n ≈ 1.39 (n+1) lg n. This 
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is not far from quicksort’s best case complexity. So in the best and average cases, quicksort 
is very fast, performing Θ(n lg n) comparisons; but in the worst case, quicksort is very slow, 
performing Θ(n2) comparisons.

Improvements to Quicksort

Quicksort’s worst case behavior is abysmal, and because it occurs for sorted or nearly sorted 
lists, which are often encountered, this is a big problem. Many solutions to this problem 
have been proposed; one of the simplest is called the median-of-three improvement, a version 
of which is shown in Figure 3.

func Qsort(a []int) {
if len(a) < 2 { return }
m, ub := len(a)/2, len(a)-1
if a[m]  < a[0] { a[m], a[0] = a[0], a[m] }
if a[ub] < a[m] { a[ub], a[m] = a[m], a[ub] }
if a[m]  < a[0] { a[m], a[0] = a[0], a[m] }
if len(a) < 4 { return }
pivot := a[m]
a[m], a[ub-1] = a[ub-1], a[m]
i, j := 0, ub-1
for i < j {
for i++; a[i] < pivot; i++ {}
for j--; a[j] > pivot; j-- {}
a[i], a[j] = a[j], a[i]

}
a[j], a[i], a[ub-1] = a[i], pivot, a[j]
Qsort(a[:i])
Qsort(a[i+1:])

}

Figure 3: Quicksort with the Median-of-Three Improvement

The median-of-three improvement consists of using the median of the first, last, and middle 
values in each sub-list as the pivot element. Except in rare cases, this technique produces 
a pivot value that ends up near the middle of the sub-list when it is partitioned, especially 
if the sub-list is sorted or nearly sorted. Once the first, middle, and last elements of a 
sub-list are put in order (and assuming there are more than three elements in the sub-list), 
the median is swapped into the next-to-last location and used as the pivot; otherwise, the 
algorithm is unchanged.
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The median-finding process also allows sentinel values to be placed at the ends of the sub-
list, which speeds up the partitioning algorithm a little bit because array indices do not 
need to be checked.

Sentinel value: a special value placed in a data structure to mark a boundary.

From now on, we will assume that quicksort includes the median-of-three improvement.

Other improvement to quicksort have been proposed, and each speeds it up slightly at the 
expense of making it a bit more complicated. Among the suggested improvement are the 
following:

•	 Use Insertion sort for small sub-lists (ten to fifteen elements). This eliminates a lot 
of recursive calls on small sub-lists and takes advantage of Insertion sort’s linear 
behavior on nearly sorted lists. Generally this is implemented by having quicksort 
stop when it gets down to lists of less than ten or fifteen elements and then Insertion 
sorting the whole list at the end.

•	 Remove recursion and use a stack to keep track of sub-lists yet to be sorted. This 
removes function calling overhead.

•	 Partition smaller sub-lists first, which keeps the stack a little smaller.
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Despite all these improvement, there are still many cases where quicksort does poorly on 
data that has some degree of order, which is characteristic of much real-world data. Recent 
efforts to find sorting algorithms that take advantage of order in the data have produced 
algorithms (usually based on merge sort) that use little extra space and are far faster than 
quicksort on data with some order. Such algorithms are considerably faster than quicksort 
in many real-world cases.

15.4	 SUMMARY AND CONCLUSION

Merge sort is a fast sorting algorithm whose best, worst, and average case complexity are 
all in Θ(n lg n), but unfortunately it uses Θ(n) extra space to do its work. Quicksort has 
best and average case complexity in Θ(n lg n), but unfortunately its worst case complexity 
is in Θ(n2). The median-of-three improvement makes quicksort’s worst case behavior less 
likely, but it is still vulnerable to poor performance on data with some order. Nevertheless, 
quicksort is still the fastest algorithm known for sorting random data by comparison of keys.

15.5	 REVIEW QUESTIONS

1.	Why does merge sort need extra space?
2.	What stops recursion in merge sort and quicksort?
3.	What is a pivot value in quicksort?
4.	What changes have been suggested to improve quicksort?
5.	 If quicksort has such bad worst case behavior, why is it still used?

15.6	 EXERCISES

1.	Explain why the merge sort algorithm first copies the original slice into the auxiliary 
slice.

2.	Write a non-recursive version of merge sort that uses a stack to keep track of sub-
lists that have yet to be sorted. Time your implementation against the unmodified 
merge sort algorithm and summarize the results.

3.	Modify the quicksort algorithm with the median-of-three improvement so that it 
does not sort lists smaller than a dozen elements and calls Insertion sort to finish 
sorting at the end. Time your implementation against the unmodified quicksort 
with the median-of-three improvement and summarize the results.
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4.	Modify the quicksort algorithm with the median-of-three improvement so that 
it uses a stack rather than recursion and works on smaller sub-lists first. Time 
your implementation against the unmodified quicksort with the median-of-three 
improvement and summarize the results.

5.	Write the fastest quicksort you can. Time your implementation against the unmodified 
quicksort and summarize the results.

6.	The algorithms presented above in Go sort int slices. Modify these algorithms so 
that they can sort slices of arbitrary types.

15.7	 REVIEW QUESTION ANSWERS

1.	Merge sort uses extra space because it is awkward and slow to merge lists without 
using extra space.

2.	Recursion in merge sort and quicksort stops when the sub-lists being sorted are 
either empty or of size one—such lists are already sorted, so no work needs to be 
done on them.

3.	A pivot value in quicksort is an element of the list being sorted that is chosen as 
the basis for rearranging (partitioning) the list: all elements less than the pivot are 
placed to the left of it, and all elements greater than the pivot are placed to the 
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right of it. (equal values may be placed either left or right of the pivot, and different 
partitioning algorithms may make different choices).

4.	Among the changes that have been suggested to improve quicksort are (a) using 
the median of the first, last, and middle elements in the list as the pivot value, (b) 
using Insertion sort for small sub-lists, (c) removing recursion in favor of a stack, 
and (d) sorting small sub-lists first to reduce the depth of recursion (or the size 
of the stack).

5.	Quicksort is still used because its performance is so good on average: quicksort 
usually runs in about half the time of other sorting algorithms, especially when it 
has been improved in the ways discussed in the chapter. Its worst case behavior is 
relatively rare if it incorporates the median-of-three improvement.
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16	 TREES, HEAPS, AND HEAPSORT

16.1	 INTRODUCTION

Trees are the basis for several important data types and data structures. There are several 
sorting algorithms based on trees. One of these algorithms is heapsort, which uses a complete 
binary tree represented in an array for fast in-place sorting.

16.2	 BASIC TERMINOLOGY

A tree is a special type of graph.

Graph: A collection of vertices (or nodes) and edges connecting the vertices. An edge 
may be thought of as a pair of vertices. Formally, a graph is an ordered pair <V,E> 
where V is a set of vertices and E is a set of pairs of elements of V.

Simple path: A list of distinct vertices such that successive vertices are connected 
by edges.

Tree: A graph with a distinguished vertex r, called the root, such that there is exactly 
one simple path between each vertex in the tree and r.

We usually draw trees with the root at the top and the vertices and edges descending below 
it. Figure 1 illustrates a tree.

r

a b c

e fd

Figure 1: A Tree

Vertex r is the root. The root has three children: a, b, and c. The root is the parent of these 
vertices. These vertices are also siblings of one another because they have the same parent 
Vertex a has child d and vertex c has children e and f. The ancestors of a vertex are the 
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vertices on the path between it and the root; the descendants of a vertex are all the vertices 
of which it is an ancestor. Thus vertex f has ancestors f, c, and r, and c has descendants 
c, e, and f. A vertex without children is a terminal vertex or a leaf; those with children are 
non-terminal vertices or internal vertices. The tree in Figure 1 has three internal vertices (r, 
a, and c) and four leaf vertices (b, d, e, and f). The graph consisting of a vertex in a tree, 
all its descendants, and the edges connecting them, is a sub-tree of the tree.

A graph consisting of several trees is a forest. The level of a vertex in a tree is the number 
of edges in the path from the vertex to the root. In Figure 1, vertex r is at level zero, vertices 
a, b, and c are at level one, and vertices d, e, and f are at level two. The height of a tree is 
the maximum level in the tree. The height of the tree in Figure 1 is two.

An ordered tree is one in which the order of the children of each vertex is specified. Ordered 
trees are not drawn in any special way—some other mechanism must be used to specify 
whether a tree is ordered.
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16.3	 BINARY TREES

Binary trees are especially important for making data structures.

Binary tree: An ordered tree whose vertices have at most two children. The children 
are distinguished as the left child and right child. The sub-tree whose root is the left 
(right) child of a vertex is the left (right) sub-tree of that vertex.

A complete binary tree is one whose every level is full except possibly the last, and only 
the right-most leaves at the bottom level are missing. Figure 2 illustrates these notions.

a

b

d

e f

gc h

i

j k

m nl

Figure 2: Binary Trees

The trees in Figure 2 are binary trees. In the tree on the left, vertex a has a left child, vertex 
b has a right child, and vertex c has no children. This tree is not complete. The middle tree 
is not complete because although every level but the last is full, the missing leaves at the 
bottom level are not right-most. The right tree is complete.

Trees have several interesting and important properties, the following among them.

•	 A tree with n vertices has n-1 edges.
•	 A complete binary tree with n internal vertices has either n or n+1 leaves.
•	 The height of a complete binary tree with n vertices is lg n.

16.4	 HEAPS

A vertex in a binary tree has the heap-order property if the value stored at the vertex is greater 
than or equal to the values stored at its descendants.

Heap: A complete binary tree whose every vertex has the heap-order property.

An arbitrary complete binary tree can be made into a heap as follows:
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•	 Every leaf already has the heap-order property, so the sub-trees whose roots are 
leaves are heaps.

•	 Starting with the right-most internal vertex v at the next-to-last level, and working 
left across levels and upwards in the tree, do the following: if vertex v does not have 
the heap-order property, swap its value with the largest of its children, then do the 
same with the modified vertex, until the sub-tree rooted at v is a heap.

It is fairly efficient to make complete binary trees into heaps because each sub-tree is made 
into a heap by swapping its root downwards in the tree as far as necessary. The height of 
a complete binary tree is lg n, so this operation cannot take very long.

Heaps can be implemented in a variety of ways, but the fact that they are complete binary 
trees makes it possible to store them very efficiently in contiguous memory locations. 

Consider the numbers assigned to the vertices of the complete binary tree in Figure 3. Note 
that numbers are assigned left to right across levels, and from top to bottom of the tree.

0

87

3 4 6

21

5

9
Figure 3: Numbering Vertices for Contiguous Storage

This numbering scheme can be used to identify each vertex in a complete binary tree: vertex 
zero is the root, vertex one is the left child of the root, vertex two is the right child of the 
root, and so forth. Note in particular that

•	 The left child of vertex k is vertex 2k+1.
•	 The right child of vertex k is vertex 2k+2.
•	 The parent vertex k is vertex (k-1)/2.
•	 If there are n vertices in the tree, the last one with a child is vertex n/2 - 1.
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If we let these vertex numbers be array indices, then each array location is associated with 
a vertex in the tree, and we can store the values at the vertices of the tree in the array: the 
value of vertex k is stored in array location k. The correspondence between array indices 
and vertex locations thus makes it possible to represent complete binary trees in arrays. The 
fact that the binary tree is complete means that every array location stores the value at a 
vertex, so no space is unused in the array.

16.5	 HEAPSORT

We now have all the pieces we need to for an efficient and interesting sorting algorithm 
based on heaps. Suppose we have an array to be sorted. We can consider it to be a complete 
binary tree stored in an array as explained above. Then we can

•	 Make the tree into a heap as explained above.
•	 The largest value in a heap is at the root, which is always at array location zero. 

We can swap this value with the value at the end of the array and pretend the 
array is one element shorter. Then we have a complete binary tree that is almost a 
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heap—we just need to sift the root value down the tree as far as necessary to make 
it one. Once we do, the tree will once again be a heap.

•	 We can then repeat this process again and again until the entire array is sorted.

This sorting algorithm, called heapsort, is shown in the Go code in Figure 4 below.

func Heapsort(a []int) {
if len(a) < 2 { return }
maxIndex := len(a)-1
for i := (maxIndex-1)/2; 0 <= i; i-- {
siftDown(a, i, maxIndex)

}
for {
a[0], a[maxIndex] = a[maxIndex], a[0]
maxIndex--
if maxIndex <= 0 { break }
siftDown(a, 0, maxIndex)

}
}

func siftDown(a []int, i, maxIndex int) {
tmp := a[i]
for j := 2*i+1; j <= maxIndex; j = 2*i+1 {
if j < maxIndex && a[j] < a[j+1] { j++ }
if a[j] <= tmp { break }
a[i], i = a[j], j

}
a[i] = tmp

}

Figure 4: Heapsort

A complex analysis that we will not reproduce here shows that the number of comparisons 
done by heapsort in both the best, worst, and average cases are all in Θ(n lg n). Thus heapsort 
joins Shell sort, merge sort, and quicksort in our repertoire of fast sorting algorithms. 
Empirical studies have shown that while heapsort is not as fast as quicksort, it is not much 
slower than Shell sort and merge sort, with the advantage that it does not use any extra 
space like merge sort, and it does not have bad worst case complexity like quicksort.

Download free eBooks at bookboon.com



GO DATA STRUCTURES AND ALGORITHMS Trees, Heaps, and Heapsort

157157

16.6	 SUMMARY AND CONCLUSION

A tree is a special sort of graph that is important in computing. One application of trees is 
for sorting: an array can be treated as a complete binary tree and then transformed into a 
heap. The heap can then be manipulated to sort the array in place in Θ(n lg n) time. This 
algorithm is called heapsort and it is a good algorithm to use when space is at a premium 
and respectable worst case complexity is required.

16.7	 REVIEW QUESTIONS

1.	 In Figure 1, what are the descendants of r? What are the ancestors of r?
2.	How can you tell from a diagram whether a tree is ordered?
3.	 Is every binary tree all of whose levels are full a complete binary tree? Does every 

complete binary tree have every level full?
4.	Where is the largest value in a heap?
5.	Using the heap data structure numbering scheme, which vertices are the left and 

right children of vertex 27? Which vertex is the parent of vertex 27?
6.	What is the worst case behavior of heapsort?
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16.8	 EXERCISES

1.	Represent the three trees in Figure 2 as sets of ordered pairs according to the 
definition of a graph.

2.	Could the graph in Figure 1 still be a tree if b was its root? If so, redraw the tree 
in the usual way (that is, with the root at the top) to make clear the relationships 
between the vertices.

3.	Draw a complete binary tree with 12 vertices, placing arbitrary values at the 
vertices. Use the algorithm discussed in the chapter to transform the tree into a 
heap, redrawing the tree at each step.

4.	Suppose that we change the definition of the heap-order property to say that the 
value stored at a vertex is less than or equal to the values stored at its descendants. 
If we use the heapsort algorithm on trees that are heaps according to this definition, 
what will be the result?

5.	 In the heapsort algorithm in Figure 4, the siftDown() operation is applied to 
vertices starting at maxIndex-1. Why does the algorithm not start at maxIndex?

6.	Draw a complete binary tree with 12 vertex, placing arbitrary values at the vertices. 
Use the heapsort algorithm to sort the tree, redrawing the tree at each step, and 
placing removed values into a list representing the sorted array as they are removed 
from the tree. 

7.	Write a program to sort arrays of various sizes using heapsort, merge sort, and 
quicksort. Time your implementations and summarize the results.

8.	 Introspective sort is a quicksort-based algorithm recently devised by David Musser. 
introspective sort works like quicksort except that it keeps track of the depth of 
recursion (or of the stack), and when recursion gets too deep (about 2 ∙ lg n recursive 
calls or stack elements), it switches to heapsort to sort sub-lists. This algorithm 
does Θ(n lg n) comparisons even in the worst case, sorts in place, and usually 
runs almost as fast as quicksort on average. Write an introspective sort function, 
time your implementation against standard quicksort, and summarize the results.

16.9	 REVIEW QUESTION ANSWERS

1.	 In Figure 1 the descendants of r are all the vertices in the tree. Vertex r has no 
ancestor except itself.

2.	You can’t tell from a diagram whether a tree is ordered; there must be some other 
notation to indicate that this is the case.

3.	Every tree whose every level is full is a complete binary tree because it has no missing 
leaves on its bottom level, and hence it is not the case that there is a missing leaf 
on the bottom level that is not right-most. Not every complete binary tree has all 
its levels full, however.
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4.	The largest value in a heap is always at the root.
5.	Using the heap data structure numbering scheme, the left child of vertex 27 is 

vertex (2*27)+1= 55, the right child of vertex 27 is vertex (2*27)+2 = 56, and the 
parent of vertex 27 is vertex (27-1)/2 = 13.

6.	The worst, best, and average case behavior of heapsort is in Θ(n lg n).
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17	 BINARY TREES

17.1	 INTRODUCTION

As mentioned in the last chapter, binary trees are ordered trees whose vertices have at most 
two children, a left child and a right child. Although other kinds of ordered trees arise in 
computing, binary trees are especially common and have been very well studied. In this 
chapter we discuss the binary tree abstract data type and binary trees as an implementation 
mechanism.

17.2	 THE BINARY TREE ADT

Binary trees hold values of some type, so the ADT is binary tree of T, where T is the type 
of the elements in the tree. The carrier set of this type is the set of all binary trees whose 
vertices hold a value of type T. The carrier set thus includes the empty tree, trees with only 
a root with a value of type T, trees with a root and a left child, trees with a root and a right 
child, and so forth. Operations in the implicit-receiver method set include the following.
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size()—Return the number of vertices in the tree.

height()—Return the height of the tree.

empty()—Return true just in case the tree is the empty tree.

contains(v)—Return true just in case the value v is present in the tree.

rootValue()—Return the value of type T stored at the root of the tree. Its precondition 
is that the tree is not the empty tree.

leftSubtree()—Return the tree whose root is the left child of the root of the tree. Its 
precondition is that the tree is not the empty tree.

rightSubtree()—Return the tree whose root is the right child of the root of the tree. 
Its precondition is that the tree is not the empty tree.

Suppose we have the following tree constructors.

newEmptyTree()—Create and return a new empty tree.

newTree(v, t1, t2)—Create and return a new tree with v at its root, left child t1 and 
right child t2.

For example, consider the binary tree in Figure 1.

a

b c

d

Figure 1: A Binary Tree

This tree can be constructed using the expression below.

			   newTree(a,
				    newTree(b,
					     newEmptyTree(),
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					     newTree(d,
						      newEmptyTree(),
						      newEmptyTree())),
				    newTree(c,
					     newEmptyTree(),
					     newEmptyTree()))

To extract a value from the tree, such as the bottom-most vertex d, we could use the 
following expression, where t is the tree in Figure 1.

t.leftSubtree().rightSubtree().rootValue()

17.3	 THE BINARY TREE TYPE

We could treat binary trees as a kind of collection, adding it to our container hierarchy, 
but we won’t do this for two reasons:
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•	 In practice, binary trees are used to implement other containers, not as containers 
in their own right. Usually clients are interested in using basic Container 
operations, not in the intricacies of building and traversing trees. Adding binary 
trees to the container hierarchy would complicate the hierarchy with a container 
that not many clients would use.

•	 Although binary trees have a contiguous implementation (discussed below), it is 
not useful except for heaps. Providing such an implementation in line with our 
practice of always providing both contiguous and linked implementations of all 
containers would create an entity without much use.

We will make a BinaryTree struct type whose role will be to provide an implementation 
mechanism for other collections. Thus the BinaryTree type is not part of the container 
hierarchy, though it includes several standard Container operations. It also includes 
operations for creating and traversing trees in various ways, as well as several kinds of 
iterators. The public methods in the BinaryTree struct type are pictured in Figure 2.

Note that there is no NewTree() operation and no NewEmptyTree() operation in 
the BinaryTree type even though these operations are in the ADT. A new binary tree 
is created simply by declaring a variable of this type.

To visit or enumerate the vertices of a binary tree is to traverse or iterate over them one at 
a time, processing the values held in each vertex. This requires that the vertices be traversed 
in some order. There are three fundamental orders for traversing a binary tree. All are most 
naturally described in recursive terms.

Empty() : Boolean

Size() : Integer

Clear()

Height() : Integer

RootValue() : T, Error		 { not Empty() }

LeftSub-tree() : BinaryTree, Error	{ not Empty() }

RightSub-tree() : BinaryTree, Error	{ not Empty() }

Contains(element : T) : Boolean

VisitPreorder(f : function(v : T))

VisitInorder(f : function(v : T))

VisitPostorder(f : function(v : T))

NewPreorderIterator() : Iterator

NewInorderIterator() : Iterator

NewPostorderIterator() : Iterator

BinaryTree

T

Figure 2: The BinaryTree Type
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Preorder: When the vertices of a binary tree are visited in preorder, the root vertex 
of the tree is visited first, then the left sub-tree (if any) is visited in preorder, then 
the right sub-tree (if any) is visited in preorder.

Inorder: When the vertices of a binary tree are visited inorder, the left sub-tree 
(if any) is visited inorder, then the root vertex is visited, then the right sub-tree is 
visited inorder.

Postorder: When the vertices of a binary tree are visited in postorder, the left sub-
tree is visited in postorder, then the right sub-tree is visited in postorder, and then 
the root vertex is visited.

To illustrate these traversals, consider the binary tree in Figure 3 below. An inorder traversal 
of the tree in Figure 3 visits the vertices in the order m, b, p, k, t, d, a, g, c, f, h. A preorder 
traversal visits the vertices in the order d, b, m, k, p, t, c, a, g, f, h. A postorder traversal 
visits the vertices in the order m, p, t, k, b, g, a, h, f, c, d.

d

b c

m k fa

gp t h

Figure 3: A Binary Tree

Recall from our discussion of iteration in Chapter 9 that this can be done with internal 
iteration (control is in the collection) or external iteration (control is in an iterator). 
The BinaryTree interface has methods for creating external iterators and for internal 
iteration. Internal iteration is done by packaging the processing that a client wants to do 
in a function and then passing the function to one of the visit methods in the interface. 
For example, suppose print(v : T) prints the value v. If t is a binary tree holding 
values of type T, then the call t.VisitInorder(print) prints the values in the tree 
inorder, the call t.VisitPreorder(print) prints them in preorder, and the call 
t.VisitPostorder(print) prints them in postorder.
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17.4	 CONTIGUOUS IMPLEMENTATION OF BINARY TREES

We have already considered how to implement binary trees using an array when we learned 
about heapsort. The contiguous implementation is excellent for complete or even full binary 
trees because it wastes no space on pointers and it provides a quick and easy way to navigate 
in the tree. Unfortunately, in most applications binary trees are far from complete, so many 
array locations are never used, which wastes a lot of space. Even if our binary trees were 
always complete, there is still the problem of having to predict the size of the tree ahead 
of time to allocate an array big enough to hold all the tree vertices. The array could be 
reallocated if the tree becomes too large, but this is an expensive operation.

This is why it is not particularly useful to have a contiguous implementation of binary 
trees. The type we will create to implement the BinaryTree class will use a linked data 
structure to represent binary trees, and this type will be the basis for other collection types 
that use binary trees to hold collection data.
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17.5	 LINKED IMPLEMENTATION OF BINARY TREES

A linked implementation of binary trees resembles implementations of other ADTs using 
linked structures. Binary tree nodes require three fields: one for the data held at the node 
and two for pointers to the nodes that are the roots of the left and right sub-trees. In 
addition, it is useful to have an object acting as a host for the graph formed by the linked 
nodes. This host object has a pointer to the tree’s root node and other fields as needed. For 
example, a count field might be useful to keep track of the number of nodes in the tree.

Figure 4 shows how this works for a small example. There is a single instance of the host 
structure with a count field and a root field. The pointer in the root field points to 
the root node of the tree. The fields in the nodes are called value (for the data at the 
node), left, and right (for the pointers to the sub-trees). The pointer fields in these 
structures are nil when the trees to which they refer are empty.

Trees are inherently recursive structures so it is natural to write many BinaryTree methods 
recursively using helper methods with binaryTreeNode receivers. For example, the 
height of a binary tree that has one or less vertices is zero, and otherwise it is one plus the 
maximum of the heights of its two sub-trees. Thus we may write a Height() method that 
calls root.height(), where the height() method is part of the binaryTreeNode 
method set, and root is the root node of a BinaryTree. This function returns zero 
if its receiver node is nil or has empty sub-trees, and otherwise it returns one plus the 
maximum of the results of recursive calls on the left and right sub-trees of its receiver node. 
Many other BinaryTree methods, and particularly the internal iterator methods, can 
be implemented easily using recursion.

6

count root

f

left right

value

hm

rw

a

Figure 4: Linked Representation of a Binary Tree
Download free eBooks at bookboon.com



GO DATA STRUCTURES AND ALGORITHMS Binary Trees

167167

Implementing external iterators is more challenging, however. The problem is that external 
iterators cannot be written recursively because they have to be able to stop every time a 
new node is visited to deliver the value at the node to the client. There are two ways to 
solve this problem:

•	 Write a recursive operation to copy node values into a queue in the correct order 
and then extract items from the data structure one at a time as the client requests 
them.

•	 Don’t use recursion to implement iterators: use a stack instead.

The second alternative, though a little harder, is better because it uses much less space.

17.6	 SUMMARY AND CONCLUSION

The binary tree ADT describes basic operations for building and examining binary trees 
whose vertices hold values of type T. A BinaryTree type has several methods not in 
the ADT, in particular, internal iterator methods that apply a function to every value in 
the tree in some order, and external iterator factory methods.
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Contiguous implementations of the binary tree ADT are possible and useful in some special 
circumstances, such as in heapsort, but the main technique for implementing the binary tree 
ADT uses a linked representation. Recursion is a very useful tool for implementing most 
BinaryTree operations but it cannot be used as easily for implementing external iterators. 
A BinaryTree realization with a linked structure will be used as an implementation 
mechanism for containers to come.

17.7	 REVIEW QUESTIONS

1.	Where does the BinaryTree type fit in the container hierarchy?
2.	Why does the BinaryTree type not include a NewTree() method?
3.	Why is the contiguous implementation of binary trees not very useful?
4.	Why is recursion important in writing BinaryTree methods?

17.8	 EXERCISES

1.	Write the values of the vertices in the following tree in the order they are visited 
when the tree is traversed inorder, in preorder, and in postorder.

g

m c

a w

f

e

t

q

b

p h

2.	Write Go code for a BinaryTree struct and a binaryTreeNode struct.
3.	Write the Size(), Empty(), and Clear() methods and add them to the 
BinaryTree method set (in other words, declare them with a receiver of type 
*BinaryTree).

4.	Write the RootValue(), LeftSub-tree(), and RightSub-tree() 
methods and add them to the BinaryTree method set.
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5.	Write the Height() and Contains() methods and add them to the BinaryTree 
method set. Note that you will have to write recursive helper functions that take 
binary tree nodes as parameters. Is it better to make these functions stand-alone 
functions or to add them to the binaryTreeNode method set?

6.	Write the VisitPreorder(), VisitInorder() and VisitPostOrder() 
methods and add them to the BinaryTree method set.

7.	 Implement a preorder external iterator for the BinaryTree type using a stack. 
The stack will hold nodes not yet visited, and the top node on the stack will always 
be the next node visited.

17.9	 REVIEW QUESTION ANSWERS

1.	We have decided not to include the BinaryTree type in the container hierarchy 
because it is usually not used as a container in its own right, but rather as an 
implementation mechanism for other containers.

2.	The BinaryTree type does not include a NewTree() method because the zero 
value for a BinaryTree struct represents an empty tree: its root field will be 
nil and its count field will be 0. Hence there is not need for such an operation.

3.	 The contiguous implementation of binary trees is not very useful because it only uses 
space efficiently if the binary tree is at least full, and ideally complete. In practice, 
this is rarely the case so the linked implementation uses space more efficiently.

4.	Recursion is important in writing BinaryTree methods because binary trees are 
defined recursively and many of the properties and characteristics of binary trees 
are too. Hence, methods to process binary trees or determine their properties and 
characteristics are easily written recursively by modelling them on these recursive 
definitions
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18	� BINARY SEARCH AND 
BINARY SEARCH TREES

18.1	 INTRODUCTION

Binary search is a much faster alternative to sequential search for sorted lists. Binary search 
is closely related to binary search trees, which are a special kind of binary tree. We will look 
at these two topics in this chapter, studying the complexity of binary search, and eventually 
arriving at a specification for a BinarySearchTree type.

18.2	 BINARY SEARCH

When people search for something in an ordered list (like a dictionary or a phone book), 
they do not start at the first element and march through the list one element at a time. 
They jump into the middle of the list, see where they are relative to what they are looking 
for, and then jump either forward or backward and look again, continuing in this way until 
they find what they are looking for, or determine that it is not in the list.

Binary search takes the same tack in searching for a key in a sorted list: the key is compared 
with the middle element in the list. If it is the key, the search is done. If the key is less 
than the middle element, then the process is repeated for the first half of the list. If the 
key is greater than the middle element, then the process is repeated for the second half of 
the list. Eventually, either the key is found in the list, or the list is reduced to nothing (the 
empty list), at which point we know that the key is not present in the list.

This approach naturally lends itself to a recursive algorithm, which we show in Go below.

func BinarySearchRecursive(a []int, key int) (int, bool) {
if len(a) == 0 { return -1, false }
m := len(a)/2
switch {
case key == a[m]: return m, true
case key < a[m] : return BinarySearchRecursive(a[:m],key)
case key > a[m] : return BinarySearchRecursive(a[m+1:],key)
}
panic("Unreachable code has been reached")

}

Figure 1: Recursive Binary Search
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Search algorithms traditionally return the index of the key in the list or -1 if the key is not 
found; in Go we can return two values, so we return a Boolean to indicate whether the 
key is found, and the key’s index if it is found. To adhere to tradition, we return -1 as the 
index when the key is not found. Note also that although the algorithm has the important 
precondition that the slice is sorted, checking this would take far too much time, so it is 
not checked. Finally, execution should never reach the last line of the function, so this is 
a spot for an unreachable code assertion expressed by the panic.

Recursion stops when the input slice is empty. Otherwise, the element at index m in the 
middle of the slice is checked. If it is the key, the search is done and index m is returned; 
otherwise, a recursive call is made to search the portion of the slice before or after m 
depending on whether the key is less than or greater than a[m].

Although binary search is naturally recursive, it is also tail recursive. Recall that a tail 
recursive algorithm is one in which at most one recursive call is the last action in each 
activation of the algorithm, and that tail recursive algorithms can always be converted to 
non-recursive algorithms using only a loop and no stack. This is always more efficient and 
often simpler as well. In the case of binary search, the non-recursive algorithm is about 
equally complicated, as the Go code in Figure 2 below shows.
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func BinarySearch(a []int, key int) (int, bool) {
for lb, ub := 0, len(a)-1; lb <= ub; {
m := (lb+ub)/2
switch {
case key == a[m]: return m, true
case key < a[m] : ub = m - 1
case key > a[m] : lb = m + 1
}

}
return -1, false

}

Figure 2: Non-Recursive Binary Search

To analyze binary search, we will consider its behavior on lists of size n and count the number 
of comparisons between list elements and the search key. Traditionally, the determination of 
whether the key is equal to, less than, or greater than a list element is counted as a single 
comparison even though it requires two comparisons in most programming languages.

Binary search does not do the same thing on every input of size n. In the best case, it 
finds the key in the middle of the slice, doing only a single comparison. In the worst case, 
the key is not in the slice or is found when the slice being searched has only one element. 
We can easily generate a recurrence relation and initial conditions to find the worst case 
complexity of binary search, but we will instead use a binary search tree to figure this out.

Suppose that we construct a binary tree from a sorted list as follows: the root of the tree is 
the element in the middle of the list; the left child of the root is the element in the middle 
of the first half of the list; the right child of the root is the element in the middle of the 
second half of the list, and so on. In other words, the vertices of the binary tree are set 
according to the order in which the values would be encountered during a binary search 
of the list. To illustrate, consider the binary tree in Figure 3 made from the list <a, b, c, d, 
e, f, g, h, i, j, k, l, m> in the way just described.
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Figure 3: A Binary Tree Made from a List

A tree built this way has the following interesting properties:

•	 All levels but possibly the last are full, so its height is always lg n.
•	 For every vertex, every element in its left sub-tree (if any) is less than or equal to 

the element at the vertex, and every element in its right sub-tree (if any) is greater 
than or equal to the element at the vertex.

•	 If we traverse the tree inorder, we visit the vertices in the order of the original list, 
that is, in sorted order.

The first property tells us the worst case performance of binary search because a binary search 
will visit each vertex from the root to a leaf in the worst case. The number of vertices on 
these paths is the height of the tree plus one, so W(n) = lg n + 1. We can also calculate 
the average case by considering each vertex equally likely to be the target of a binary 
search, and figuring out the average length of the path to each vertex. This turns out to be 
approximately lg n for both successful and unsuccessful searches. Hence, on average and in 
the worst case, binary search makes Θ(lg n) comparisons, which is very good.

18.3	 BINARY SEARCH TREES

The essential characteristic of the binary tree we looked at above is the relationship between 
the value at a vertex and the values in its left and right sub-trees. This is the basis for the 
definition of binary search trees.

Binary search tree: A binary tree whose every vertex is such that the value at each 
vertex is greater than the values in its left sub-tree, and less than the values in its 
right sub-tree.
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Binary search trees are an important kind of graph that retains the property that traversing 
them in order visits the values in the vertices in sorted order. However, a binary search tree 
may not be balanced, so its height may be greater than lg n. In fact, a binary search tree 
whose every vertex but one has only a single child will have height n-1.

Binary search trees are interesting because it is fast to insert elements into them, fast to delete 
elements from them, and fast to search them (provided they are not too tall and skinny). 
This contrasts with most collections, which are usually fast for one of these operations but 
slow for the other two. For example, elements can be inserted into an (unsorted) linked 
list quickly, but searching or deleting an element from a linked list is slow, while a (sorted) 
contiguous list can be searched quickly with binary search, but inserting into and deleting 
elements from it to keep it sorted is slow.

The binary search tree of T ADT has as its carrier set the set of all binary search trees whose 
vertices hold a value of type T. It is thus a subset of the carrier set of the binary tree of T 
ADT. The implicit-receiver method set of this ADT includes the implicit-receiver method 
set of the binary tree ADT. All binary search trees except the empty tree are formed from 
others using the add() and remove() operations described below.
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add(v)—Put v into a new vertex added as a leaf to the tree, preserving the binary 
search tree property. If v is already in the tree, then do nothing.

remove(v)—Remove the vertex holding v from the tree while preserving it as a binary 
search tree. If v is not present in the tree, do nothing.

This ADT is the basis for a BinarySearchTree interface.

18.4	 THE BINARY SEARCH TREE TYPE

Every function in the BinarySearchTree type is also in the BinaryTree type, 
so the BinarySearchTree type is a sub-type of BinaryTree. Binary search trees 
require that values be compared when they are added or removed, so operations specific 
to BinarySearchTrees must be given values that can be compared to one another. 
This requirement is captured using a Comparer interface that contains operations for 
determining whether values are equal to or less than others. The Comparer interface and 
BinarySearchTree type appear in Figure 4 below.

The Add() operation puts an element into the tree by making a new child node at the 
bottom of the tree in a way that preserves the binary search tree’s integrity. If the element 
is already in the tree (as determined by the Equal() operation), then the element passed 
in replaces the value currently stored in the tree. In this way a new record can replace an 
old one with the same key (more about this in later chapters). The Remove() operation 
deletes an element from the tree while preserving the tree’s integrity. If the element does 
not exist, then no action is taken. The Get() operation returns the value stored in the 
tree that is equal to the element sent in as determined by the Equal() operation. It is 
intended to fetch a record from the tree with the same key as a dummy record supplied as 
an argument, thus providing a retrieval mechanism (again, we will discuss this more later).
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Add(element : Comparer)

Remove(element : Comparer)

Get(element : Comparer : T, Boolean

BinarySearchTree

Comparer

BinaryTree

«interface» 

Comparer

Equal(value : T) : Boolean

IsLess(value : T) : Boolean

T

T

Figure 4: The BinarySearchTree Type

All these operations search the tree by starting at its root and moving down the tree, 
mimicking a binary search. The Add() operation takes a path down the tree to the spot 
where the new element would be found during a search and adds a new leaf node to hold 
it. In the best case, the sub-tree of the root node where the new element belongs is empty, 
so only one comparison is required. In the worst case, the new element belongs at the end 
of a string of n nodes, requiring n comparisons. Empirical studies have shown that when 
binary search trees are built by a series of insertions and deletions of random data, they 
are more or less bushy and their height is not too much more than lg n, so on average the 
number of comparisons done by the Add() operation is in Θ(lg n).

The Remove() operation must first find the element to be deleted and then manipulate 
the tree to remove the node holding the element in such a way that the tree is preserved 
as a binary search tree. This operation makes Θ(1) comparisons in the best case, Θ(lg n) 
comparisons in the average case, and Θ(n) comparisons in the worst case. Finally, the Get() 
operation is essentially a search, so it also takes Θ(1) time in the best case, Θ(n) time in 
the worst case, and Θ(lg n) time on average.

Note also that even though it is not necessary, the BinaryTree Contains() operation 
should be overridden for binary search trees to take advantage of the structure of the tree. 
This results in faster execution than the exhaustive search conducted by the version of 
Contains() implemented for binary trees.

Binary search trees provide very efficient operations except in the worst case. There are 
several kinds of balanced binary search trees whose insertion and deletion operations keep 
the tree bushy rather than long and skinny, thus eliminating the poor worst case behavior. 
We will study several kinds of balanced binary search trees in the next two chapters.
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18.5	 SUMMARY AND CONCLUSION

Binary search is a very efficient algorithm for searching ordered lists, with average and worst 
case complexity in Θ(lg n). We can represent the workings of binary search in a binary tree 
to produce a full binary search tree. Binary search trees have several interesting properties 
and provide a kind of collection that features excellent performance for addition, deletion, 
and search, except in the worst case. We can also traverse binary search trees inorder to 
access the elements of the collection in sorted order.

18.6	 REVIEW QUESTIONS

1.	Why can recursion be removed from the binary search algorithm without using a 
stack?

2.	 If a binary tree is made from an ordered list of 100 names by placing them into 
the tree to mimic a binary search as discussed in the text, what is the height of 
the resulting tree?

3.	Approximately how many comparisons would be made by binary search when 
searching a slice of one million elements in the best, worst, and average cases?

4.	What advantage does a binary search tree have over collections like ArrayList 
and LinkedList?

18.7	 EXERCISES

1.	A precondition of binary search is that the searched array is sorted. What is the 
complexity of an algorithm to check this precondition?

2.	Write and solve a recurrence relation for the worst case complexity of the binary 
search algorithm.

3.	 Interpolation search is like binary search except that it uses information about the 
distribution of keys in the slice to choose a spot to check for the key. For example, 
suppose that numeric keys are uniformly distributed in a slice and interpolation 
search is looking for the value k. If the first element in the slice is a and the last 
is z, then interpolation search would check for k at location (k-a)/(z-a) * (slice.
length-1). Write a non-recursive linear interpolation search using this strategy.

4.	Construct a binary search tree based on the order in which elements of a list 
containing the numbers one to 15 would be examined during a binary search, as 
discussed in the text.

5.	Draw all the binary search tree that can be formed using the values a, b, and c. 
How many are full at every level but the last?
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6.	The BinarySearchTree Add() operation does not attempt to keep the 
tree balanced. It simply work its way down the tree until it either finds the node 
containing the added element or finds where such a node should be added at the 
bottom of the tree. Draw the binary search tree that results when values are added 
to the tree in this manner in the order m, w, a, c, b, z, g, f, r, p, v.

7.	Write Go code to implement the Comparer interface and the BinarySearchTree 
type.

8.	Rewrite the Contains() method from BinaryTree to take advantage of the 
structure of a binary search tree and add it as a method to BinarySearchTree.

9.	Write the BinarySearchTree Add() method with *BinarySearchTree 
as its receiver using the strategy explained in Exercise 6 above.

10.	Write the BinarySearchTree Get() method with *BinarySearchTree 
as its receiver.

11.	The BinarySearchTree Remove() method must preserve the essential 
property of a binary search tree, namely that the value at each node is greater than 
or equal to the values at the nodes in its left sub-tree, and less than or equal to the 
values at the nodes in its right sub-tree. In deleting a value, three cases can arise:

•	 The node holding the deleted value has no children; in this case, the node 
can simply be removed.

•	 The node holding the deleted value has one child; in this case, the node can 
be removed and the child of the removed node can be made the child of the 
removed node’s parent.

•	 The node holding the deleted value has two children; this case is more 
difficult. First, find the node holding the successor of the deleted value. This 
node will always be the left-most descendent of the right child of the node 
holding the deleted value. Note that this node has no left child, so it has at 
most one child. Copy the successor value over the deleted value in the node 
where it resides, and remove the redundant node holding the successor value 
using the rules for removing a node with no children or only one child above.

a)	 Use this algorithm to remove the values v, a, and c from the tree constructed 
in exercise 6 above.

b)	Write the Remove() method with *BinarySearchTree as its receiver 
using the algorithm above.
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18.8	 REVIEW QUESTION ANSWERS

1.	Recursion can be removed from the binary search algorithm without using a stack 
because the binary search algorithm is tail recursive, that is, it only calls itself once 
as its last action on each activation.

2.	 If a binary tree is made from an ordered list of 100 names by placing them into the 
tree to mimic a binary search as discussed in the text, the height of the resulting 
tree is lg 100 = 6.

3.	When searching a list of one million elements in the best case, the very first element 
checked would be the key, so only one comparison would be made. In the worst 
case, lg 1000000+1 = 20 comparison would be made. In the average case, roughly 
lg 1000000 = 19 comparison would be made.

4.	An ArrayList and a LinkedList allow rapid insertion but slow deletion and 
search, or rapid search (in the case of an ordered ArrayList) but slow insertion 
and deletion. A binary search tree allows rapid insertion, deletion, and search.
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19	 AVL TREES

19.1	 INTRODUCTION

Binary search trees are an excellent data structure because insertion, deletion, and search 
can all be done very quickly, provided the tree does not become too long and skinny. We 
would have an even better data structure if we could ensure that our binary search trees 
could never get long, thus avoiding worst case behaviors. Trees with this characteristic are 
called balanced.

Balanced tree: a tree such that for every node, the height of its sub-trees differ by 
at most some constant value.

There are several sorts of balanced trees. We will consider one kind of balanced binary tree 
(AVL trees) in this chapter and one kind of balanced non-binary tree (2-3 trees) in the next.

19.2	 BALANCE IN AVL TREES

AVL trees were introduced in 1962 by G. M. Adelson-Velsky and E. M. Landis (hence 
their name). They are defined as follows.

The balance factor of a node is the height of the left sub-tree minus the height of 
the right sub-tree, with the height of the empty tree defined as -1.

An AVL tree is a binary search tree in which the balance factor at each node is -1, 
0, or 1. The empty tree is an AVL tree.

AVL trees all of whose nodes have balance factors of 0 are perfectly balanced. But some 
somewhat lop-sided trees are still AVL trees, and some trees that may appear balanced are 
not AVL trees. Consider the examples in Figure 1 (balance factors are shown above the 
nodes). Both are binary search trees, but only the tree on the left is an AVL tree. (In the 
tree on the right, the node holding 10 has a balance factor of -2.)
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Figure 1: Two Binary Search Trees; One AVL Tree

Despite the look of some AVL trees, the constraint on balance factors ensures every AVL 
tree with at least two nodes has height less than 1.5 lg n, where n is the number of nodes 
in the tree.

19.3	 INSERTION IN AVL TREES

Inserting a value into an AVL tree begins the way that binary search tree insertion does: 
starting at the root, the key is compared to node values to follow a path down the tree until 
arriving at the bottom, where the inserted value is placed in a new leaf node. The new leaf 
node will make a path to the root longer, altering at least one node’s balance factor, and 
perhaps all nodes’ balance factors on the path back to the root. If all balance factors are still 
within constraints, then balance factors are adjusted and insertion is complete. However, 
some nodes’ balance factors may become 2 or -2. In this case, the tree must be rebalanced 
by rearranging some of its nodes. It turns out that this rearrangement, made at the node 
with an illegal balance factor closest to the inserted node, results in a rebalanced tree with 
the same height as before.

Trees are rearranged by applying one of four rotations. The rotations applied for a balance 
factor of 2 are depicted in Figure 2. The rows show the three possibilities when an insertion 
results in some node having a balance factor of 2. The sub-tree where the insertion took 
place, denoted ti, has a double baseline; balance factors are shown above nodes; and heights 
of sub-trees are shown beside them.

In the first row, the left sub-tree of the node with balance factor 2 has balance factor 1, 
which can only occur if the insertion was made in its left sub-tree. In this case an R rotation 
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is used to rebalance the tree. Note that the balance factors in the sub-trees ti, t1, and t2 are 
not changed, nor are the balance factors above the root node (because after the rotation, the 
height of the sub-tree is what it was before the insertion). Thus these changes are restricted 
to a small portion of the tree and can be made relatively easily.

The second and third rows show the cases when the left child of the root has a balance 
factor of -1. Then the insertion must have been made in the right sub-tree of the left child 
of the root, though it might have been made in this sub-tree’s left sub-tree (row 2) or its 
right sub-tree (row 3). In both cases an LR rotation is used to restore balance. Note again 
that the balance factors in sub-trees ti, t1, t2, and t3 are unaffected by the change, as are 
the balance factors above the root (again because the sub-tree’s height is returned to what 
is was before the insertion). So again these changes occur in a small region of the tree and 
can be made quite easily.

When a node has a balance factor of -2, the other two rotations, L and RL, are used. These 
rotations are mirror images of the R and LR rotations.

Insertion requires modification of balance factors on the path from the new leaf to the root, 
and possibly a rotation to rebalance the tree. The number of operations needed for this is 
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proportional to the height of the tree, which as mentioned above less than 1.5 lg n, where 
n is the number of nodes in the tree. On the other hand, insertion always takes place at 
the bottom of the tree, and it turns out that the shortest path in an AVL tree always has 
length proportional to lg n. Hence the every case complexity of insertion is in Θ(lg n).
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Figure 2: AVL Tree 2 Rotations
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19.4	 DELETION IN AVL TREES

Deletion in AVL trees resembles deletion in ordinary binary search trees: a search is made 
from the root down the tree to locate the node holding the deleted value, the target node. 
If this node has at most one child, then it can be deleted and its child, if any, attached 
to its parent in its place. If the target node has two children, then its successor node can 
be found by descending one node to the right then all the way down the tree to the left. 
This successor node as only a right child, so it can be deleted and its value copied over 
the value in the target node, thus removing the deleted value and preserving the tree as a 
binary search tree.

In an AVL tree, after a node is removed, the tree may become unbalanced. As with insertion, 
the path back to the root must be retraced, adjusting balance factors and perhaps rearranging 
the tree to rebalance it.

Rebalancing is done using the same four rotations as for insertion. During insertion, if a 
node has a balance factor of 2 (or -2), then its left (or right) child must have a balance 
factor of 1 or -1, and this determines which rotation to use. During deletion, the child of 
a node with a balance factor of 2 (or -2) may have a left (or right) child with a balance 
factor of 0. In such cases an R (or L) rotation is used to rebalance the tree, but otherwise 
deciding which rotation to use is the same as for insertion.

Figure 3 shows several operations on an AVL tree illustrating insertions and deletions that 
force rebalancing. The first insertion makes the node holding c have a balance factor of 
2 and a left node with a balance factor of 1, calling for an R rotation. Notice that after 
this rotation  the subtree is perfectly balanced. After inserting k the node holding i has 
a balance factor of -2 and its right child has a balance factor of 1. This calls for an RL 
rotation, which again brings the subtree into perfect balance. Deleting e causes the node 
holding the successor of e (namely f) to be removed, and the successor to be copied into 
the node holding e. This makes the node now holding f have a balance factor of 2 with a 
left child whose balance factor is 0. This means an R rotation should be applied. Afterwards, 
the subtree is not perfectly balanced, but all balance factors are again between -1 and 1.

This example was designed to show how various operations cause rotations to occur, but 
very often operations do not cause any rotations. For examples, deleting any node but a in 
the last tree in Figure 3 would not cause the tree to need to be rebalanced. 
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19.5	 THE EFFICIENCY OF AVL OPERATIONS

During insertion, at most one rebalancing operation is needed along the path to the root. 
In deletion, a rebalancing operation may be needed for many nodes on the path from the 
deleted node to the root. Nevertheless, all node balance factor adjustments and rotations 
are made only on nodes in the path from the bottom of the tree where a node is removed 
to the root, which contains fewer than 1.5 lg n nodes, as noted before. As with insertion, 
all deletions occur at a leaf, and the shortest path from the root is proportional to lg n, 
so at least Θ(lg n) nodes must be processed. Hence the every case complexity of deletion 
is in Θ(lg n).

AVL trees are binary search trees, and searching them works exactly as it does in ordinary 
binary search trees. The best case complexity of this operation is Θ(1) (when the desired 
value is at the root). The worst case complexity of searching an ordinary binary search tree 
is n because the tree may have height n. But AVL trees have height bounded by 1.5 lg 
n, so the worst case complexity of searching an AVL tree is in Θ(lg n). It turns out that 
the average case complexity for searching an AVL tree is also in Θ(lg n). We thus see that 
insertion, deletion, and searching in AVL trees all take O(lg n) time, so AVL trees are in 
ideal data structure for applications where all three of these operations must be efficient.
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Figure 3: Insertion, Deletion, and Rotations
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19.6	 THE AVL TREE TYPE

An AVL tree is a kind of binary search tree, so the AVLTree type is a sub-type of 
BinarySearchTree. AVL tree nodes need an extra field for monitoring node balance 
factors. This field could be the balance factor itself, but it is simpler to add a height 
field to each BinarySearchTree node and calculate each node’s balance factor from its 
children’s height fields when it is needed. Unfortunately, making a new avlNode struct 
by embedding a binaryTreeNode inside it causes Go type checking problems. The easiest 
way to implement AVL trees in Go is to include a height field in binaryTreeNode 
struct, even though this field is unused by plain binary trees and binary search trees. 
However, because AVL trees stay balanced and are more efficient than plain binary search 
trees, our containers will use them rather than binary search trees, so this extra field is not 
wasted space.

An AVLTree struct can simply embed a BinarySearchTree struct, and then 
AVLTree pointers can be receivers to override the BinarySearchTree Add() 
and Remove() methods for AVLTrees. Similarly, the Height() method (inherited 
through BinarySearchTree from BinaryTree) should also be overridden to take 
advantage of the fact that each node maintains its height. This changes this method from 
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an Θ(n) to an Θ(1) time method. There is no need to override the BinarySearchTree 
Contains() or Get() methods.

Both the Add() and Remove() methods must make adjustments to nodes along the 
path from the bottom of the tree to its root. This path can be maintained in a stack, but 
it is easier to implement them using recursion.

19.7	 SUMMARY AND CONCLUSION

AVL trees are balanced binary search trees guaranteeing that insertion, deletion, and search 
all take O(lg n) time. Each node of an AVL tree has a balance factor, which is the difference 
between the heights of its sub-trees. The absolute value of the balance factor at each node 
of an AVL tree never exceeds one, meaning that the difference in height between any two 
sub-trees of a node is never more than one. This entails that the height of an AVL tree 
with more than two nodes is less than 1.5 lg n, where n is the number of nodes in the tree.

Insertion, deletion, and searching work as they do in binary search trees, except that after 
a node is added or removed the tree may need to be rebalanced. Rebalancing occurs at 
nodes along the path from the inserted or deleted node to the root, and is done by local 
transformations called rotations. There are four rotations applied based on the balance factors 
of the child nodes of the node where the imbalance occurs.

An AVLTree struct type that embeds the BinarySearchTree struct and then overrides 
just three methods from the BinarySearchTree and BinaryTree types implements 
AVL trees.

19.8	 REVIEW QUESTIONS

1.	What would an AVL tree look like if all its nodes have a balance factor of 0?
2.	Approximately how many comparisons would be made in the worst case when 

searching an AVL tree holding one million values?
3.	What advantage does an AVL tree have over collections like ArrayList and 
LinkedList?
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19.9	 EXERCISES

1.	Draw all the AVL trees with one, two, three, and four nodes.
2.	Draw an AVL tree of height four with as few nodes as possible. How many nodes 

did you need? Is it true that four is less than 1.5 lg n, where n is the number of 
nodes in your tree?

3.	What is the maximum number of nodes in an AVL tree of height four? What is 
the maximum number of nodes in an AVL tree of height h?

4.	Using the diagram in Figure 2 as a guide, draw diagrams illustrating the L and 
RL rotations.

5.	Make concrete example trees illustrating the application of the four AVL tree 
rotations. Your four examples should show the trees before and after the rotations, 
with all node balance factors included.

6.	Draw a series of AVL trees illustrating the result of adding the following numbers 
in order to the empty tree: 3, 2, 1, 10, 11, 7, 5, 8, 12, 9.

7.	Starting with the tree below, draw a series of AVL trees illustrating the result of 
removing the following numbers in order: 2, 15, 3, 10, 18, 16, 20, 5.

5

10

83

6 20

18

16

15

2

12

8.	Write Go code for the AVLTree struct. Modify the binaryTreeNode struct 
to include a height field.

9.	Override the Height() method from BinaryTree with a *AVLTree receiver. 
To make this work you will have to write a method with a *binaryTreeNode 
receiver to maintain the height field in each node, and modify any binary tree 
node factory methods you may have.

10.	Write rotation methods with *binaryTreeNode receivers, along with methods 
to get the balance factor at a node, and rebalance a node.

11.	Override the BinarySearchTree add() method for the AVLTree type. 
You may want to write a recursive helper function with a *binaryTreeNode 
receiver to do the real work.

12.	Override the BinarySearchTree remove() method for the AVLTree type. 
Again, you may want to write a recursive helper function with a *binaryTreeNode 
receiver to do the real work. Recursion is especially helpful for this method.
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19.10	 REVIEW QUESTION ANSWERS

1.	An AVL tree whose every node has balance factor 0 must be such that every node 
has zero or two children. This is the definition of a full binary tree. A full binary 
tree has every level completely full and is perfectly balanced.

2.	An AVL tree holding one million elements has height less than 1.5 lg 1000000 ≈ 
29.9. Hence fewer than 30 comparisons would be made in searching this AVL tree.

3.	An ArrayList and a LinkedList allow rapid insertion (Θ(1)) but slow 
deletion and search (O(n)), or rapid search (in the case of an ordered ArrayList, 
O(lg n)) but slow insertion and deletion (O(n)). An AVL tree allows rapid insertion, 
deletion, and search (all 

4.	O(lg n)) even in the worst case.
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20	 2-3 TREES

20.1	 INTRODUCTION

AVL trees use a rotation technique to maintain balance in binary search trees. Another 
approach is to maintain perfect balance in search trees by relaxing the constraint on the 
number of children (and keys) that a tree node can have. In general, a tree node might be 
allowed to have zero or two to m children; this produces a data structures called a B-tree. 
We will focus in this chapter on the case when m = 3, producing trees called 2-3 trees.

Because 2-3 trees are perfectly balanced, modifying them is fast, and because they maintain 
the search tree property among the values at their nodes, searching them is also fast.

20.2	 PROPERTIES OF 2-3 TREES

2-3 trees were invented in 1970 by John Hopcroft. They are defined as follows.

A tree is perfectly balanced if all its leaves are on the same level; that is, the path 
from the root to any leaf is always the height of the tree.

2-3 tree: a perfectly balanced tree whose every node is either a 2-node with one value 
v and zero or two children, such that every value in its left sub-tree is less than v 
and every value in its right sub-tree is greater than v, or a 3-node with two values 
v1 and v2 and zero or three children such that every value in its left-most sub-tree 
is less than v1, every value in its middle sub-tree is greater than v1 and less than v2, 
and every value in its right-most sub-tree is greater than v2.

Figure 1 shows an example of a 2-3 tree.

45, 55

60, 6715, 20

36

24 4742

22

232118 29, 32 43 534610, 12 56 7037, 40 64

Figure 1: A 2-3 Tree
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Note that 2-nodes and 3-nodes can appear as leaves or internal nodes, and that the ordering 
relationships among the values at the nodes in the tree allow us to search quickly down the 
tree to find a value or to establish that it is absent from the tree.

The shortest 2-3 tree holding the most values would be one that has only 3-nodes. In a tree 
with only 3-nodes, there is one node at the root, three 3-nodes at level one, nine 3-nodes 
at level two, and in general 3h 3-nodes at level h. There are two values stored in each node. 
Hence the number of values stored in the entire tree is

2 ∙ ∑ h
i=0

 3i = 2 ∙ (3h+1-1)/2 = 3h+1-1.

On the other hand, the tallest tree holding the fewest values would have only 2-nodes. A 
tree with only 2-nodes has one 2-node at the root, two 2-nodes at level one, four 2-nodes 
at level two, and in general, 2h 2-nodes at level h. There is one value stored in each node, 
so the number of values stored in the entire tree is

∑ h
i=0

 2i = 2h+1-1.
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Hence we have the following relationship between the n values in a 2-3 tree and its height h.

2h+1-1 ≤ n and n ≤ 3h+1-1
2h+1 ≤ n + 1 and n + 1 ≤ 3h+1

h + 1 ≤ log2 (n+1) and log3 (n+1) ≤ h + 1
log3 (n+1) ≤ h + 1 ≤ log2 (n+1)
log3 (n+1) - 1 ≤ h ≤ log2 (n+1) - 1

In other words, the height of a tree with n values must be (roughly) between log3 n and 
log2 n, which means the height grows no faster than lg n. This implies that the height of a 
2-3 tree is in Θ(lg n). Therefore any operation that takes time proportional to the height 
of a 2-3 tree with n values is in Θ(lg n).

Lets consider search in a 2-3 tree. At each node, at most two values must be compared to 
the search value, and the search either halts successfully or continues in one of the sub-trees 
of the node. This continues until either the search value is found or the bottom of the tree 
is reached. The number of comparisons is thus at most 2 ∙ (h+1) which we know from the 
argument above is in O(lg n).

We will soon see that insertion and deletion in 2-3 trees are also done in time proportional 
to the height of the tree, and are thus also in Θ(lg n).

20.3	 INSERTION IN 2-3 TREES

Inserting a value into a 2-3 tree begins the way that binary search tree and AVL tree 
insertion does: starting at the root, the key is compared to node values to follow a path 
down the tree until arriving at the bottom, where the inserted value is placed in a leaf 
node. If the leaf node is a 2-node, then the leaf becomes a 3-node and the operation is 
complete. However, if the node is 3-node, then inserting a value into it makes it into a 
4-node, which of course is not allowed in a 2-3 tree. In this case, the 4-node (which has 
two values and four empty sub-trees), is split into three 2-nodes: the middle value of the 
4-node becomes a new 2-node whose left sub-tree is a 2-node holding the left-most value in 
the 4-node, and whose right sub-tree is 2-node holding the right-most value in the 4-node. 
This transformation is shown below in Figure 2.

a, b, c
a c

b

Figure 2: Splitting a Leaf 4-Node
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After this transformation, the problem is that the leaf level of the tree now contains a 
sub-tree of height one, so the tree is unbalanced. Balance is restored by incorporating the 
root of this sub-tree into the level above. If the parent node of the newly created 2-node 
is a 2-node, then the new 2-node is added to its parent 2-node, making the parent into 
a 3-node and balancing the tree. However, if the parent of the newly created 2-node is a 
3-node, then folding the new 2-node into its parent creates a 4-node, and the problem 
we had before recurs. We can solve it the same way: make the 4-node into a 2-node with 
two children, then rebalance. Figure 3 shows how to split a 4-node when it has sub-trees.

a, b, c

t1 t2 t3 t4

a c

b

t1 t2 t3 t4

Figure 3: Splitting a 4-Node With Children
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This technique of propagating split 4-nodes up the tree continues as far as necessary. If it 
reaches the root, then the new 2-node created from splitting a 4-node becomes the new root 
of the entire tree. This is the only way that the height of a 2-3 tree can increase and it is 
the key to keeping it balanced: the tree increases its height only at its root. If the tree were 
to grow at the bottom, it would be very difficult to keep it perfectly balanced, but because 
it only grows at the root it stays perfectly balanced without any further manipulations.

Figure 4 shows an example to illustrate this process at its most transformative: a value 
inserted at a leaf causes 4-nodes to split all the way up the tree to its root, increasing the 
height of the tree.

Insertion requires a search down the tree to find the leaf where the inserted value is placed; 
as noted above, this requires Θ(lg n) operations. If splits of 4-nodes are necessary, these 
must occur along the path from the leaf where the insertion takes place back to the root, 
a path with at most h+1 nodes that must be split. Each split requires at most some fixed 
number of operations, hence this transformation requires O(lg n) operations as well. The 
time complexity for insertion is thus in Θ(lg n).
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Figure 4: Inserting At a Leaf and Propagating 4-Node Splits Upwards
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20.4	 DELETION IN 2-3 TREES

Deletion in 2-3 trees resembles deletion in ordinary binary search trees and AVL trees: a 
search is made from the root down the tree to locate the node holding the deleted value, 
the target node. If this node is not a leaf, then the node with the deleted value’s successor 
is found, the successor value is copied into the target node over the deleted value, and the 
duplicate successor is removed from the leaf. Thus values are always removed from leaves.

Akin to other search trees, the successor of a value in a 2-3 tree is be found by descending 
one node into the right sub-tree of the value (either the middle or the right-most sub-tree, 
depending on whether the value is the left-most or right-most), then all the way down the 
sub-tree to the left. This successor node must be a leaf with the successor as its left-most value.

When a value is removed from a leaf, then if the node was a 3-node, it becomes a 2-node 
and the deletion is complete. If the leaf-node was a 2-node, then deleting its value makes 
it into a 1-node, which we define to be a node with no values and possibly one sub-tree 
(which we may suppose is the left-most sub-tree). Of course there can be no 1-nodes in a 
2-3 tree, so this problem must be fixed. The process of handling 1-nodes is the same for 
internal nodes as for leaves, so we consider it as a general problem.
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If a node has a child that is a 1-node, then it is handled by the first of the following cases 
that obtains.

•	 If the 1-node has a sibling that is a 3-node, then the 1-node borrows a value and 
a sub-tree from its 3-node sibling, with needed alterations in the parent value(s) 
as well. This case is illustrated in Figure 5 below. This figure only shows the case 
where there is one adjacent sibling and it is is 3-node. Similar transformations are 
made when there are two siblings and the 3-node is not adjacent.

c

t1 t2 t3 t4

a, b

b

t1 t2 t3 t4

a c

Figure 5: Borrowing from a Sibling to Transform a 1-Node

•	 If the 1-node’s parent is a 3-node, then the 1-node borrows a value and a sub-tree 
from its parent, as illustrated in Figure 6. Again, other cases with the 1-node in a 
different location are similar.

c

t1 t2 t3 t4

a, b

b

t1 t2 t3 t4

a c

Figure 6: Borrowing from a Parent to Transform a 1-Node

•	 If a 1-node has a 2-node parent and a 2-node sibling, then it combines with its 
sibling, borrowing the value from its parent. This makes its parent into a 1-node 
with a single 3-node child. The new 1-node must be handled by its parent. This 
case is shown in Figure 7. Again, the 1-node could be on the other side.
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t1 t2 t3

a

b

t1 t2 t3

a, b

Figure 7: Combining Children to Propagate a 1-Node Upwards

•	 Finally, if changes propagate to the root and it becomes a 1-node, then the new 
root of the tree becomes the child of the 1-node. In other words, the tree becomes 
shorter. As with insertion, the tree only shrinks at its root, guaranteeing that it 
remains completely balanced during deletions.

Figure 8 illustrates a few deletions and how a 2-3 tree is transformed when 1-nodes appear. 
This diagram shows two transformations. In the first, a 1-node (the leaf where the deletion 
occurs) has a 2-node sibling and 2-node parent, so it must borrow from its parent and 

Download free eBooks at bookboon.com Click on the ad to read more
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

https://inspiredbusinessmedia.co.uk/conferences/cmo-inspired-oct-2018/


GO DATA STRUCTURES AND ALGORITHMS 2-3 Trees

200

combine with its sibling to make a 3-node with a 1-node parent. This 1-node parent has 
a 3-node sibling, so it can borrow from its sibling.

In a deletion, a search must progress from the root to the bottom of the tree, which takes 
Θ(lg n) time. If the tree must be transformed to deal with 1-nodes, this occurs in a constant 
number of operations for each of at most h nodes (where h is the height of the tree) back 
along the path to the root. Hence these modifications take O(lg n) time. We thus see that 
deletion in 2-3 trees, like search and insertion, is done in Θ(lg n) time.
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Figure 8: Transformation Resulting from a Deletion
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20.5	 THE TWO-THREE TREE TYPE

A 2-3 tree is not a kind of binary tree, so the a TwoThreeTree struct should not embed 
the BinaryTree, BinarySearchTree, or AVLTree structs. However, because 2-3 
trees are search trees, the TwoThreeTree type has almost the same operations as the 
BinarySearchTree or AVLTree types. Figure 9 shows the public methods in the 
TwoThreeTree type.

One difference between the TwoThreeTree type and the BinaryTree-descended search 
tree type is that the former lacks methods and iterators for traversing the tree in preorder 
or post order. Although these traversal orders are defined for 2-3 trees and we could add 
methods to perform them, they are somewhat less useful than they are for binary trees, 
so we have left them out. Both the Visit() method and the Iterator returned by 
NewIterator() should traverse the TwoThreeTree in order.

Empty() : Boolean

Size() : Integer

Clear()

Height() : Integer

Get(element : Comparer) : T, Boolean

Contains(element : Comparer) : Boolean

Add(element : Comparer)

Remove(element : Comparer)

Visit(f : function(v : T))

NewIterator() : Iterator

TwoThreeTree
Comparer

Equal(value : T) : Boolean

IsLess(value : T) : Boolean

«interface» 

Comparer

T

Figure 9: The TwoThreeTree Type

20.6	 SUMMARY AND CONCLUSION

Two-three trees are perfectly balanced search trees guaranteeing that insertion, deletion, and 
search take O(lg n) time. Each node of a 2-3 tree has either one value and two sub-trees 
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(a 2-node), or two values and three sub-trees (a 3-node). In either case, a value in a node 
is greater than any value in its left sub-tree and less than any value in its right sub-tree, 
which is what makes 2-3 trees search trees. All 2-3 trees are perfectly balanced, meaning 
that the length of any path from a leaf to the root is the height of the tree.

Insertion, deletion, and searching work much as they do in binary search trees, except that 
2-3 trees grow and shrink only at their root, ensuring that they remain perfectly balanced.

The TwoThreeTree struct does not embed BinaryTree, BinarySearchTree, or 
AVLTree structs because 2-3 trees are not binary trees. Nevertheless, the methods in the 
TwoThreeTree type are similar to those in the BinarySearchTree and AVLTree 
types because a TwoThreeTree is also a search tree.

20.7	 REVIEW QUESTIONS

1.	Can a 2-3 tree have a root that is a 2-node?
2.	Approximately how many comparisons would be made in the worst case when 

searching a 2-3 tree holding one million values? How many comparisons would 
be made in the best case, assuming that the value searched for is not in the tree?

3.	What advantage does a 2-3 tree have over a plain binary search tree?
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20.8	 EXERCISES

1.	Draw examples of the shortest and tallest possible 2-3 trees with eight values.
2.	Draw a schematic (a tree with dots instead of actual values) of a 2-3 tree of height 

three with as few values as possible. How many values are in this tree? Draw a 
schematic of a 2-3 tree of height three with as many values as possible. How many 
values are in this tree?

3.	Using the diagram in Figure 5 as a guide, draw a diagram illustrating how to deal 
with a 1-node that is the first child of a 3-node parent whose second child is a 
2-node and whose third child is a 3-node.

4.	Using the diagram is Figure 6 as a guide, draw a diagram illustrating how to deal 
with a 1-node that is the middle child of a 3-node parent whose other two children 
ar 2-nodes.

5.	Draw a series of 2-3 trees illustrating the result of adding the following numbers 
in order to the empty tree: 3, 2, 1, 10, 11, 7, 5, 8, 12, 9.

6.	Starting with the tree below, draw a series of AVL trees illustrating the result of 
removing the following numbers in order: 2, 15, 3, 10, 18, 16, 22, 5, 20, 25, 30.

5, 10

18

25

15 32202, 3 6, 8

7.	Write Go code for the TwoThreeTree struct type. Write a twoThreeNode 
struct type as well.

8.	Write the Empty(), Clear(), Size(), and Height() methods with a 
*TwoThreeTree receiver. You will probably also want to write recursive size() 
and height() methods with a *twoThreeNode receiver.

9.	Write the Add() method with a *TwoThreeTree receiver. You may want to 
write a recursive helper method with a *twoThreeNode receiver (along with 
other helper methods) to do the real work.

10.	Write the Contains() and Get() methods with a *TwoThreeTree receiver. 
You may want to write recursive helper methods with a *twoThreeNode receiver.

11.	Write the Remove() method with a *TwoThreeTree receiver.
12.	Write the Visit() and NewIterator() methods with a *TwoThreeTree 

receiver. This should complete the implementation of the TwoThreeTree type.
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20.9	 REVIEW QUESTION ANSWERS

1.	The root of a 2-3 tree can be either a 2-node or a 3-node. In fact it is always 
the case that the first two values added to an empty 2-3 tree will first produce a 
2-node, then a 3-node.

2.	A 2-3 tree holding one million elements with 2-nodes for all but some of its leaves 
(the tallest 2-3 tree with a million elements) will have height lg 1000001 -1 = 19, 
so there will be about 20 comparisons in the worst case. A 2-3 tree with 3-nodes 
for all but some of its leaves (the shortest 2-3 tree with a million elements) will 
have height

3.	log3 1000001 -1 = 11, so there would be about 12 comparisons in the best case 
when searching for a value not in the tree.

4.	A plain binary search tree can become completely unbalanced, resulting in O(n) 
worst case behavior for insertion, deletion, and searching. A 2-3 tree is always 
completely balanced, so its worst case behavior for insertion, deletion, and searching 
is always Θ(lg n).
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21	 SETS

21.1	 INTRODUCTION

Lists have a linear structure and trees have a two-dimensional structure. We now turn to 
unstructured collections. The simplest unstructured collection is the set.

Set: An unordered collection in which an element may appear at most once.

We first review the set ADT and then discuss ADT implementation.

21.2	 THE SET ADT

The set of T abstract data type is the ADT of sets of elements of type T. Its carrier set is 
the set of all sets of T. This ADT is the abstract data type of sets that we all learned about 
starting in grade school. Its operations are exactly those we would expect (and more could 
be included as well). Note this is not an implicit-receiver method set.

e ∈ s—Return true if e is a member of the set s.
s ⊆ t—Return true if every element of s is also an element of t.
s ∩ t—Return the set of elements that are in both s and t.
s ∪ t—Return the the set of elements that are in either s or t.
s − t—Return the set of elements of s that are not in t.
s == t—Return true if and only if s and t contain the same elements.

The set ADT is so familiar that we hardly need discuss it. Instead, we can turn immediately 
to the set interface that all implementation of the set ADT will use.

21.3	 THE SET INTERFACE

The Set interface appears in Figure 1. The Set interface is a sub-interface of the Collection 
interface, so it inherits all the operations of Collection and Container. Some of 
the set ADT operations are included in these super-interfaces (such as Contains()), so 
they don’t appear explicitly in the Set interface.
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21.4	 CONTIGUOUS IMPLEMENTATION OF SETS

The elements of a set can be stored in an array or an ArrayList but this approach is not 
very efficient. To see this, lets consider how the most important set operations—insertion, 
deletion, and membership check—would be implemented using an array. If the elements 
are not kept in order, then inserting them is very fast, but deleting them is slow (because 
a sequential search must be done to find the deleted element), and the membership check 
is slow (because it also requires a sequential search). If the elements are kept in order, then 
the membership check is fast (because binary search can be used), but insertion and deletion 
are very slow because on average half the elements must be moved to open or close a hole 
for the inserted or deleted element.

«interface» 

Set

Subset(set : Set) : Boolean

Insert(element : T)

Delete(element : T)

Intersection(set : Set) : Set

Union(set : Set) : Set

Complement(set : Set) : Set

Equal(set : Set) Boolean

T

«interface» 

Collection

T

Figure 1: The Set Interface

There is one way to implement sets using contiguous storage that is very time efficient, 
though it may not be space efficient. A boolean array or slice, called a characteristic function, 
can represent a set. The characteristic function is indexed by set elements so that the value of 
the characteristic function at index x is true if and only if x is in the set. Insertion, deletion, 
and the membership check can all be done in constant time. The problem, of course, is 
that each characteristic function array must have an element for every possible value that 
could be in the set, and these values must be able to index the array. If a set holds values 
from a small sub-range of an integral type, such as the ASCII characters, or integers from 
0 to 50, then this technique is feasible (though it still may waste a lot of space). But for 
large sub-ranges or for non-integral set elements, this technique is no longer possible.

There is one more contiguous implementation technique that is very fast for sets: hashing. 
We will discuss using hashing to implement sets later on.
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21.5	 LINKED IMPLEMENTATION OF SETS

he problem with the contiguous implementation of sets is that insertion, deletion, and 
membership checking cannot all be done efficiently. The same holds true of linked lists. We 
have, however, encountered data structures guaranteed to provide fast insertion, deletion, 
and membership checking: balanced search trees. Recall that a balanced search tree can be 
searched in O(lg n) time, and elements can be inserted and deleted in Θ(lg n) time. 

An implementation of sets using search trees is called a tree set. Tree sets are very efficient 
implementations of sets provided care is taken to keep them balanced. Tree sets have the 
further advantage of allowing iteration over the elements in the set in sorted order, which 
can be very useful in some applications.

Based on what we have learned in the previous chapters, we can make tree sets from binary 
search trees, AVL trees, or 2-3 trees. Binary search trees are not guaranteed to stay balanced, 
so we won’t use those. There is no particular reason to prefer AVL trees over 2-3 trees, or 
vice-versa, so either may be used.
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21.6	 SETS AND TREE SETS IN GO

Tree sets are implemented using search trees, which in our Go implementations require 
that stored values implement the Comparable interface. Ideally, values of arbitrary types 
should be allowed in any set, including values of types like int, which is a primitive type 
that does not implement any interfaces. On the other hand, it is quite easy to construct an 
interface type corresponding to a built-in type. For example, Figure 2 shows how to make a 
Comparable Integer type corresponding to the built-in int type. Integer values 
can be stored in tree sets.

type Integer int
func (i Integer) Equal(c interface{}) bool {
return int(i) == int(c.(Integer))

}
func (i Integer) Less(c interface{}) bool {
return int(i) < int(c.(Integer))

}

Figure 2: Making a Comparable Integer Type from the int Type

With that proviso, it is quite easy to implement tree sets using search trees. For example, 
consider the Go code fragment in Figure 3 below that uses AVL trees to implement sets.

type TreeSet struct {
tree AVLTree

}

func (s *TreeSet) Contains(v Comparer) bool {
return s.tree.Contains(v)

}

func (s *TreeSet) Subset(set Set) bool {
iter := s.NewIterator()
for v,ok := iter.Next(); ok; v,ok = iter.Next() {
if !set.Contains(v) { return false }

}
return true

}

Figure 3: Using Search Trees to Implement Tree Sets

The TreeSet struct type has a single AVLTree field for storing the elements of the set. 
Most tree set methods simply delegate to the AVL tree, as illustrated by the Contains() 
operation. Some methods need to do a little work of their own. For example, the Subset() 
method iterates through the elements in the receiver set and checks to ensure that they are 
all in the argument set. Behind the scenes, an inorder traversal of the receiver set’s search 
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tree is done to iterate over the values, and the search tree Contains() operation is used 
to quickly determine whether a value is in the argument set.

21.7	 SUMMARY AND CONCLUSION

Sets are useful ADTs that can be implemented efficiently using search trees. Although sets 
in principle hold values of any type, using search trees to implement them forces us to 
store only Comparable values in tree sets. We will consider another data structure for 
realizing sets that imposes a different restriction in a later chapter.

21.8	 REVIEW QUESTIONS

1.	Which set operation appears in the set ADT but does not appear explicitly in the 
Set interface? Why is it not present?

2.	What is a characteristic function?
3.	Why is an array or an ArrayList not a good data structure for implementing 

the set ADT?
4.	Why is a LinkedList not a good data structure to implement the set ADT?
5.	Why is a balanced search tree a good data structure for implementing the set ADT?

21.9	 EXERCISES

1.	What other operation do you think might be useful to add to the set of T ADT?
2.	 Is an iterator required for sets? How does this compare with the situation for lists?
3.	Suppose that the BinarySearchTree was embedded in the TreeSet in 

Figure 3 instead of an AVLTree. What consequences would this have for the 
tree set performance?

4.	 Using the code in Figure 3 as a starting point, add the Set interface and implementations 
of all the Collection interface methods with a *TreeSet receiver.

5.	Continue the implementation begun in the previous exercise by writing the 
Insert() and Delete() methods with *TreeSet receivers.

6.	Continue implementation of tree sets by including the Union(), Intersection(), 
and Complement() (relative complement) methods. Be sure to create a brand 
new TreeSet and return a pointer to it as the result of each of these methods.
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21.10	 REVIEW QUESTION ANSWERS

1.	The membership operation in the set ADT does not appear explicitly in the Set 
interface because the Contains() operation from the Collection interface 
already provides this functionality.

2.	A characteristic function is a function created for a particular set that takes a value 
as an argument and returns true just in case that value is a member of the set. For 
example, the characteristic function f(x) for the set {a, b, c} would have the value 
true for f(a), f(b), and f(c), but false for any other argument.

3.	 If an array or an ArrayList is used to implement the set ADT, then either 
the insertion, deletion, or set membership operations will be slow. If the array 
or ArrayList is kept in order, then the set membership operation will be 
fast (because binary search can be used), but insertion and deletion will be slow 
because elements will have to be moved to keep the array in order. If the array or 
ArrayList is not kept in order, then insertions will be fast, but deletions and 
set membership operations will require sequential searches, which are slow.
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4.	 If a LinkedList is used to implement the set ADT, then deletion and membership 
testing will be slow because a linear search will be required. If the elements of the 
list are kept in order to speed up searching (which only helps a little because a 
sequential search must still be used), then insertion is made slower.

5.	A balanced search tree is a good data structure for implementing the set ADT 
because a balanced search tree allows insertion, deletion, and membership testing 
to all be done quickly, in O(lg n) time.
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22	 MAPS

22.1	 INTRODUCTION

A very useful collection is one that is a hybrid of lists and sets, called a map, table, dictionary, 
or associative array. A map (as we will call it), is a collection whose elements (which we will 
refer to as values) are unordered, like a set, but whose values are accessible via a key, akin 
to the way that list elements are accessible by indices.

Map: An unordered collection whose values are accessible using a key.

Another way to think of a map is as a function that maps keys to values (hence the name), 
like a function in mathematics. As such, a map is a set of ordered pairs of keys and values 
such that each key is paired with a single value (though a value may be paired with several 
keys).

22.2	 THE MAP ADT

Maps store values of arbitrary type with keys of arbitrary type, so the ADT is map of (K,T), 
where K is the type of the keys and T is the type of the values in the map. The carrier 
set of this type is the set of all ordered pairs whose first element is of type K and whose 
second element is of type T. The carrier set thus includes the empty map, the maps with 
one ordered pair of values of types K and T, the maps with two ordered pairs of values of 
types K and T, and so forth.

The essential implicit-receiver operations of maps, in addition to those common to all 
collections, are those for inserting, deleting, searching and retrieving keys and values.

empty()—Return true if and only if the map is empty.

size()—Return the number of pairs in the map.

hasKey(k)—Return true if and only if the map contains an ordered pair whose first 
element is k.

hasValue(v)—Return true if and only if the map contains an ordered pair whose 
second element is v.
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insert(k, v)—Add the ordered pair <k, v> to the map. If the map already contains 
an ordered pair whose first element is k, then this ordered pair is replaced with the 
new one.

delete(k)—Remove from the map the ordered pair whose first element is k. If the 
map does not contain such an ordered pair, do nothing.

get(k)—Return the second element in the ordered pair whose first element is k. This 
operation’s precondition is that the map contains an ordered pair whose first value is k.

equal(m)—Return true iff the receiver map and map m have the same key-value pairs.

There is considerable similarity between these operations and the operations for lists and 
sets. For example, the delete() operation for lists takes an index and removes the element 
at the designated index, while the map operation takes a key and removes the key-value 
pair matching the key. On the other hand, when the list index is out of range, there is a 
precondition violation, while if the key is not present in the map, the map is unchanged. 
This latter behavior is the same as what happens with sets when the set delete() operation 
is called with an argument that is not in the set.

22.3	 THE MAP INTERFACE

The diagram below in Figure 1 shows the Map interface, which is a sub-interface of 
Collection. It includes all the operations of the map of (K, T) ADT, except hasValue(), 
whose functionality is accomplished by Contains() from the Collection interface. 

«interface» 

Map

Get(key : K) : T, Boolean	     { HasKey(key) }

Insert(key : K, value : T)

Delete(key : K)

HasKey(key : K) : Boolean

NewNewKeyIterator() : Iterator

Equal(m : Map) : Boolean

«interface» 

Collection

K, T

T

Figure 1: The Map Interface
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As a Collection, a Map has an associated Iterator (returned by the 
Collection NewIterator() operation) that iterates over the values in the Map. 
The NewKeyIterator() operation returns an Iterator that iterates over the keys 
in the Map.

The Map interface lacks an equivalent of the hasValue() operation from the ADT.  This 
method would generally be very inefficient, so its use is discouraged by not including it in 
the interface. Furthermore, its effect can be achieved using an iterator, so it is not essential.

22.4	 CONTIGUOUS IMPLEMENTATION OF THE MAP ADT

As with sets, using an array or ArrayList to store the ordered pairs of a map is not very 
efficient because only one of the three main operations of insertion, deletion, and search 
can be done quickly. Also as with sets, a characteristic function can be used if the key set 
is a small integral type (or a small sub-range of an integral type), but this situation is rare. 
Finally, as with sets, hashing provides a very efficient contiguous implementation of maps 
that we will discuss later on.

Download free eBooks at bookboon.com Click on the ad to read more
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

��������	
�����
������
��������
���������
�����������
��������
�����
��
���������������������������

������
������

������������������������������ �����	�����
	�
�����	������!���"�
	������������

�
	�

�����#$%����&'())%�*+������
	�
���,���������
�-

.�
��������������������
������������
��

��������	
��
����


��	��������	
��
����


���������
���


����������


����������
�����
��


���������

 The Wake
the only emission we want to leave behind

http://www.mandieselturbo.com


GO DATA STRUCTURES AND ALGORITHMS Maps

215

22.5	 LINKED IMPLEMENTATION OF THE MAP ADT

As with sets, using linked lists to store map elements is not much better than using arrays. 
But again as with sets, balanced search trees can store map elements and provide fast 
insertion, deletion, and search operations on keys. Furthermore, using search trees to store 
map elements allows the elements in the map to be traversed in sorted key order, which is 
sometimes very useful. A tree map is thus an excellent implementation of the Map interface.

The trick to using search trees to store map elements is to create a struct type implementing 
the Comparer interface holding key-value pairs that defines the Comparer operations in 
terms of comparison of keys. These key-value pair structs (or pointers to them) are stored 
in the search tree nodes. Dummy values with the correct key fields but arbitrary value fields 
can then be used to search the tree and retrieve key-value pairs, or delete key-value pairs. 
To illustrate, consider the Go code in Figure 2.

type cKeyValue struct {
key Comparer
value interface{}

}

func (p *cKeyValue) Equal(q interface{}) bool {
return p.key.Equal(q.(*cKeyValue).key)

}

func (p *cKeyValue) IsLess(q interface{}) bool {
return p.key.IsLess(q.(*cKeyValue).key)

}

type TreeMap struct {
tree AVLTree

}

func (m *treeMap) Insert(k interface{}, v interface{}) {
p := new(cKeyValue)
p.key, p.value = k.(Comparer), v
m.tree.Add(p)

}

Figure 2: Using a Pair Struct to Implement a Tree Map
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This code defines a cKeyValue type to have key and value fields. Pointers to cKeyValue 
instances will be stored in AVL tree nodes. A cKeyValue must implement the Comparer 
interface to go in a search tree, so the Equal() and IsLess() methods are added to 
the cKeyValue method set. Note how these methods operate only on the key fields of the 
receiver and argument cKeyValue instances. A TreeMap contains an AVLTree that will 
hold pointers to cKeyValue instances. Finally, the Insert() method is shown. It creates 
a new cKeyValue, puts the key and value into it (converting k to a Comparer value), 
and then calls the AVLTree Add() method to place it at the correct spot in the tree. 
Using this approach, the other operations in the Map interface are easily written.

As with sets, one constraint on implementations of the Map interface is that all keys must 
be of a Comparer type because they must be compared during search tree operations. In 
Go, this means that built-in type values cannot be used as keys.

22.6	 THE MAP TYPE IN GO

Go has a built-in map type. Built-in map keys can be of any type that supports the built-in 
equality comparison operators, and values can be any type. This is a marked advantage over the 
Map interface because Map keys must implement the Comparer interface; no fundamental 
type can be used as a Map key, but they can be used as keys in the built-in map type.

Go maps support all the operations in the Map interface except Empty(), Clear(), 
HasKey(), NewIterator(), NewKeyIterator(), Apply(), Contains(), 
and Equal(). However, it is easy to determine whether a map is empty by checking 
whether its size is 0, a cleared map can be obtained by creating a new one, and one can tell 
whether a map has a key by trying to access the element with that key. External iteration 
over keys and values is supported by the for-range statement in the language, so the effect 
of NewIterator() and NewKeyIterator() can be obtained for maps. Internal 
iteration is not supported, so the map type has no equivalent of the Apply() operation. 
The only way to see whether a map contains a certain value is to iterate over the map 
to search for it, and the only way to see whether two maps are equal is to write code to 
compare all their keys and values, so there are no equivalents to the Contains() and 
Equal() operations. Thus there are several operations that the built-in map type lacks 
compared to the Map interface we have defined.

The built-in map type is implemented using hashing, which we will discuss in the next 
chapter. This makes it very fast (faster than an implementation using search trees). However, 
iterating over a map implemented with hashing yields keys and values in arbitrary order, 
while iterating over a map implemented using search trees yields keys and values in key 
order, which is sometimes useful.
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Overall, the built-in map type has the advantages that keys can be any type that supports 
the built-in equality comparison operators, and that it is very fast. However, a tree map 
realizing the Map interface, though it requires Comparer keys and is slower, provides a few 
more operations, can be used with types that don’t support the built-in equality comparison 
operators, and supports iteration over keys and values in key order.

22.7	 SUMMARY AND CONCLUSION

Maps are extremely important collections because they allow values to be stored using 
keys, a very common need in programming. The map of (K, T) ADT specifies the essential 
features of the type, and the Map interface captures these features and places maps in the 
Container hierarchy. Contiguous implementations are not well suited for maps (except 
hash tables, which we discuss in the next chapter). Search trees, however, provide very 
efficient implementations, so a tree map is a good realization of the Map interface. Go 
provides a built-in map type that provides most of the operations of the Map interface, 
does not require Comparer keys, and is very fast. But if certain operations, using a key 
that does support the built-in comparison operators, or the ability to iterate over keys or 
values in key order is required, then a tree map may be better than the built-in map type.

Download free eBooks at bookboon.com Click on the ad to read more
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/gee_change


GO DATA STRUCTURES AND ALGORITHMS Maps

218

22.8	 REVIEW QUESTIONS

1.	Why is a map called a map?
2.	The Collection interface has a generic parameter T, and the Map interface has 

generic parameters K and T. What is the relationship between them?
3.	Why is an array or an ArrayList not a good data structure for implementing 

the map ADT?
4.	Why is a LinkedList not a good data structure to implement the map ADT?
5.	Why is a search tree a good data structure for implementing the map ADT?
6.	Which Map interface operations does the Go built-in map type lack?

22.9	 EXERCISES

1.	Make a function mapping the states California, Virginia, Michigan, Florida, and 
Oregon to their capitals. If you wanted to store this function in a map ADT, which 
values would be the keys and which the elements?

2.	Represent the map described in the previous exercise as a set of ordered pairs. If 
this map is m, then also represent as a set of ordered pairs the map that results 
when the operation remove(m, Michigan) is applied.

3.	 Is an iterator required for maps? How does this compare with the situation for lists?
4.	Draw a UML class diagram showing the entire Container interface hierarchy 

including all the collections we have considered up to this point. You need not 
include operations in your diagram. Do include the Iterator interface.

5.	Suppose you want to make a map from slices of floats (the keys) to ints (the 
values)whose keys are ordered by the first elements of the slices. Would the built-
in map type or our implementation of tree maps be a better choice to implement 
this data structure? Justify your choice.

6.	Write Go code for the Map interface.
7.	Continue the Go implementation you began in the last exercise by writing code 

to implement all the operations the Map interface inherits from Container and 
Collection, except those for iteration with *TreeMap receivers.

8.	Continue the Go implementation from the last exercise by writing code for the 
tree map iterator and for the Apply() method. The latter should invoke the 
argument function f only on the values in each key-value pair.

9.	Complete the Go implementation from the last exercise by writing all remaining 
Map interface methods for TreeMap type.
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22.10	 REVIEW QUESTION ANSWERS

1.	A map associates keys and values such that each key is associated with at most one 
value. This is the definition of a function from keys to values. Functions are also 
called maps, and we take the name of the collection from this meaning of the word.

2.	The Collection interface generic parameter T is the same as the Map interface 
generic parameters T: the elements of a Collection are also the values of a 
Map. But Maps have an additional data item—the key—whose type is K.

3.	An array or an ArrayList is not a good data structure for implementing the 
map ADT because the key-value pairs would have to be stored in the array or 
ArrayList in order or not in order. If they are stored in order, then finding a 
key-value pair by its key is fast (because we can use binary search), but adding and 
removing pairs is slow. If pairs are not stored in order, then they can be inserted 
quickly by appending them at the end of the collection, but searching for them 
or finding them when they need to be removed are slow operations because they 
must use sequential search.

4.	A LinkedList is not a good data structure to implement the map ADT because 
although key-value pairs can be inserted quickly into a LinkedList, searching 
for pairs or finding them when they need to be removed are slow operations because 
the LinkedList must be traversed node by node.

5.	A search tree is a good data structure for implementing the map ADT because 
(assuming that the tree remains fairly balanced), adding key-value pairs, searching 
for them by key, and removing them by key, are all done very quickly. Furthermore, 
if the nodes in the tree are traversed in order, then the key-value pairs are accessed 
in key-order.

6.	The Go built-in map type does not have an Apply() operation for internal 
iteration over the values in the map. It also lacks a Contains() operation for 
testing whether a value is present in a map. There are several other Map interface 
operations for which the map type lacks direct equivalents, but it is so easy to use 
other operations in the map type to simulate them that their lack is not significant. 
For example, the built-in map type lacks an Empty() operation, but if m is a 
map, one can merely check len(m) == 0 to see whether m is empty.
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23	 HASHING

23.1	 INTRODUCTION

In an ideal world, retrieving a value from a map would be done instantly by just examining 
the value’s key. That is the goal of hashing, which uses a hash function to transform a key 
into an array index, thereby providing instantaneous access to the value stored in an array 
holding the key-value pairs in the map. This array is called a hash table.

Hash function: A function that transforms a key into a value in the range of indices 
of a hash table.

Hash table: An array holding key-value pairs whose locations are determined by a 
hash function applied to keys.

Of course, there are a few details to work out.

23.2	 THE HASHING PROBLEM

If a set of key-value pairs is small and we can allocate an array big enough to hold them 
all, we can always find a hash function that transforms keys to unique locations in a hash 
table. For example, in some old programming languages, identifiers consisted of an upper-
case letter possibly followed by a digit. Suppose these are our keys. There are 286 of them, 
and it is not too hard to come up with a function that maps each key of this form to a 
unique value in the range 0..285. But usually the set of keys is too big to make a table to 
hold all the possibilities. For example, older versions of FORTRAN had identifiers that 
started with an upper-case letter, followed by up to five additional upper-case letters or 
digits. The number of such identifiers is 1,617,038,306, which is clearly too big for a hash 
table if we were to use these as keys.

A smaller table holding keys with a large range of values will inevitably require that the 
function transform several keys to the same table location. When two or more keys are 
mapped to the same table location by a hash function we have a collision. Mechanisms for 
dealing with them are called collision resolution schemes.

Collision: The event that occurs when two or more keys are transformed to the 
same hash table location.
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How serious is the collision problem? After all, if we have a fairly large table and a hash 
function that spreads keys out evenly across the table, collisions may be rare. In fact, however, 
collisions occur surprisingly often. To see why, lets consider the birthday problem, a famous 
problem from probability theory: what is the chance that a least two people in a group of 
k people have the same birthday? This turns out to be p =1-(365!/k!/365k). Table 1 below 
lists some values for this expression. Surprisingly, in a group of only 23 people there is 
better than an even chance that two of them have the same birthday!

If we imagine that a hash table has 365 locations, and that these probabilities are the 
likelihoods that a hash function transforms two values to the same location (a collision), 
then we can see that we are almost certain to have a collision when the table holds 100 
values, and very likely to have a collision with only about 40 values in the table. Forty is 
only about 11% of 365, so we see that collisions are very likely indeed. Collision resolution 
schemes are thus an essential part of making hashing work in practice.
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k p

5 0.027

10 0.117

15 0.253

20 0.411

22 0.476

23 0.507

25 0.569

30 0.706

40 0.891

50 0.970

60 0.994

100 0.9999997

Table 1: Probabilities in the Birthday Problem

An implementation of hashing thus requires two things:

•	 A hash function for transforming keys to hash table locations, ideally one that 
makes collisions less likely.

•	 A collision resolution scheme to deal with the collisions that are bound to occur.

We discuss each of these in turn.

Hash Functions

A hash function must transform a key into an integer in the range 0 to t-1, where t is the 
size of the hash table. A hash function should distribute the keys in the table as uniformly 
as possible to minimize collisions. Although many hash functions have been proposed and 
investigated, the best hash functions use the division method, which for numeric keys is 
the following.

hash(k) = k % t
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This function is simple, fast, and spreads out keys uniformly in the table. It works best when 
t is a prime number not close to a power of two. For this reason, hash table sizes should 
always be chosen to be a prime number not close to a power of two.

For non-numeric keys, there is usually a fairly simple way to convert the value to a number 
and then use the division method on it. For example, the following Go function illustrates 
a way to hash a string using the division method.

func hash(s string, tableSize int) int {
result := 0
for _, char := range s {
result = (result * 151 + int(char)) % tableSize
}
return result

}

Figure 1: A Go Hash Function for Strings

Making hash functions is not too onerous. Good rules of thumb are to use prime numbers 
whenever a constant is needed, and to test the function on a representative set of keys to 
ensure that it spreads them out evenly across the hash table.

23.3	 COLLISION RESOLUTION SCHEMES

There are two main kinds of collision resolution schemes, with many variations: chaining 
and open addressing. In each scheme, an important value to consider is the load factor, λ 
= n/t, where n is the number of elements in the hash table and t is the table size.

Chaining

In chaining (or separate chaining) records whose keys collide are formed into a linked list 
or chain whose head is in the hash table array. Figure 2 below shows a hash table with 
collisions resolved using chaining. For simplicity, only the keys are listed and not the values 
that go along with them (or, if you like, the key and the value are the same).
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Figure 2: Hash Table with Chaining to Resolve Collisions

In this example, the table has seven locations. Two keys, q and w, collide at location two 
and they are placed in a linked list whose head is at location two. The keys x, b, and k 
are hashed to locations three, four, and six, respectively. This example uses an array of list 
heads, but an array of list nodes could have been used as well, with some special value in 
the data field to indicate when a node is unused.

The average chain length is λ. If the chain is unordered, on average successful searches 
require about 1+ λ/2 comparisons and unsuccessful searches about λ comparisons. If the 
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chain is ordered, both successful and unsuccessful searches take about 1+ λ/2 comparisons, 
but insertions take longer. In the worse case, which occurs when all keys map to a single 
table location and the search key is at the end of the linked list or not in the list, searches 
require n comparisons. But this case is extremely unlikely.

More complex linked structures (like binary search trees), don’t generally improve performance 
much, particularly if λ is kept fairly small. As a rule of thumb, λ should be kept less than 
about 10. But performance only degrades gradually as the number of items in the table 
grows, so hash tables that use chaining to resolve collisions can perform well on wide ranges 
of values of n.

Open Addressing

In the open addressing collision resolution scheme, records with colliding keys are stored at 
other free locations in the hash table found by probing the table for open locations. Different 
kinds of open addressing schemes use different probe sequences. In all cases, however, the 
table can only hold as many items as it has locations, so n ≤ t and λ cannot exceed one; 
this constraint is not present for chaining.

Open addressing has been modelled in theoretical studies using random probe sequences. In 
these studies, the number of probes for unsuccessful searches is about ½(1+ 1/(1-λ)) and for 
unsuccessful searches it is about ½(1+ 1/(1-λ)2). These values shoot up as λ approaches one. 
For example, with a load factor of 0.95, the expected number of comparisons for a successful 
search is 10.5, and for an unsuccessful search it is 200.5. Real open addressing schemes do 
not do even as well as this, so load factors must generally be kept below about 0.75.

Another point to understand about open addressing is that when a collision occurs, the 
algorithm proceeds through the probe sequence until either (a) the desired key is found, (b) 
an open location is found, or (c) the entire table is traversed. But this only works when a 
marker is left in slots where an element was deleted to indicate that the location may not 
have been empty before, and so the algorithm should proceed with the probe sequence. In 
a highly dynamic table there will be many markers and few empty slots, so the algorithm 
will need to follow long probe sequences, especially for unsuccessful searches, even when 
the load factor is low.

Linear probing is using a probe sequence that begins with the hash table index and 
increments it by a constant value modulo the table size. If the table size and increment 
are relatively prime, every slot in the table will appear in the probe sequence. Linear 
probing performance degrades sharply when load factors exceed 0.8. Linear probing 
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is also subject to primary clustering, which occurs when clumps of filled locations 
accumulate around a location where a collision first occurs. Primary clustering 
increases the chances of collisions and greatly degrades performance.

Double hashing works by generating an increment for the probe sequence by 
applying a second hash function to the key. The second hash function should generate 
values quite different from the first so that two keys that collide will be mapped to 
different values by the second hash function, making the probe sequences for the 
two keys different. Double hashing eliminates primary clustering. The second hash 
function must always generate a number that is relatively prime to the table size. 
This is easy if the table size is a prime number. Double hashing works so well that 
its performances approximates that of a truly random probe sequence. It is thus the 
method of choice for generating probe sequences.

Figure 3 below shows an example of open addressing with double hashing. As before, the 
example only uses keys for simplicity, not key-value pairs. The main hash function is f(x) 
= x % 7, and the hash function used to generate a constant for the probe sequence is g(x) 
= (x % 5)+1. The values 8, 12, 9, 6, 25, and 22 are hashed into the table.
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Figure 3: Hash Table with Open Addressing and Double 

Hashing to Resolve Collisions

The first five keys do not collide. But 22 % 7 is 1, so 22 collides with 8. The probe constant 
for double hashing is (22 % 5)+1 = 3. We add 3 to location 1, where the collision occurs, 
to obtain location 4. But 25 is already at this location, so we add 3 again to obtain location 
0 (we wrap around to the start of the array using the table size: (4+3) % 7 = 0). Location 
0 is not occupied, so that is where 22 is placed.

Note that some sort of special value must be placed in the unoccupied locations—in this 
example we used a double dash. A different value must be used when a value is removed 
from the table to indicate that the location is free, but that it was not before, so that searches 
must continue past this value when it is encountered during a probe sequence.

We have noted that when using open addressing to resolve collisions, performance degrades 
considerably as the load factor approaches one. This in effect means that hashing mechanisms 
that use open addressing must have a way to expand the table to lower the load factor and 
improve performance. A new, larger table can be created and filled by traversing the old 
table and inserting all records into the new table. Note that this involves hashing every key 
again because the hash function will generally use the table size, which has now changed. 
Consequently, this is a very expensive operation.

Some table expansion schemes work incrementally by keeping the old table around and 
making all insertions in the new table, all deletions from the old table, and perhaps moving 
records gradually from the old table to the new in the course of doing other operations. 
Eventually the old table becomes empty and can be discarded.
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23.4	 SUMMARY AND CONCLUSION

Hashing uses a hash function to transform a key into a hash table location, thus providing 
almost instantaneous access to values though their keys. Unfortunately, it is inevitable that 
more than one key will be hashed to each table location, causing a collision and requiring 
some way to store more than one value associated with a single table location.

The two main approaches to collision resolution are chaining and open addressing. Chaining 
uses linked lists of key-value pairs that start in hash table locations. Open addressing uses 
probe sequences to look through the table for an open spot to store a key-value pair and then 
later to find it again. Chaining is very robust and has good performance for a wide range 
of load factors, but it requires extra space for the links in the list nodes. Open addressing 
uses space efficiently, but its performance degrades quickly as the load factor approaches 
one; expanding the table is very expensive.

No matter how hashing is implemented, however, average performance for insertions, deletions, 
and searches is Θ(1). Worst case performance is O(n) for chaining collision resolution, but 
this only occurs in the very unlikely event that the keys are hashed to only a few table 
locations. Worst case performance for open addressing is a function of the load factor that 
gets very large when λ is near one, but if λ is kept below about 0.8, W(n) is less than 10.

23.5	 REVIEW QUESTIONS

1.	What happens when two or more keys are mapped to the same location in a hash 
table?

2.	 If a hash table has 365 locations and 50 records are placed in the table at random, 
what is the probability that there will be at least one collision?

3.	What is a good size for hash tables when a hash function using the division method 
is used?

4.	What is a load factor? Under what conditions can a load actor exceed one?
5.	What is a probe sequence? Which is better: linear probing or double hashing?

23.6	 EXERCISES

1.	Why does the example of open addressing and double hashing in the text use the 
hash function g(x) = (x % 5)+1 rather than g(x) = x % 5 to generate probe sequences?

2.	Suppose a hash table has 11 locations and the simple division method hash function 
f(x) = x % 11 is used to map keys into the table. Compute the locations where the 
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following keys would be stored: 0, 12, 42, 18, 6, 22, 8, 105, 97. Do any of these 
keys collide? What is the load factor of this table if all the keys are placed into it?

3.	Suppose a hash table has 11 locations, keys are placed in the table using the hash 
function f(x) = x % 11, and linear chaining is used to resolve collisions. Draw a 
picture similar to Figure 2 of the result of storing the following keys in the table: 
0, 12, 42, 18, 6, 22, 8, 105, 97.

4.	Modify with the diagram you made for Exercise 3 to show what happens when 18 
and 42 are removed from the hash table.

5.	Suppose a hash table has 11 locations, keys are mapped into the table using the 
hash function f(x) = x % 11, and collisions are resolved using open addressing and 
linear probing with a constant of three to generate the probe sequence. Draw a 
picture of the result of storing the following keys in the table: 0, 12, 42, 18, 6, 
22, 8, 105, 97.

6.	List the probe sequence (the table indices) used to search for 97 in the diagram 
you drew for Exercise 5. List the probe sequence used when searching for 75.

7.	Starting with the diagram you made for Exercise 5, show the result of removing 18 
from the table. List the probe sequence used to search for 97. How do you guarantee 
that 97 is found even though 18 is no longer encountered in the probe sequence?
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8.	Suppose a hash table has 11 locations, keys are mapped into the table using the hash 
function f(x) = x % 11, and collisions are resolved using double hashing with the 
hash function g(x) = (x % 3)+1 to generate the probe sequence. Draw a picture of 
the result of storing the following keys in the table: 0, 12, 42, 18, 6, 22, 8, 105, 97.

9.	List the probe sequences used to search for 97 and 75 using the diagram you drew 
for Exercise 8. In what way are these sequences different from the probe sequences 
generated in Exercise 6?

23.7	 REVIEW QUESTION ANSWERS

1.	When two or more keys are mapped to the same location in a hash table, they are 
said to collide, and some action must be taken, called collision resolution, so that 
records containing colliding keys can be stored in the table.

2.	 If 50 values are added at random to a hash table with 365 locations, the probability 
that there will be at least one collision is 0.97, according to the Table 1.

3.	A good size for hash tables when a division method hash function is used is a prime 
number not close to a power of two.

4.	The load factor of a hash table is the ratio of the number of key-value pairs in the 
table to the table size. In open addressing, the load factor cannot exceed one, but 
with chaining, because in effect more than one key-value pair can be stored in each 
location, the load factor can exceed one.

5.	A probe sequence is a list of table locations checked when elements are stored or 
retrieved from a hash table that resolves collisions with open addressing. Linear 
probing is subject to primary clustering, which decreases performance, but double 
hashing as been shown to be as good as choosing increments for probe sequences 
at random.
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24	 HASHED COLLECTIONS

24.1	 INTRODUCTION

As we have seen, hashing provides very fast (effectively Θ(1)) algorithms for inserting, 
deleting, and searching collections of key-value pairs. It is therefore an excellent way to 
implement maps. It also provides a very efficient way to implement sets.

24.2	 HASH TABLE CLASS

A hash table is designed to store key-value pairs by the hash value of the key. A hash table 
type must therefore be generic in the type of both keys and values. Furthermore, hash table 
keys must be Hashable, which means they must have a Hash() function returning 
integer values and they must have an equality comparison operation. Finally, a hash table 
type must have operations sufficient to implement maps. Figure 1 shows a UML diagram 
for a HashTable type meeting these requirements.

HashTable
T, Hashable

TableSize() : Integer

Size() : Integer

Clear()

Get(k : Hashable): T, Boolean

Insert(k: Hashable, v : T)

Delete(k : Hashable)

NewIterator() : Iterator

NewKeyIterator() : Iterator

«interface» 

Hashable

Equal(v : T) : Boolean

Hash(tableSize : Integer) : Integer

T

Figure 1: A Hash Table Interface

The HashTable type must allow key-value pairs to be inserted, deleted, modified, searched, 
and iterated over in various ways. The Insert() method is used not only to add new 
key-value pairs to the hash table but to modify them as well: if a key is already in the table, 
then calling Insert() with that key should replace the existing value with the new value 
passed to the method. The NewIterator() method enumerates the values in the table 
and the NewKeyIterator() method enumerates the keys. Neither keys nor values are 
enumerated in order, of course. The Get() method has as its precondition that the key is 
present in the table. The TableSize() method returns the number of slots in the table, 
and the Size() method returns the number of pairs currently in the table.
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Although a HashTable struct type can be made to have a zero value with a default table 
size, it is convenient to be able to specify table sizes when creating a new hash table. To this 
end, it is useful to define a NewHashTable() function that takes an integer parameter 
specifying the table size. This function should adjust the parameter to make sure that it is not 
too small and that it is a prime number (suggesting that the smallest hash table size is two).

Note that this HashTable model does not distinguish between collision resolution strategies; 
this is an implementation detail hidden by the type. When open addressing is used, the 
Insert() method should monitor the load factor and expand the table if it gets close to 
one. Expanding a hash table requires that a new, larger table be created, and that all the current 
key-value pairs in the old table be inserted in the new table, so this is an expensive operation. 
If chaining is used, the load factor can be arbitrarily large, but of course performance will 
degrade when it gets too big, so a sophisticated implementation should also monitor the load 
factor when insertions occur and expand the table if its gets too big.

Finally, hash tables, like trees, are not containers that clients are expected to use; rather, 
they are implementation data structures used to implement containers in the Container 
hierarchy.
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In Go, a HashTable struct type could contain fields for the table size, a count of the 
elements in the table, and a slice with elements that are structs each holding a key and a 
value(for open addressing), or structs each holding a key, a value, and a link to the next 
node  (for chaining). The zero value of such a struct would have a table size of zero and 
a nil slice, so every method in the method set would have to check for this situation and 
adjust the struct to set the table size to the default and allocate a new slice of that size.

24.3	 HASHMAPS

The HashTable type is of course used to implement maps, resulting in a collection 
called a hash map. Hash maps, provided their backing hash tables do not become too full, 
provide constant time performance for all operations except the Contains() collection 
method (which takes linear time). This beats search trees, so hash maps are generally faster 
than tree maps.

A HashMap type implements the Map interface and holds a hash table in a private field. 
The hash table stores the key-value pairs in the map, and most Map operations are delegated 
directly to the hash table. A few Map operations (like Contains() and Equal()), 
require a few lines of code for iterating through the hash table and making some comparisons.

24.4	 HASHSETS

Hash tables are a convenient implementation data structure because they can be used to 
implement hashed collections of various kinds, not just maps. For example, suppose we wish 
to use hashing to implement sets. If we use a hash table to do this, then the key is the set 
element we wish to store, but what is the value in the key-value pair? There is none, so we 
can store the key in the value field as well, or simply leave the value field blank (by storing 
nil there, for example). This wastes space, but provides the constant-time performance of 
hash tables. Hash tables are thus a good way to implement hash sets.

A hash set implements the Set interface and holds a hash table in a private attribute. As 
with hash maps, the basic Collection operations are easily realized using HashTable 
operations. To make this efficient, all operations should use keys. For example, the 
Contains() Collection method should use the HashTable Get() method 
to search for a set element as a key (using hashing) rather than iterating through the table 
looking at values.
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Hash set union may be implemented by copying the host hash set (and its hash table) and 
iterating over the argument set, adding all its values. Set complement is done by making 
a new result set and iterating over the host set, adding to the result all elements not in 
the argument set. Finally, intersection is done by iterating over one set and adding to the 
result hash set only those values that the other contains. All these operations are linear in 
the size of the sets operated on.

24.5	 MAPS IN GO

Of course the built-in Go map type is a hash map, so there is really no need to create one. 
The built-in map type can also be used to make hash sets: the elements of the set are stored 
as the map keys and the map value can be anything, although it is common to use the key 
as the value as well, or to use some entity that does not take up much space, like nil or 0.

24.6	 SUMMARY AND CONCLUSION

Hashing is an efficient way to implement sets as well as maps. A hash table type can provide 
operations that make set and map implementations fast using either open addressing or 
chaining to resolve collisions. In either case, it may be wise to monitor the load factor and 
expand the table if the load factor gets too high.

Go provides a built-in map type that already implements hash maps, and it can easily be 
used for hash sets as well. If a language does not have hashed collections built into it, then 
knowing how to make your own using hash tables and hashed collections is valuable, so 
writing hashed collections based on hash tables in Go is a worthwhile exercise.

24.7	 REVIEW QUESTIONS

1.	What sorts of collision resolution techniques can be used in a HashTable type?
2.	What happens when the insert() method is called in a HashTable type that 

uses open addressing with a load factor of one?
3.	Sets do not have keys and values so how can hash tables be used to store sets?
4.	Why is the contains() method slower than the get() method in a HashMap 

type?
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24.8	 EXERCISES

1.	Write the HashTable type and Hashable interface in Go.
2.	Write the HashTable methods with a *HashTable receiver. Also write a 
NewHashTable() function as a stand-alone factory function to create a new 
instances of HashTable and return a pointer to it. This functions should accept 
an argument specifying the size of the new table.

3.	 Implement hash sets using the HashTable implementation.
4.	 Implement hash maps using the HashTable implementation.
5.	 Implement hash sets in Go using the built-in map type.
6.	Hash tables waste space when implementing hash sets. To avoid this, write a 
HashTablet type in Go that uses hashing to store single Hashable values. 
Then use a HashTablet to implement a HashSet type.

7.	Use the HashTablet type you wrote in the last exercise to implement a HashMap 
type. In this case, you will have to make a Hashable Pair type to store key-value 
pairs. Values of this Pair type can be stored in the HashTablet to complete 
the implementation of HashMap.

24.9	 REVIEW QUESTION ANSWERS

1.	Any sort of collision resolution techniques can be used in a HashTable type.
2.	Suppose that a HashTable type implemented with open addressing has a load 

factor of one. In this case, we know that all the key-value pairs are stored in the 
table array (because open addressing is used to resolve collisions), and that all 
the array locations are in use (because the load factor is one). If the insert() 
method is called, then we are attempting to add yet another key-value pair to the 
table. But there is not room for it. This method must either fail (perhaps raising 
an exception), or it must create a new, larger table into which it inserts all the old 
entries before it can insert the new key-value pair.

3.	Sets only store single elements, not key-value pairs, but hash tables store key-value 
pairs. We can use a hash table to store single elements in one of two ways. We 
can treat set elements as element-element pairs (in other words, make both the 
key and the value the same element), or we can store the element as the key and 
nil or some arbitrary entity as the value. Then all set operations can be done in 
terms of the keys in the hash table, which will be fast (because the keys are hashed) 
achieving good performance.

4.	 In a HashMap key-value pairs are stored by hashing the key. To find a particular 
value, one must iterate through the key-value pairs and examine each value in the 
pair, which is slow. This is what must be done to implement the contains() 
method, which asks about a particular value. On the other hand, the get() method 
uses a key to find its associated value. This is fast because the key is hashed to find 
the key-value pair, and then the value is extracted from the pair.
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25	 GRAPHS

25.1	 INTRODUCTION

One of the most important modeling tools in computing is the graph, which is informally 
understood as a collection of points connected by lines. Graphs are used to model networks, 
processes, relationships between entities, and so on—almost every picture we draw in 
computer science is a graph of one sort or another. In this chapter we present the graph 
abstract data type and consider two data structures for representing graphs. In the next 
chapter we study a few graph algorithms.

25.2	 DIRECTED AND UNDIRECTED GRAPHS

We defined a graph in the course of discussing trees in Chapter 16.
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Graph: A collection of vertices (or nodes) and edges connecting the nodes. An edge 
may be thought of as a pair of vertices. Formally, a graph is an ordered pair <V, E> 
where V is a set of vertices and E is a set of pairs of elements of V.

Undirected graph: A graph in which the edges are sets of two vertices. In this case 
the edges have no direction and are represented by line segments when we draw 
pictures of them.

Directed graph or digraph: A graph in which the edges are ordered pairs of vertices. 
In this case the edges have direction and are represented by arrows by arrows in 
pictures of them.

To illustrate these definitions, consider the images of graphs in Figure 1.
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3

5

Figure 1: Two Graphs

In these images the vertices are identified by circled numbers. In general we may use any 
symbol to identify vertices, but as a rule we will use an initial set of natural numbers (that 
is, any set {0, 1, 2, ... n}, where n ≥ 0). The graph on the left is an undirected graph so its 
edges have no arrows. In its set representation, this graph is

<{0, 1, 2, 3, 4}, {{0,1}, {0,2}, {1,2}, {1,4}, {2,4}, {2,3}}>.

The graph on the right is a directed graph, so it has arrows on its edges. Note that this 
allows edges from a node to itself (such as the edge from 4 to itself ), and two distinct edges 
between a pair of vertices (such as the two edges connecting vertices 1 and 2); neither of 
these can occur in an undirected graph. The set representation of the right-hand graph is

<{0, 1, 2, 3, 4}, {<1,0>, <1,2>, <2,0>, <2,1>, <2,3>, <3,4>, <4,4>, <5,1>}>.

Note that the edge set in the left-hand graph is a set of sets while the edge set in the right-
hand graph is a set of ordered pairs.
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Although a graph is really an ordered pair of sets, representing graphs this way is awkward 
and hard to read, as the examples above illustrate. Consequently we will almost always 
represent graphs as pictures.

Both undirected and directed graphs are very important and widely applicable in computer 
science, but we will focus for the remainder of our discussion on undirected graphs. From 
now on we will refer to undirected graphs as simply graphs.

25.3	 BASIC TERMINOLOGY

There are several additional terms that must be learned to talk about graphs.

Adjacency: Vertices v1 and v2 in a graph G=<V, E> such that {v1, v2} ∈ E.

In Figure 2 below, vertices 0 and 1 and vertices 7 and 4 are adjacent, for example, but 
vertices 0 and 4 and vertices 1 and 3 are not adjacent.

0 1

2

3 8

6

7

4

5

Figure 2: A Graph

Path: A sequence of vertices p = <v1, v2, ..., vn> in a graph where n ≥ 2 and every 
pair of vertices vi and vi+1 in p are adjacent.

Path length: The number of edges in a path.

In Figure 2, the paths <0, 2, 3> and <4, 7, 8> both have length two.

Cycle: A path <v1, v2, ..., vn> in which v1 = vn but no other vertices are repeated.

Cyclic graph: A graph with a cycle of length at least three.

In Figure 2, the paths <0, 1, 0> and <4, 7, 8, 4> are cycles. Because the second has length 
three, the graph in Figure 2 is cyclic.

Download free eBooks at bookboon.com



GO DATA STRUCTURES AND ALGORITHMS Graphs

239

Sub-graph: A graph H=<W, F> is a sub-graph of graph G=<V, E> if W ⊆ V and 
F ⊆ E.

Connected vertices: Two vertices with a path between them.

Connected graph: A graph with a path between every pair of vertices. A graph that 
is not connected consists of a set of connected components that are sub-graphs 
of the graph.

Figure 2 shows a single graph with three connected components. Each of these components 
is a sub-graph of the whole graph.

Acyclic graph: A graph that is not cyclic.

The graph in Figure 2 is cyclic, as noted before, but the sub-graph consisting of the vertices 
0, 1, 2, and 3 and the edges that connect them, and the sub-graph consisting of vertices 5 
and 6 and the edge that connects them, are acyclic graphs.

Tree: An acyclic connected graph.

Forest: A set of trees with no vertices in common.

Spanning tree: Any sub-graph of a connected graph G that is a tree and contains 
every vertex of G.

Figure 3 shows a graph with a spanning tree marked with double lines.

0 1

2

3 8

6

7

4

5

Figure 3: A Graph and A Spanning Tree
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25.4	 THE GRAPH ADT

A graph is a mathematical entity consisting of an ordered pair of sets. Vertices can be 
anything; for example, they could be numbers. Hence we can specify the carrier set of the 
graph ADT as the set of all sets that meet the definition of a graph stated above, with initial 
sets of natural numbers acting as vertices. The implicit-receiver method set of the graph 
ADT consists of a few basic operations for constructing and querying graphs. We could 
include operations for adding and deleting vertices and deleting edges, as well as several 
other query operations, but they are not necessary for the applications we will consider.

newGraph(n)—Return a graph with n vertices and no edges. The precondition of 
this operation is that n ≥ 0.

edges()—Return the number of edges in the graph.

vertices()—Return the number of vertices in the graph.

addEdge(v,w)—Augment the graph with an edge connecting v and w. The precondition 
is that v and w are distinct vertices in g.

isEdge(v,w)—Return true if and only if there is an edge between vertices v and w 
in the graph.

25.5	 THE GRAPH INTERFACE

A graph is not a collection so the Graph interface is not a sub-interface of any other 
interface in our container hierarchy. It is very convenient to be able to iterate over the vertices 
adjacent to a given vertex so the Graph interface depends on the Iterator interface 
(though this is not shown in the UML diagram). The Graph interface appears in Figure 4.

Edges() : Integer

Vertices() : Integer

AddEdge(v, w : Integer) : Error	 { 0 <= v ≠ w < Vertices() }

IsEdge(v, w : Integer) : Boolean

NewIterator(v : Integer) : Iterator, Error	 { 0 <= v < Vertices() }

«interface» 

Graph

Figure 4: The Graph Interface
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Most of these functions work just as one would expect from the graph ADT. The AddEdge() 
and NewIterator() operations return Error values to indicate whether their preconditions 
have been met. There is no need for an iterator over the vertices in the graph because we 
know that they are (represented by) the integers between 0 and Vertices()-1.

25.6	 CONTIGUOUS IMPLEMENTATION OF THE GRAPH ADT

A contiguous implementation of the graph ADT represents a graph using an array. An initial 
set of natural numbers already represents vertices, so the only thing left to represent is the 
set of edges. An adjacency matrix m is an n × n Boolean matrix that represents a graph 
with n vertices by storing true at location m[v,w] if and only if there is an edge between v 
and w. Notice that this means that every edge is represented twice in the matrix.

This scheme is very simple and very fast: adding an edge to a graph or detecting whether 
an edge exists between two vertices are both Θ(1) operations, and iterating over the vertices 
adjacent to a vertex v takes time proportional to the number of vertices in the graph. 
Unfortunately, this speed comes at great cost because the matrix requires n2 storage locations. 
Most graphs are sparse, meaning they have far fewer than n2 edges, so often most of this 
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storage space is wasted. Even if a graph is dense (the opposite of sparse), space can be saved 
by storing the edges that are not in the graph rather than in the graph. In either case, the 
adjacency matrix representation does make efficient use of space.

25.7	 LINKED IMPLEMENTATION OF THE GRAPH ADT

A linked implementation of the graph ADT represents graphs by using space only for the 
edges in the graph. An adjacency list is a linked list of vertices adjacent to a given vertex. 
An array of adjacency lists holds all the edges in a graph. The diagram in Figure 5 shows 
the adjacency lists representation of the graph in Figure 2. Note that the array holds list 
headers and the adjacency lists are singly-linked.

nextvadjacent
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Figure 5: An Adjacency Lists Representation of a Graph

Notice that the adjacency lists representation, like the adjacency matrix representation, 
records every edge {v, w} twice: once on the list for the edges adjacent to v and once on 
the list for the edges adjacent to w.

The adjacency lists data structure uses space proportional to the sum of the number of 
vertices and edges (the array has space for every vertex, and there are twice as many nodes 
in the linked lists as there are edges in the graph). This is typically much less than the space 
required for the adjacency matrix representation. Also, adding an edge takes Θ(1) time and 
determining whether there is an edge between two vertices takes time proportional to the 
number of edges emanating from (one of ) the vertices; this is O(e) (where e is the number 
of edges in the graph) in the worst case, but typically it is much less. Thus the adjacency 
lists representation uses relatively little space but is still quite efficient.
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In implementing adjacency lists it is convenient to use a the linked list from our Container 
hierarchy to realize each adjacency list. The adjacent array then holds linked lists 
implementing the List interface rather than pointers to nodes.

25.8	 SUMMARY AND CONCLUSION

Graphs are an important modeling tool in computing. The graph ADT provides a few 
operations for building and querying a graph and this is carried over into the Graph 
interface. The adjacency matrix technique for representing graphs makes operations efficient 
but uses a great deal of space. The adjacency lists approach is nearly as fast but uses much 
less space. As a rule, unless a graph is dense or it has a small number of nodes (say, less 
than a few hundred), the adjacency lists representation is preferable.
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25.9	 REVIEW QUESTIONS

1.	List several elements of the graph ADT carrier set.
2.	What is the result of applying the graph ADT operation addEdge() twice with the 

same vertices? In other words, if g is a graph and v and w are vertices, what is the 
result of g.addEdge(v,w); g.addEdge(v,w)?

3.	How could you iterate over every vertex in a graph?
4.	Why is every edge in a graph represented twice in both the adjacency matrix and 

adjacency lists representations?

25.10	 EXERCISES

1.	Can a vertex be adjacent to itself in an undirected graph?
2.	 If a graph has no edges, can it have any paths? If a graph has edges, does it have 

a longest path?
3.	How many vertices must there be in the smallest cycle in an undirected graph? 

How many in the smallest cycle in a directed graph?
4.	 In Chapter 16 a tree was defined as a graph with a distinguished vertex r, called 

the root, such that there is exactly one simple path between each vertex in the tree 
and r. Show that this definition is equivalent to the definition stated in this chapter.

5.	Can a graph have more than one spanning tree? Explain.
6.	Use the operations of the graph ADT to construct the graph in Figure 2.
7.	Represent the graph in Figure 2 using an adjacency matrix.
8.	Represent the graph in Figure 2 using adjacency lists. Draw a picture like the one 

in Figure 5.
9.	Write the Graph interface in Go.
10.	Create an arrayGraph struct type in Go to represent graphs using an adjacency 

matrix. Write a NewArrayGraph(n int) function in Go that creates and 
returns a pointer to an arrayGraph instance for a graph with n vertices.

11.	Using the code you wrote in the last two exercises, write the Graph interface 
methods with a pointer to an arrayGraph as a receiver, thus implementing the 
graph ADT in Go using adjacency matrices.

12.	Create a linkedGraph struct type in Go to represent graphs using adjacency lists. 
The linkedGraph struct should have a field that is a slice of containers.
List values. Write a NewLinkedGraph(n int) function in Go that creates 
and returns a pointer to a linkedGraph instance for a graph with n vertices. 
This function should initialize the adjacency slice with instances of linked lists from 
the containers package.

13.	Extend the code you wrote in the last several exercises with an implementation of 
the graph ADT in Go using adjacency lists.
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25.11	 REVIEW QUESTION ANSWERS

1.	The graph ADT carrier set includes the empty graph, which as no vertices and 
no edges: <∅, ∅>. The next largest graph has a single vertex and no edges: <{0}, 
∅>. The next largest graphs have two vertices and either no edges or one edge: 
<{0,1}, ∅>, and <{0,1}, {{0,1}}>. There are several graphs with three vertices: <{0, 
1, 2}, ∅>, <{0, 1, 2}, {{0, 1}}>, <{0, 1, 2}, {{0, 2}}>, <{0, 1, 2}, {{1, 2}}>, <{0, 1, 
2}, {{0, 1}, {0, 2}}>, <{0, 1, 2}, {{0, 1}, {1, 2}}>, <{0, 1, 2}, {{0, 2}, {1, 2}}>, <{0, 
1, 2}, {{0, 1}, {0, 2}, {1, 2}}>.

2.	 If g is a graph and v and w are vertices, the result of g.ddEdge(v,w) is g with the 
edge {v, w} added to its edge set. The result of calling g.addEdge(v,w) again will 
be g with the edge {v, w} added to its edge set. But this edge was already in the 
edge set of g, so the second call does not change g. Hence applying addEdge() to a 
graph with the same vertices several times does nothing after the first call.

3.	 Iterating over every vertex in a graph g simply requires looping over every integer 
from 0 to vertices(g)−1.

4.	Every edge in a graph is represented twice in both the adjacency matrix and 
adjacency lists representations because in each case the representation “indexes” 
edges by their vertices. Because each edge has two vertices, each appears twice. 
Note that we could easily come up with representations in which an edge appears 
only once. For example, we could only put the smaller of the two vertices of an 
edge into the adjacency array in both the adjacency matrix and adjacency lists 
representations. This would save about half the space, but it would make iterating 
over the vertices adjacent to a given vertex (which turns out to be a very important 
operation) very slow: we would have to search the entire representation to find 
all the vertices adjacent to a given vertex. So in this case space is traded for time, 
and we use more space to get much faster performance in an essential operation.

Download free eBooks at bookboon.com



GO DATA STRUCTURES AND ALGORITHMS Graph Algorithms

246

26	 GRAPH ALGORITHMS

26.1	 INTRODUCTION

There are many important algorithms on graphs. In this chapter we examine a few of the 
most fundamental and widely used. In particular, we consider graph search algorithms and 
several algorithms based on them.

26.2	 SEARCHING GRAPHS

Many problems involving graphs require a systematic traversal of the graph along its edges—
this is termed a graph search. We have already seen graph search algorithms in the form 
of tree traversals, but these only apply to trees, not graphs in general.

As an example of a problem illustrating the need to search a general graph, suppose that we 
wish to solve a maze. A maze can be represented by a graph as follows: map the entrance, 
exit, and intersections in the maze to graph vertices and map the paths between the entrance, 
the exit, and intersections in the maze to graph edges. Moving through a maze from the 
entry to the exit corresponds to the problem of searching a graph representing the maze to 
find a path from the entry vertex to the exit vertex.

There are two main approaches to graph searching.

Depth-first search: A search that begins by visiting vertex v, and then recursively 
searches the unvisited vertices adjacent to v.

Breadth-first search: A search that begins by visiting vertex v, then visits the vertices 
adjacent to v, then visits the vertices adjacent to each of v’s adjacent vertices, and 
so on.

Vertices in a depth-first search are visited in an order that follows paths leading away from 
the starting vertex until the paths can be followed no further; the algorithm then backs 
up and follows other paths. Vertices deep in the graph (relative to the starting vertex) are 
visited sooner than shallow vertices. In contrast, during a breadth-first search the vertices 
closest to the starting vertex are visited first, then those a bit further away, and so on. Some 
problems are solved with one kind of search, some with the other, and in some cases it 
does not matter which kind of search is used.
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26.3	 DEPTH-FIRST SEARCH

Given its recursive characterization, it is not surprising that depth-first search is easily 
implemented using recursion. Consider the Go code in Figure 1. The DFS() function is 
called with a graph to be searched, an origin vertex to start from, and a function to apply 
to vertices. The function applied takes as arguments the graph and the edge followed to 
the visited vertex. The DFS() function has an array of Boolean values that keeps track of 
whether a vertex has been visited. The real work is done by the inner dfs() function. This 
recursive function takes a source vertex v as its argument. It iterates though the vertices 
adjacent to v, and for each adjacent vertex w that has not yet been visited, it applies the 
visit function to w, marks w as visited, and calls itself on w.

func DFS(g Graph, v0 int, visit func(Graph,int,int)) {
isVisited := make([]bool,g.Vertices())
var dfs func(int)
dfs = func(v int) {
iter,_ := g.NewIterator(v)
for w,ok := iter.Next(); ok; w,ok = iter.Next() {
if isVisited[w] { continue }
visit(g,v,w)
isVisited[w] = true
dfs(w)

}
}
visit(g,-1,v0)
isVisited[v0] = true
dfs(v0)

}

Figure 1: Recursive Depth-First Search

Just as with a binary tree traversal, we can also write a depth-first search using a stack rather 
than recursion. Figure 2 shows this algorithm.
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type Edge struct { v,w int } // stored in the stack
func StackDFS(g Graph, v0 int, visit func(Graph,int,int)) {
isVisited := make([]bool,g.Vertices())
stack := containers.NewLinkedStack()
stack.Push(Edge{-1,v0})
for edge,err := stack.Pop(); err==nil; edge,err = stack.Pop() {
v, w := edge.(Edge).v, edge.(Edge).w
if isVisited[w] { continue }
visit(g,v,w)
isVisited[w] = true
iter,_ := g.NewIterator(w)
for x,ok := iter.Next(); ok; x,ok = iter.Next() {
if !isVisited[x] { stack.Push(Edge{w,x}) }

}
}

}

Figure 2: Stack-Based Depth-First Search

The stack-based algorithm uses the same general strategy as the recursive algorithm: it keeps 
track of unvisited vertices and only processes those that have not yet been visited. Where 
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the recursive algorithm makes recursive calls on unvisited adjacent vertices after a vertex has 
been visited, this algorithm places the unvisited adjacent vertices in a stack.

Both versions of the depth-first search algorithm visit each vertex at most once and process 
each edge leaving every visited vertex exactly once. Each edge has two vertices so each edge 
is processed at most twice. Hence depth-first search runs in O(v+e) time in the worst case, 
where v is the number of vertices and e is the number of edges in the graph.

26.4	 BREADTH-FIRST SEARCH

The stack-based version of depth-first search places vertices adjacent to the current vertex in 
a stack, then it processes the vertex on top of the stack, placing its adjacent vertices on the 
stack, and so forth. The effect of this strategy is that vertices adjacent to the initial vertex 
are at the bottom of the stack and therefore get processed after vertices further away. If 
we use a queue instead of a stack, then adjacent vertices will be processed first, then those 
adjacent to those next, and so on. In short, we can make a breadth-first search algorithm 
from the stack-based depth-first search algorithm by simply replacing the stack with a queue. 
Such an algorithm is shown in Figure 3.

func BFS(g Graph, v0 int, visit func(Graph,int,int)) {
isVisited := make([]bool,g.Vertices())
q := containers.NewLinkedQueue()
q.Enter(Edge{-1,v0})
for edge,err := q.Leave(); err==nil; edge,err = q.Leave() {
v, w := edge.(Edge).v, edge.(Edge).w
if isVisited[w] { continue }
visit(g,v,w)
isVisited[w] = true
iter,_ := g.NewIterator(w)
for x,ok := iter.Next(); ok; x,ok = iter.Next() {
if !isVisited[x] { q.Enter(Edge{w,x}) }

}
}

}

Figure 3: Queue-Based Breadth-First Search

This algorithm visits each vertex exactly once and follows each edge at most twice, so its 
performance is in O(e+v), just like its stack-based peer. The only difference is that is visits 
vertices in a different order.

Download free eBooks at bookboon.com



GO DATA STRUCTURES AND ALGORITHMS Graph Algorithms

250

26.5	 PATHS IN A GRAPH

We can use graph searching algorithms to determine graph properties. Recall that two vertices 
are connected if and only if there is a path between them. We can determine this using either 
depth-first or breadth-first search by starting a search at one vertex and checking whether 
the search ever reaches the other vertex. Go code for such a function appears in Figure 4.

func IsPath(g Graph, v, w int) bool {
if v < 0 || g.Vertices() <= v { return false }
if w < 0 || g.Vertices() <= w { return false }
isReached := false
visit := func(g Graph, v1, v2 int) {
if w == v2 { isReached = true }

}
DFS(g,v,visit)
return isReached

}

Figure 4: Determining Whether Two Vertices are Connected

This function first checks whether the argument vertices are even in the graph—if one is 
not, then there is no path between them. It then uses depth-first search from the first vertex 
to check whether the second is ever reached and returns the result.

If two vertices are connected, there may be more than one path between them, and often it 
is useful to know the shortest path (the one with the fewest edges). The function in Figure 
5 finds the shortest path between two vertices.
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func ShortestPath(g Graph, v, w int) ([]int, error) {
if !IsPath(g,v,w) {
return nil, errors.New("The vertices are not connected")

}
toEdge := make([]int,g.Vertices())
visit := func(g Graph, v1, v2 int) {
toEdge[v2] = v1

}
BFS(g,w,visit)
result := make([]int,0,g.Vertices())
x := v
for x != w {
result = append(result,x)
x = toEdge[x]

}
result = append(result,x)
return result, nil

}

Figure 5: Finding the Shortest Path Between Connected Vertices
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The shortest-path function first makes sure that there is a path between the argument vertices 
and returns an error indication if there is not. The core of the algorithm is a process that 
takes a source vertex v and constructs a slice that contains, for each vertex except v, the 
vertex next on the shortest path back to v. This slice, called toEdge in Figure 5, must be 
constructed using a breadth-first search. A vertex x adjacent to v has its toEdge entry set 
to v because the shortest path from x back to v is obviously the edge to v. The vertices 
adjacent to x have their toEdge entries set to x because the shortest path back to v goes 
first to x and then to v (a shorter path could only exist if these edges were adjacent to v). 
The toEdge entries are constructed in like fashion for vertices further from v. Clearly, 
a breadth-first search is needed to visit vertices in the order necessary to make this work. 
Once the toEdge slice is constructed, it is an easy task to traverse it from the target 
vertex back to the source vertex to generate a shortest path between the two. In Figure 5, 
argument w is treated as the source vertex and v as the target so that the slice returned 
lists the path from v to w.

26.6	 CONNECTED GRAPHS AND SPANNING TREES

Besides determining whether two vertices are connected, we can also determine whether 
an entire graph is connected, and in much the same way. In this case, we can do a depth-
first or breadth-first search from any vertex in the graph and check whether every other 
vertex is visited. The graph is connected if and only if every other vertex is visited by either 
a breadth-first or depth-first search starting at a source vertex. We leave the code for this 
algorithm as an exercise.

Recall that a spanning tree is a sub-graph of a graph g that is a tree and contains every 
vertex of g. If we visit every vertex in a connected graph g from a source vertex and add 
the edge along which each vertex is visited to a new graph h, then h will be a spanning 
tree for g when we are done. This is the strategy used to construct a spanning tree in the 
Go code in Figure 6.
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func SpanningTree(g Graph) (Graph, error) {
if !IsConnected(g) {
return nil, errors.New("Graph g is not connected")

}
result := NewLinkedGraph(g.Vertices())
visit := func(g Graph, v1, v2 int) {
result.AddEdge(v1,v2)

}
DFS(g,0,visit)
return result, nil

}

Figure 6: Making a Spanning Tree for a Connected Graph

This function returns are error value when the argument graph is not connected.

26.7	 SUMMARY AND CONCLUSION

Depth-first and breadth-first search are two ways to visit the vertices of a graph by following 
its edges in an organized way. Both algorithms work in time proportional to the number of 
edges and vertices in the graph. Depth-first and breadth-first search are the basis for many 
algorithms that process graphs in various ways, including determining whether two vertices 
are connected, determining whether a graph is connected, finding the shortest path between 
two vertices, and finding a spanning tree for a connected graph.

26.8	 REVIEW QUESTIONS

1.	What is the relationship between graph search and graph traversal?
2.	How are graph searching algorithms related to stacks and queues?
3.	Under what circumstances is one graph searching algorithm preferable to the other?
4.	Does it matter whether we use depth-first or breadth-first search to find the shortest 

path between two vertices?
5.	Does it matter whether we use depth-first or breadth-first search to generate a 

spanning tree for a connected graph?
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26.9	 EXERCISES

Use the graph below to do the exercises.

0 1

2

3 8

6

7
4

5

1.	List the order in which the vertices are visited in a depth-first search from vertex 0 
in the graph above. Assume that adjacent vertices are visited in order from smallest 
to largest.

2.	List the order in which the vertices are visited in a breadth-first search from vertex 
0 in the graph above. Assume that adjacent vertices are visited in order from 
smallest to largest.

3.	Trace the execution of the shortest-path function in generating a shortest path 
between vertices 0 and 8 in the graph above. What is the path?
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4.	Trace the execution of the spanning tree function in generating a spanning tree for 
the graph above. What is the spanning tree?

5.	Write a Go function IsConnected(g Graph) bool to determine whether 
graph g is connected.

6.	Write a Go function ComponentCount(g Graph) int to count the number 
of connected components in graph g.

7.	The degree of a vertex is the number of edges connected to it. Write a Go function 
MaxDegree(g Graph) int to find the maximum degree of the vertices in 
graph g.

8.	Our graph algorithms are written to apply visit functions to graphs using either 
depth-first or breadth-first search. But we could also write the functions directly 
using graph search without a visit function. Rewrite the shortest path and spanning 
tree algorithms directly so that they do not call the depth-first or breadth-first 
search functions.

9.	The following problems can be solved by modeling the problem with a graph and 
then applying graph functions to the model. Explain how to solve these problems 
using graphs and graph algorithms.

a)	 A path through a maze.
b)	The smallest set of phone calls that must be made to transmit a message 

amongst a group of friends.
c)	 Determining whether it is possible to get from point A to point B using only 

main highways.
d)	Finding the degree of separation between two people in a community (the 

degree of separation between two people who know each other is one; the 
degree of separation between two people who do not know each other but 
have a mutual friend is two, and so on).

26.10	 REVIEW QUESTION ANSWERS

1.	Graph search is another name for graph traversal.
2.	The depth-first search algorithm uses a stack (or recursion), while the breadth-first 

search algorithm uses a queue. Otherwise, they are virtually identical.
3.	The depth-first and breadth-first search algorithms run in the same amount of 

time and use the same amount of space, so there is no basis for preferring one 
over the other in general. However, some algorithms require one or the other to 
work properly.

4.	The shortest path algorithm is an example of an algorithm that requires one of 
the search algorithms to work properly; in particular, the shortest path algorithm 
requires a breadth-first search to work properly.

5.	The spanning tree algorithm is an example of an algorithm where is does not matter 
which search algorithm is used: either depth-first or breadth-first search can be used 
to generate a spanning tree.
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GLOSSARY

abstract data type (ADT)—a set of values (the carrier set), and operations on those values 
(the method set).

abstract function—a function with a signature but no body.

acyclic graph—a graph with no cycles.

adjacency—vertices v1 and v2 are adjacent in an undirected graph G=<V, E> if {v1, v2} is 
a member of E.

adjacency list—a linked list of vertices adjacent to a given vertex.

adjacency matrix—an n × n Boolean matrix m that represents a graph with n vertices by 
storing true at location m[v,w] if and only if there is an edge between v and w.

ADT assertion—a statement that must be true of the carrier set values or method set 
operations of the type.

algorithm—a finite sequence of steps for accomplishing some computational task. An 
algorithm must have steps that are simple and definite enough to be done by a computer 
and terminate after finitely many steps.

algorithm analysis—the process of determining, as precisely as possible, how much of 
various resources (such as time and memory) an algorithm consumes when it executes.

array—a fixed length, ordered collection of values of the same type stored in contiguous 
memory locations; the collection may be ordered in several dimensions.

assertion—a statement that must be true at a designated point in a program.

associative array—see map.

average case complexity A(n)—the average number of basic operations performed by an 
algorithm for all inputs of size n given assumptions about the characteristics of inputs of 
size n.
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AVL tree—a binary search tree in which the balance factor at each node is -1, 0, or 1; the 
empty tree is an AVL tree.

balance factor of a tree node—the height of the left sub-tree of the node minus the height 
of the right sub-tree of the node, with the height of the empty tree defined as -1.

balanced tree—a tree such that for every node, the height of its sub-trees differ by at most 
some constant value.

basic operation—an operation fundamental to an algorithm used to measure the amount 
of work done by the algorithm.

best case complexity B(n)—the minimum number of basic operations performed by an 
algorithm for any input of size n.

binary search tree—a binary tree whose every vertex is such that the value at the vertex 
is greater than the values in its left sub-tree and less than the values in its right sub-tree.
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binary tree—an ordered tree whose vertices have at most two children. The children are 
distinguished as the left child and the right child. The sub-tree whose root is the left (right) 
child of a vertex is the left (right) sub-tree of that vertex.

breadth-first search—a search that begins by visiting vertex v, then visits the vertices 
adjacent to v, then visits the vertices adjacent to each of v’s adjacent vertices, and so on.

built-in type—a data type that is provided directly by a programming language.

carrier set—in an abstract data type or a data type, the set of values of the abstract data type.

chaining—a hashing collision resolution scheme in which key-value pairs whose keys collide 
are formed into a linked list or chain whose head is in the hash table.

circular doubly linked list—a doubly linked list in which the last node in the list holds a 
references to the first element rather than nil, and the first node in the list holds a reference 
to the last element rather than nil.

circular singly linked list—a singly linked list in which the last node in the list holds a 
references to the first element rather than nil.

class or type invariant—an assertion that must be true of any class instance or type value 
before and after calls of its exported operation.

collection—a traversable container.

collision—the event that occurs when two or more keys are transformed to the same hash 
table location.

complete binary tree—a tree whose every level is full except possibly the last, and only 
the right-most leaves at the bottom level are missing.

complexity C(n)—the number of basic operations performed by an algorithm as a function 
of the size of its input n when this value is the same for any input of size n.

computational complexity—the time (and perhaps the space) requirements of an algorithm.

concrete function—a function with both a signature and a body.

connected components—in a graph that is not connected, the sub-graphs that are connected.
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connected graph—a graph in which every pair of vertices is connected.

connected vertices—two vertices in a graph with a path between them.

container—an entity that holds finitely many other entities.

cursor—a value marking a location in a data structure.

cycle—a path <v1, v2, ..., vn> in a graph in which v1 = vn but no other vertices are repeated.

cyclic graph—a graph with a cycle of length at least three.

data structure—an arrangement of data in memory locations to represent values of the 
carrier set of an abstract data type.

data type—an implementation of an abstract data type on a computer.

depth-first search—a search that begins by visiting vertex v, and then recursively searches 
the unvisited vertices adjacent to v.

dequeue—a dispenser whose elements can be accessed, inserted, or removed only at its ends.

dictionary—see map.

digraph—a directed graph.

directed graph—a graph in which the edges are ordered pairs of vertices; the edges have 
direction and are represented by arrows.

dispenser—a non-traversable container.

divide and conquer algorithm—an algorithm that solves a large problem by dividing it 
into parts, solving the resulting smaller problems, and then combining these solutions into 
a solution to the original problem.

double hashing—in open addressing collision resolution, a probe sequence using an 
increment generated by applying a second hash function to the key.
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doubly linked list—a linked structure whose nodes each have two reference or pointer 
fields used to form the nodes into a sequence. Each node but the first has a predecessor link 
field containing a reference or pointer to the previous node in the list, and each node but 
the last has a successor link containing a reference or pointer to the next node in the list.

dynamic array—an array whose size is established at run-time and can change during 
execution.

element—a value stored in an array or a traversable container (a collection).

enumerable—see traversable.

every-case complexity—the number of basic operations performed by an algorithm as a 
function of the size of its input n when this value is the same for any input of size n.

external iteration—collection iteration under the control of a separate entity, called an 
iterator.

factory method—a non-constructor operation that returns a new instance of a class.

fixed array—an array whose size is established when space for the array is allocated and 
cannot change thereafter.

forest—a set of trees with no vertices in common.

full binary tree—a binary tree whose every level is full except possibly the last.

function signature—the name, number and types of parameters, and number and types 
of return values, of a function.

graph—a collection of vertices (or nodes) and edges connecting the vertices. An edge may 
be thought of as a pair of vertices. Formally, a graph is an ordered pair <V,E> where V is 
a set of vertices and E is a set of pairs of elements of V.

graph search—a systematic traversal of a graph along its edges.

hash function—a function that transforms a key into a value in the range of indices of a 
hash table.
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hash table—an array holding key-value pairs whose locations are determined by a hash 
function applied to keys.

heap—a complete binary tree whose every vertex has the heap-order property.

heap-order property—a vertex has the heap order property when the value stored at the 
vertex is at least as large as the values stored at its descendents.

height of a tree—the maximum level of any node in the tree.

implicit-receiver method set—a method set containing functions with an implicit receiver 
argument.

infix expression—an expression in which the operators appear between their operands.

inorder traversal—a tree traversal in which, at every node, and for every key at a node 
from left to right, the child to the left of a node key node is visited first, followed by the 
node key, followed by the child to the right of the node key.

interface—a collection of function signatures.

internal iteration—collection iteration under the control of the collection.

iterable—see traversable.

iteration—the process of accessing each element of a collection in turn; the process of 
traversing a collection.

iterator—an entity that provides serial access to each member of an associated collection.

iterator pattern—an object-oriented software design pattern specifying the use of an external 
iterator.

level of a node—in a tree, the number of edges in the path from the root to the node.

linear probing—in open addressing collision resolution, a probe sequence that begins with 
the hash table index and increments it by a constant value modulo the table size.

linked (data) structure—a collection of nodes formed into a whole through its constituent 
node link fields.
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linked tree—a linked structure whose nodes form a tree.

list—an ordered linear collection.

load factor—in hashing, the value λ = n/t, where n is the number of elements in the hash 
table and t is the table size.

loop invariant—an assertion that must be true at the start of every execution of the body 
of a loop.

map—an unordered collection of elements, which are values of an element type, accessible 
using a key, which is a value of a key type; also called a table, dictionary, or associative 
array.

method set—in an abstract data type, or a data type the set of operations of the abstract 
data type.

node—an aggregate variable with data and link (reference or pointer) fields; in a graph, a 
vertex.

open addressing—a hashing collision resolution scheme in which key-value pairs with 
colliding keys are stored at other free locations in the hash table found by probing the 
table for open locations.

order—the function g is in the set O(f), denoted g ∈ O(f), if there exist some positive 
constant c and non-negative integer n0 such that g(n) ≤ c ∙ f(n) for all n ≥ n0; informally, 
when g is in O(f) we say that g has the same order (of growth) as f.

ordered tree—a tree in which the order of the children of each node is specified.

path—in a graph, a sequence p = <v1, v2, ..., vn>, where n ≥ 2, such that every pair of 
vertices vi and vi+1 in p are adjacent.

path length—the number of edges in a path.

perfectly balanced tree—a tree all whose leaves are on the same level; that is, the path 
from the root to any leaf is always the height of the tree.

pointer—a type whose carrier set contains addresses of values of an associated base type.
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post condition—an assertion that must be true at the completion of an operation.

postfix expression—an expression in which the operators appear after their operands.

postorder traversal—a tree traversal in which, at every node, the children of the node are 
visited in order from left to right, followed by the node.

precondition—an assertion that must be true at the initiation of an operation.

prefix expression—an expression in which the operators appear before their operands.

preorder traversal—a tree traversal in which, at every node, the node is visited first, followed 
by the children of the node in order from left to right.

priority queue—a queue whose elements each have a non-negative integer priority used 
to order the elements of the priority queue such that the highest priority elements are at 
the front and the lowest priority elements are at the back.

queue—a dispenser holding a sequence of elements that allows insertions only at one end, 
called the back or rear, and deletions and access to elements at the other end, called the 
front.

receiver—when a function with a receiver is called, the receiver is an implicit argument of 
the function and may also be an implicit result of the function.

record—a finite collection of named values of arbitrary type called fields or members; a 
record is also called a struct.

recurrence—a recurrence relation plus one or more initial conditions that together recursively 
define a function.

recurrence relation—an equation that expresses the value of a function in terms of its 
value at another point.

recursive operation—an operation that either calls itself directly, or calls other operations 
that call it.

reference type—a type whose variables hold references to locations where data structures 
representing the values of the carrier set of the type are stored; compare to value type.
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sentinel value—a special value placed in a data structure to mark a boundary.

separate chaining—see chaining.

sequential search—an algorithm that looks through a list from beginning to end for a key, 
stopping when it finds the key.

set—an unordered collection in which an element may appear at most once.

simple cycle—a cycle in a graph with no repeated edges or vertices (except the first and 
the last vertices).

simple path—a list of distinct vertices such that successive vertices are connected by edges.

simple type—a type in which the values of the carrier set are atomic, that is, they cannot 
be divided into parts.

singly linked list—a linked data structure whose nodes each have a single link field used 
to form the nodes into a sequence. Each link but the last contains a reference or pointer 
to the next node in the list; the link field of the last node contains nil.

slice—a reference to a contiguous segment of an associated array.

software design pattern—a model proposed for imitation in solving a software design 
problem.

sorting algorithm—an algorithm that rearranges records in lists so that they follow some 
well-defined ordering relation on values of keys in each record.

spanning tree—any sub-graph of a connected graph G that is a tree and contains every 
vertex of G.

stack—a dispenser holding a sequence of elements that can be accessed, inserted, or removed 
at only one end, called the top.

static array—see fixed array.

string—a finite sequence of characters drawn from some alphabet.

struct—a record consisting of named fields of various types.
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structured type—a type whose carrier set values are composed of some arrangement of 
atomic values.

sub-graph—a graph H=<W, F> is a sub-graph of graph G=<V, E> if W ⊆ V and F ⊆ E.

table—see map.

tail recursive algorithm—an algorithm in which at most one recursive call is made as the 
last step of each execution of the algorithm’s body.

traversable—a container is traversable iff all the elements it holds are accessible to clients.

tree—a graph with a distinguished vertex r, called the root, such that there is exactly one 
simple path between each vertex in the tree and r; alternatively, an acyclic connected graph.

two-three tree—a perfectly balanced tree whose every node is either a 2-node with one 
value v and zero or two children, such that every value in its left sub-tree is less than v 
and every value in its right sub-tree is greater than v, or a 3-node with two values v1 and 
v2 and zero or three children such that every value in its left-most sub-tree is less than v1, 
every value in its middle sub-tree is greater than v1 and less than v2, and every value in its 
right-most sub-tree is greater than v2

undirected graph—a graph in which the edges are sets of two vertices; the edges have no 
direction and are represented by line segments in pictures.

unreachable code assertion—an assertion that is placed at a point in a program where 
execution should not occur under any circumstances.

value type—a type whose variables hold data structures representing the values of the carrier 
set of the type; compare to references type.

worst case complexity W(n)—the maximum number of basic operations performed by an 
algorithm for any input of size n.
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