


2 

 

Jon Kerridge

Using Concurrency and  
Parallelism Effectively – II

Download free eBooks at bookboon.com



3 

 

Using Concurrency and Parallelism Effectively – II
2nd edition
© 2015 Jon Kerridge & bookboon.com
ISBN 978-87-403-1039-9

Download free eBooks at bookboon.com

http://bookboon.com


Using Concurrency and  
Parallelism Effectively – II

4 

Contents

Contents
	 To view part I, download Using Concurrency and Parallelism Effectively – I

	 Preface	 Part I
	 Background	 Part I
	 Why Java and Groovy and Eclipse?	 Part I
	 Example Presentation	 Part I
	 Organisation of the Book	 Part I
	 Supporting Materials	 Part I
	 Acknowledgements	 Part I

1	 A Challenge – Thinking Parallel	 Part I
1.1	 Concurrency and Parallelism	 Part I
1.2	 Why Parallel?	 Part I
1.3	 A Multi-player Game Scenario	 Part I
1.4	 The Basic Concepts	 Part I
1.5	 Summary	 Part I

Download free eBooks at bookboon.com

Click on the ad to read more

https://inspiredbusinessmedia.co.uk/conferences/cmo-inspired-oct-2018/


Using Concurrency and  
Parallelism Effectively – II

5 

Contents

2	� Producer Consumer: A Fundamental Design Pattern	 Part I
2.1	 A Parallel Hello World	 Part I
2.2	 Hello Name	 Part I
2.3	 Processing Simple Streams of Data	 Part I
2.4	 Summary	 Part I
2.5	 Exercises	 Part I

3	� Process Networks: Build It Like Lego 	 Part I
3.1	 Prefix Process	 Part I
3.2	 Successor Process	 Part I
3.3	 Parallel Copy	 Part I
3.4	 Generating a Sequence of Integers	 Part I
3.5	 Testing GNumbers	 Part I
3.6	 Creating a Running Sum	 Part I
3.7	 Generating the Fibonacci Sequence	 Part I
3.8	 Generating Squares of Numbers	 Part I
3.9	 Printing in Parallel	 Part I
3.10	 Summary	 Part I
3.11	 Exercises	 Part I

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read more

Free eBook on  
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free


Using Concurrency and  
Parallelism Effectively – II

6 

Contents

4	� Parallel Processes: Non Deterministic Input	 Part I
4.1	 Reset Numbers	 Part I
4.2	 Exercising ResetNumbers	 Part I
4.3	 Summary	 Part I
4.4	 Exercises	 Part I

5	� Extending the Alternative: A Scaling Device and Queues	 Part I
5.1	 The Scaling Device Definition	 Part I
5.2	 Managing A Circular Queue Using Alternative Pre-conditions	 Part I
5.3	 Summary	 Part I
5.4	 Exercises	 Part I

6	� Testing Parallel Systems: First Steps	 Part I
6.1	 Testing Hello World	 Part I
6.2	 Testing the Queue Process	 Part I
6.3	 The Queue Test Script	 Part I
6.4	 Summary	 Part I
6.5	 Exercises	 Part I

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

http://www.deloitte.ca/careers


Using Concurrency and  
Parallelism Effectively – II

7 

Contents

7	 Deadlock: An Introduction	 Part I
7.1	 Deadlocking Producer and Consumer	 Part I
7.2	 Multiple Network Servers	 Part I
7.3	 Summary	 Part I
7.4	 Exercises	 Part I

8	� Client-Server: Deadlock Avoidance by Design	 Part I
8.1	 Analysing the Queue Accessing System	 Part I
8.2	 Client and Server Design Patterns	 Part I
8.3	 Analysing the Crossed Servers Network	 Part I
8.4	 Deadlock Free Multi-Client and Servers Interactions	 Part I
8.5	 Summary	 Part I
8.6	 Exercises	 Part I

9	� External Events: Handling Data Sources	 Part I
9.1	 An Event Handling Design Pattern	 Part I
9.2	 Utilising the Event Handing Pattern	 Part I
9.3	 Analysing Performance Bounds	 Part I

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

TMP PRODUCTION NY026057B

PSTANKIE

gl/rv/rv/baf

ACCCTR0005

Bookboon Ad Creative

4

6 x 4

12/13/2013

Bring your talent and passion to a
global organization at the forefront of
business, technology and innovation.
Discover how great you can be. 

Visit accenture.com/bookboon

©
2013 Accenture. 

All rights reserved.

http://s.bookboon.com/accentureCZintl


Using Concurrency and  
Parallelism Effectively – II

8 

Contents

9.4	 Simple Demonstration of the Event Handling System	 Part I
9.5	 Processing Multiple Event Streams	 Part I
9.6	 Summary	 Part I
9.7	 Exercises	 Part I

10	� Deadlock Revisited: Circular Structures	 Part I
10.1	 A First Sensible Attempt	 Part I
10.2	 An Improvement	 Part I
10.3	 A Final Resolution	 Part I
10.4	 Summary	 Part I

11	� Graphical User Interfaces: Brownian Motion	 Part I
11.1	 Active AWT Widgets	 Part I
11.2	 The Particle System – Brownian Motion	 Part I
11.3	 Summary	 Part I
11.4	 Exercises	 Part I

12	� Dining Philosophers: A Classic Problem	 Part I
12.1	 Naïve Management	 Part I
12.2	 Proactive Management	 Part I
12.3	 A More Sophisticated Canteen	 Part I
12.4	 Summary	 Part I

13	� Accessing Shared Resources: CREW	 Part I 
13.1	 CrewMap	 Part I
13.2	 The DataBase Process	 Part I
13.3	 The Read Clerk Process	 Part I
13.4	 The Write Clerk Process	 Part I
13.5	 The Read Process	 Part I
13.6	 The Write Process	 Part I
13.7	 Creating the System	 Part I
13.8	 Summary	 Part I
13.9	 Challenge	 Part I

14	� Barriers and Buckets: Hand-Eye Co-ordination Test	 Part I
14.1	 Barrier Manager	 Part I
14.2	 Target Controller	 Part I
14.3	 Target Manager	 Part I
14.4	 Target Flusher	 Part I

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

9 

Contents

14.5	 Display Controller	 Part I
14.6	 Gallery	 Part I
14.7	 Mouse Buffer	 Part I
14.8	 Mouse Buffer Prompt	 Part I
14.9	 Target Process	 Part I
14.10	  Running the System	 Part I
14.11	 Summary	 Part I

	 Index	 Part I

	 Preface	 12
	 Organisation of the Book	 12
	 Supporting Materials	 12

15	� Communication over Networks: Process Parallelism	 14
15.1	 Network Nodes and Channel Numbers	 15
15.2	 Multiple Writers to One Reader	 16
15.3	 A Single Writer Connected to Multiple Readers	 19
15.4	 Networked Dining Philosophers	 23
15.5	 Running the CREW Database in a Network	 27
15.6	 Summary	 33

16	� Dynamic Process Networks: A Print Server	 34
16.1	 Print Spooler Data Objects	 35
16.2	 The PrintUser Process	 37
16.3	 The PrintSpooler Process	 38
16.4	 Invoking The PrintSpooler Node	 43
16.5	 Invoking A PrintUser Node	 44
16.6	 Summary	 44

17	� More Testing: Non-terminating Processes	 45
17.1	 The Test-Network	 47
17.2	 The Process Network Under Test	 50
17.3	 Running The Test	 52
17.4	 Summary	 52

18	 Mobile Agents: Going for a Trip	 53
18.1	 Mobile Agent Interface	 53
18.2	 A First Parallel Agent System	 54
18.3	 Running the Agent on a Network of Nodes	 59

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

10 

Contents

18.4	 Result Returning Agent	 62
18.5	 An Agent with Forward and Back Channels	 68
18.6	 Let’s Go On A trip	 71
18.7	 Summary	 78

19	� Mobile Processes: Ubiquitous Access	 79
19.1	 The Travellers’ Meeting System	 80
19.2	 The Service Architecture	 81
19.3	 Universal Client	 82
19.4	 The Access Server	 85
19.5	 Group Location Service	 89
19.6	 Running the System	 93
19.7	 Commentary	 93

20	� Redirecting Channels: A Self-Monitoring Process Ring	 94
20.1	 Architectural Overview	 94
20.2	 The Receiver process	 96
20.3	 The Prompter Process	 97
20.4	 The Queue Process	 98
20.5	 The State Manager Process	 99
20.6	 The Stop Agent	 100
20.7	 The Restart Agent	 103
20.8	 The Ring Agent Element Process	 104
20.9	 Running A Node	 115
20.10	  Observing The System’s Operation	 116
20.11	 Summary	 117
20.12	 Challenges	 117

21	 Mobility: Process Discovery	 118
21.1	 The Adaptive Agent 	 122
21.2	 The Node Process	 127
21.3	 The Data Generator Process	 135
21.4	 The Gatherer Process	 139
21.5	 Definition of the Data Processing Processes	 139
21.6	 Running the System	 142
21.7	 Typical Output From the Gatherer Process	 144
21.8	 Summary	 145
21.9	 Challenge	 145

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

11 

Contents

22	� Automatic Class Loading – Process Farms	 146
22.1	 Data Parallel Architectures	 147
22.2	 Task Parallel Architectures	 151
22.3	 Generic Architectures	 151
22.4	 Architectural Implementation	 152
22.5	 Summary	 165

23	� Programming High Performance Clusters	 166
23.1	 Architectural Overview	 167
23.2	 The Host and Node Scripts	 169
23.3	 An Application – Montecarlo Pi	 178
23.4	 Summary	 189

24	 Big Data – Solution Scaling	 190
24.1	 Concordance – A Typical Problem	 190
24.2	 Concordance Data Structures	 191
24.3	 The Algorithm	 192
24.4	 Analysis of Total Time Results	 197
24.5	 Analysis of Algorithm Phases	 198
24.6	 Dealing with Larger Data Sets	 200
24.7	 Implementation of the Scalable Architecture	 204
24.8	 Performance Analysis of the Distributed System	 218
24.9	 Summary	 222

25	 Concluding Remarks	 224
25.1	 The Initial Challenge – A Review	 225
25.2	 Final Thoughts	 228

26	 References	 229

	 Index	 233

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

12 

Contents

Preface
In the second part of Using Concurrency and Parallelism Effectively we look at how parallelism can 
be exploited in a variety of modern computing system environments. These include networked and 
distributed systems, clusters of workstations and, of course multi-core processors. Multi-core processors 
have now become ubiquitous and it is nigh on impossible to buy any form of off-the-shelf computing 
system that does not contain a multi-core processor. One key advantage of using a system based upon 
the Java Virtual Machine is that we can make use of multi-core processors without any additional 
effort because the parallel constructs used in this book are able to make immediate and effective use of 
multi-core processors without any additional effort on the part of the programmer other than ensuring 
that their code contains sufficient parallel components to utilise the cores. The crucial advantage of the 
underlying JCSP package is that the definition of the processes does not change as we move from an 
interleaved concurrent implementation to truly parallel system in which processes are run on different 
cores or processors over a network. All that changes is the manner in which the processes are invoked.

This capability is more fully exploited as we introduce the capability of using distributed systems that 
execute on Ethernet based networks and workstation clusters. One of the more challenging aspects of 
using such clusters and networks  is the ability to load the process network over the network from a single 
‘host’ workstation. This challenge is addressed in Chapters 22 and 23 by means of a generic architecture 
that enables process and class loading over a network in a transparent manner. The only requirement 
of the programmer is the need to describe the channel connections that connect the processes. This is 
achieved using a knowledge of the architecture of the network in terms of its IP addresses.

Organisation of the Book

This book assumes that the reader is fully familiar with the material presented in the first book entitled 
Using Concurrency and Parallelism Effectively – I, which is available from the same web site.

This second book presents material that explains how systems can be constructed which run on multiple 
processing nodes. Chapter 15 provides the basic introduction to multiprocessor systems by taking some 
of the examples developed in this book and running them on a multi-processor system. Thereafter more 
complex examples are created that solve a variety of parallel programming problems.

Supporting Materials

The necessary libraries for the packages used are available from the same web site as the book’s text. 
This comprises jar files for the JCSP and Groovy Parallel packages. Documentation for these packages 
is also provided. A readme text file that describes the library folder structure required is also provided 
so readers can create the required learning environment quickly and easily.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

13 

Contents

The source of all the examples is provided in the form of an archived Eclipse project, which can be 
imported directly into Eclipse, once the required Eclipse environment has been constructed as described 
in the readme file.

The source code comprises two projects; one called ChapterExamples that contains the source of all the 
examples used throughout the text. The other, ChapterExercises, contains supporting material for the 
Exercises given at the end of some of the Chapters. In these classes there are comments placed where 
the reader is asked to supply the required coding.

The original version of JCSP included a package called net. This enabled the construction of TCP/IP 
connected process networks in a somewhat cumbersome manner. These versions of the process codes 
are still available in ChapterExamples.  Each example has its own PDF file containing the description 
relating to that example. The text of the book uses a more recent version of the networking package 
called net2. The material presented in the book is based upon the net2 version of the process networks.

The source of the supporting material is also available in a zip file for non-Eclipse users.

My thanks to the many people who have suggested corrections and other alterations to the text. In 
particular Joe Bowbeer, who has read both parts in detail and suggested many very helpful corrections.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

14 

Communication over Networks: Process Parallelism


15	� Communication over Networks: 
Process Parallelism

This chapter begins the second part of the book where we consider networks of processes that execute 
over TCP/IP networks and thus the systems run in parallel and as such defines some basic concepts:

•	 net channels
•	 net channel locations and addresses
•	 network nodes
•	 networked versions of the Dining Philosophers and CREW database from previous 

chapters 12 and 13 are presented to aid understanding

JCSP provides a transparent means of connecting processes, whether they are on the same processor, 
running concurrently, or if they are executing on separate processes in parallel. Further, we can simulate 
processes executing in parallel on a single processor by running each process network in a different Java 
Virtual Machine (JVM). In this latter case there will be no performance gain but the designer is able to 
assure themselves that the system is functioning as expected. Thus we can test a multi-processor system 
in a single processor environment knowing that, at the level of inter-process communication the system 
functions as expected but that it will perform in a different manner when placed on the multi-processor 
system. If the multi-processor system uses specific hardware then that functional test will have to either 
be simulated or wait until the system can be tested on the actual hardware.

The definition of the processes that make up the process network, regardless of the processor upon which 
it will execute and whether or not it is connected to an internal or network channel, remains the same. 
Thus once a process has been tested, as described in Chapters 6 and 17, we can be assured that it will 
behave as demonstrated by that testing process. The design of the JCSPNet package architecture means 
that the actual physical layer used to implement the underlying communication network is completely 
hidden from the application and in particular the processes and their connection over that network. The 
only requirement is that the script used to invoke a network of processes on a specific processor utilises a 
specific network node factory compatible with the underlying communications architecture. Each process 
network running on a processor has to initialise itself as a node within the communications system.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

15 

Communication over Networks: Process Parallelism


JCSPNet utilises the underlying Java socket mechanism and thus inherently there are some limitations 
on the nature of networks that can be constructed. In this chapter we explore these limitations. Initially, 
the means by which nodes identify themselves to the network and then define network communication 
channels is described. The JCSP library contains two network architecture packages, net and net2. The 
former creates a mechanism similar to a domain name server and requires the creation of names for 
each network channel. As such it is a little cumbersome to use. The second package, net2 (Chalmers, 
2009) (Chalmers, 2008), utilises the underlying TCP/IP address mechanisms and is thus somewhat 
more flexible to use. The presented examples use the net2 package.

15.1	 Network Nodes and Channel Numbers

A node in a network is uniquely identified by its TCP/IP address and a port number. The channels 
connected to a node are each given a unique number, called the Channel Number, to distinguish each 
of the channels. A processor with a single TCP/IP address can support many distinct network nodes 
provided they have unique port addresses. A net channel is fully defined by its input channel location 
which comprises: TCP/IP address: Port / Channel Number.

In the same way that there are any and one channel connections for ordinary channels then the same 
applies to net channels as shown in Figure 15-1. Essentially, an output process writes to the net. An 
input process reads from the net. A one2net connection provides a connection between one node 
and the net. An any2net connection provides a connection between multiple nodes and the net. An 
any2net connection has the same properties as in non-network channels in that at one time only one 
node can write to the any end. The output end of a channel, either one or any is defined by the input 
channel location.

net

any2net 

one2net

Output 

Node 

net2any 

net2one

Input 

Node 
Output 

Node 

Output 

Node 

Input 

Node 

Figure 15-1 The Network Channel Types

A net2one channel provides an input connection between the net and a single node. A net2any channel 
provides a connection between the net and any number of processes on the Input Node. A corollary of 
this definition is that it is not possible to create an any to any connection between multiple output nodes 
and multiple input nodes. These aspects are explored in the following sections.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

16 

Communication over Networks: Process Parallelism


The creation of the communication structure does require that the input end of a net channel is created 
BEFORE it is referred to by one or more output ends. This means that care has to be taken in the order 
in which nodes and net channels are created. In some cases it may be necessary to create additional 
communications to ensure the channels are created in the correct sequence. As a general rule a node 
should create all its input channels before creating any output channels.

15.2	 Multiple Writers to One Reader

Figure 15-2 shows a network comprising many Sender, or writing processes, each connected using an 
any2net channel to a network, shown as a heavy dashed line. A single Receiver, or reading process 
is connected to the network by means of a net2one channel. 

Sender 

Sender 

Sender 

Sender 

Receiver 

Figure 15-2 The Multi-Sender Single Receiver System

Each process defines its channel property as either a ChannelInput in the Receiver process or 
ChannelOutput in the Sender process. This emphasises the fact that a process definition is totally 
unconcerned with the nature of the channel used to connect the process to another.

The Receiver process repeatedly reads in a value v {16} from any of the Sender processes and prints 
it on the console window {17} as shown in Listing 15-1. 

10	 class Receiver implements CSProcess {
11	  
12	  def ChannelInput inChannel
13	  
14	  void run() {
15	  while (true) {
16	  def v = inChannel.read()
17	  println "$v"
18	  }
19	  }
20	 }

Listing 15-1 The Receiver Process

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

17 

Communication over Networks: Process Parallelism


A Sender process simply waits for 10 seconds {18} and then outputs its identity String id {19}, and 
then repeats the sequence forever, as shown in Listing 15-2. 

10	 class Sender implements CSProcess {
11	  
12	  def ChannelOutput outChannel
13	  def String id
14	  
15	  void run() {
16	  def timer = new CSTimer()
17	  while (true) {
18	  timer.sleep(10000)
19	  outChannel.write ( id )
20	  }
21	  }
22	 }

Listing 15-2 The Sender Process

The system shown in Figure 15-2 is invoked by initially running the Receiver node as this provides the 
input end of the channel connecting the nodes. The required script is shown in Listing 15-3. 

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

 

 
                . 

http://s.bookboon.com/AlcatelLucent


Using Concurrency and  
Parallelism Effectively – II

18 

Communication over Networks: Process Parallelism


In all the following examples we shall use the loop-back TCP/IP address “127.0.0.x” because this makes 
it easier to run in a single Eclipse environment. Each node of the network of processes is executed in 
its own JVM within the Eclipse environment, simply by executing the script that creates the node. To 
run any of the networked systems, on a real network all that is required is to modify the node’s TCP/
IP address appropriately.

The node’s address is specified {10} after which a node address is created at that IP address listening on 
port 3000. The node is then initialised {12}. This operation is common to all node instances and must 
be completed for each node in the network. A NetChannel is now created called comms {14}. This uses 
a call to the method numberedNet2One(), which creates an input channel from the net with channel 
number 100. All the Sender processes must then generate a connection to this input channel. A list 
comprising one Receiver process is then created {15} and the process is run {17}.

10	 def receiverNodeIP = "127.0.0.1"
11	 def receiverNode = new TCPIPNodeAddress(receiverNodeIP, 3000)
12	 Node.getInstance().init (receiverNode)
13
14	 def comms = NetChannel.numberedNet2One(100)
15	 def pList = [ new Receiver ( inChannel: comms ) ]
16
17	 new PAR ( pList ).run()

Listing 15-3 The Receiver Node

The creation of a Sender node is shown in Listing 15-4. The user is asked to supply the Sender’s identity 
{21}, which is then used to form the last part of its node’s IP address {10–13}. The Sender node is then 
created as described previously {14–15}. The sender process has no input channels so we can procede 
directly to creating the output channel connection to the Receriver node. The Receiver’s node address is 
created {17–18} as receiverNode. We can then use that node address to create a net output channel 
{20}. As we want to run many Sender nodes the net output channel is created as any2net. The channel 
number to which the output channel is connected must be the same as the corresponding input channel 
specified in the Receiver node. A list comprising a single process is created {21} and the process run {23}.

10	 def v= Ask.Int ("Sender identity number 2-9 ? ", 2, 9)
11
12	 def senderNodeIPbase = "127.0.0."
13	 def senderNodeIP = senderNodeIPbase + v
14	 def senderNode = new TCPIPNodeAddress(senderNodeIP, 3000)
15	 Node.getInstance().init (senderNode)
16
17	 def receiverNodeIP = "127.0.0.1"
18	 def receiverNode = new TCPIPNodeAddress(receiverNodeIP, 3000)
19

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

19 

Communication over Networks: Process Parallelism


20	 def comms = NetChannel.any2net(receiverNode, 100)
21	 def pList = [ new Sender ( outChannel: comms, id: v ) ]
22
23	 new PAR ( pList ).run()

Listing 15-4 A Sender Node

Implicitly, an any2net connected to a net2one channel implements a fair strategy because multiple 
write requests for the channel are queued in the order they arrive. This can be observed in the output 
from the system because the order in which messages appear is always the same. The Receiver process 
could incorporate the net2one channel in an alternative. In this case the input of a message from the 
any2net channel would be governed by the operation of the associated ALT. Thus a queue of messages 
would build up if the ALT did not service the any2net channel sufficiently quickly but they would be 
processed in the order in which they arrived on the channel.

While the network is running further Sender nodes can be created, provided they each have a unique 
identity. The output from Receiver will reflect that addition as they occur.

15.3	 A Single Writer Connected to Multiple Readers

A single writer process Puts data to one of many reader processes that Get data from the network. 
The network structure is shown in Figure 15-3. Each write operation undertaken by the Put process 
will be accepted by only one of the Get processes. It has to be recalled that each communication over 
a shared any channel always results in a single communication between a pair of processes. Thus in 
order to show this it will be necessary to make each Get process sleep for a short period so that each 
communication from Put has a chance of being read by a different Get process. All the Get processes 
have to be created on the same node.

 

 

Get 

Get 

Get 

Get 

Put 
Get Node 

Figure 15-3 One Writer Multiple Reader Process Network

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

20 

Communication over Networks: Process Parallelism


The Put process shown in Listing 15-5 shows a process that simply writes a sequence of increasing 
integers to its outChannel {17}. This is done as quickly as possible with no delay between each write 
operation, though the output will be delayed if there is no input channel ready to read the data.

10	class Put implements CSProcess { 
11
12	  def ChannelOutput outChannel 
13	  
14	  void run() {
15	  def i = 1
16	  while (true) {
17	  outChannel.write ( i )
18	  i = i + 1
19	  }
20	  }
21	}

Listing 15-3 The Put Process

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

��������	
�����
������
��������
���������
�����������
��������
�����
��
���������������������������

������
������

������������������������������ �����	�����
	�
�����	������!���"�
	������������

�
	�

�����#$%����&'())%�*+������
	�
���,���������
�-

.�
��������������������
������������
��

��������	
��
����


��	��������	
��
����


���������
���


����������


����������
�����
��


���������

 The Wake
the only emission we want to leave behind

http://www.mandieselturbo.com


Using Concurrency and  
Parallelism Effectively – II

21 

Communication over Networks: Process Parallelism


The Get process, Listing 15-6, has two properties, its inChannel {12} and the identity, id {13}, of the 
Get process instance.

10	class Get implements CSProcess { 
11		   
12	  def ChannelInput inChannel
13	  def int id = 0 
14	  
15	  void run() {
16	  def timer = new CSTimer()
17	  while (true) {
18	  def v = inChannel.read()
19	  println "$id .. $v"
20	  timer.sleep(200 * v)
21	  }
22	  }
23	}

Listing 15-4 The Get Process

A timer is defined {16} and within the processes’ main loop a value v {18} is read from the inChannel 
and then printed {19} after which the process sleeps for a time proportional to the value read {20}. 
This means that increasingly the output from the Get processes should be slowed down as increasing 
values of v are read.

Listing 15-7 shows the way in which multiple copies of the Get process can be created, within the 
same node. 

10	def numberOfGets = Ask.Int("How many get processes (2..9)?", 2, 9)
11
12	def manyGetNodeIP = "127.0.0.2"
13	def manyGetAddr = new TCPIPNodeAddress(manyGetNodeIP, 3000)
14	Node.getInstance().init (manyGetAddr)
15
16	def comms = NetChannel.net2any()
17	def pList = (0 ..< numberOfGets).collect{
18		 i -> new Get ( inChannel: comms, id: i ) 
19		 }
20
21	new PAR ( pList ).run()

Listing 15-7 The Creation of Many Get processes Within a Single Node

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

22 

Communication over Networks: Process Parallelism


A shared net2any channel can only be accessed by processes on the same node; hence we need to create 
multiple Get processes on the same node. The number of Get processes is obtained {10}. The get node is 
then created {12–14}. The input end of the net channel, comms, is then created as a net2any() channel 
{16}. In this case the numbered version of channel creation has not been used; this means that channels 
are allocated a number by default starting at 50. A list, pList, is then created {17–19} by collecting 
the required number of Get process instances, each with a unique id and all accessing the single input 
channel comms. The list of processes is then run {21}

10	def putNodeIP = "127.0.0.1"
11	def getNodeIP = "127.0.0.2"
12
13	def nodeAddr = new TCPIPNodeAddress(putNodeIP,3000)
14	Node.getInstance().init (nodeAddr)
15
16	def getNode = new TCPIPNodeAddress(getNodeIP, 3000)
17	def comms = NetChannel.one2net(getNode, 50)
18
19	def pList = [ new Put ( outChannel: comms ) ]
20
21	new PAR ( pList ).run()

Listing 15-8 The Node Running the Put Process

Listing 15-8 shows how the node that runs the Put process is created. Both node IP addresses are defined 
{10, 11}, after which the Put node instance is created {13, 14}. The Put node has no input channels and 
so the node address of the Get node can be created as getNode {16}. The net output channel comms 
can now be created as a one2net channel {17} connected to the default channel numbered 50. The list 
pList is then defined {19} containing a single Put process instance, which is then run {21}.

On the accompanying web site there is a version of the script used to invoke a single Get process, which 
the interested reader can use to convince themselves that it is not possible to create multiple copies of 
a single Get process accessing a shared netaAny channel. Effectively, an attempt to create a second 
Socket with the same address is being undertaken and not surprisingly this causes an error.

Execution of the Put and many Get processes produces an output stream that over a period runs ever 
slower as the time delay increases in each Get process instance. Further inspection of the output shows 
that the order in which the values are read by the Get processes remains unaltered as would be expected 
and that the values are read by the different Get processes in turn.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

23 

Communication over Networks: Process Parallelism


15.4	 Networked Dining Philosophers

As another demonstration of shared networked channels we implement the canteen based version of 
the dining philosophers discussed previously in Chapter 12. The process definition for the Canteen, 
Philosophers and Kitchen are taken directly from those presented in Chapter 12. All that has changed 
is the manner of their invocation.

Inspection of Listing 12-9 will show that there is a shared channel to which the Philosopher 
processes write to the Canteen and that there is another by which the Canteen writes data back to 
the Philosophers. This means the Philosopher processes all have to be executed on the same Node. 
The networked structure of the system is shown in Figure 15-4. The network is represented by the central 
ellipse. The figure shows the IP-addresses of the nodes, together with their ports and the channel numbers 
allocated to each channel at each node.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/gee_change


Using Concurrency and  
Parallelism Effectively – II

24 

Communication over Networks: Process Parallelism


Philosophers 

Kitchen 

/52 

/51 

/50 

Canteen 
 

COOKED 

 

GETONE 

 

GOTONE 

127.0.0.3:3002 

127.0.0.1:3003 

127.0.0.2:3000 
/51           /50 

/50 

Figure 15-4 The Networked Structure for the Dining Philosophers Canteen Based Solution

The Canteen is run on a node as shown in Listing 15-9. The import {10} explicitly imports the process 
definition from package c12 reinforcing the fact that we are reusing a process, originally executed on a 
single processor for execution on a network of processors. The IP address of each node is defined {12–14}

10	import c12.canteen.*
11
12	def chefNodeIP = "127.0.0.1"
13	def canteenNodeIP = "127.0.0.2"
14	def philosopherNodeIP = "127.0.0.3"
15
16	def canteenNodeAddr = new TCPIPNodeAddress(canteenNodeIP, 3000)
17	Node.getInstance().init (canteenNodeAddr)
18	def cooked = NetChannel.net2one() 
19	println "cooked location = ${cooked.getLocation()}"
20
21	def getOne = NetChannel.net2one()
22	println "getOne location = ${getOne.getLocation()}"
23
24	getOne.read() // signal from the philosophers
25	def philosopherAddr = new TCPIPNodeAddress (philosopherNodeIP, 3002)
26	def gotOne = NetChannel.one2net(philosopherAddr, 50)
27
28	def processList = [
29	  �new ClockedQueuingServery(service:getOne, deliver:gotOne, supply:cooked)
30	  ]
31	new PAR ( processList ).run() 

Listing 15-9 The Invocation of the Canteen Node

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

25 

Communication over Networks: Process Parallelism


The Canteen node instance is created, after which the input end of the channel from the Chef, called 
cooked, can be created {18}. The location of this channel is printed, confirming that it has the default 
channel number 50 {19}. The input end of the channel from the Philosophers is created called getOne 
and its location is printed {21, 22}. This shows that, by default, it has been allocated to channel number 51. 
The Canteen process cannot create the remaining output channel from the Canteen to the Philosophers 
because we need to be assured that the Philosopher node has been created. The process therefore waits 
until a signal is received from the Philosopher node {24}. Once the Philosopher node is created, it will 
send the required signal which allows the Canteen node to make the output connection to the Philosopher 
node {25, 26}. The gotOne channel is assumed to be on channel number 50 on the Philosopher node. 
The Canteen is the one end of all the networked channels and this can be observed in the definition 
of each of the networked channels {18, 21, 26}. The ClockedQueuingServery version of the canteen 
is invoked {28–30} and run {31}. The Canteen node must be created first, otherwise the other nodes 
will attempt to connect to input channel ends that do not yet exist. The order in which the Kitchen and 
Philosopher nodes are created is immaterial.

The Kitchen is invoked as shown in Listing 15-10, within the Kitchen process, which like all the other 
nodes will also create a console by which the operation of the system can be observed. The Kitchen node 
instance is created {16, 17}. The node address for the Canteen is created {18} and then an output channel 
end is created connecting to the cooked channel of the Canteen. The channel location is printed for 
confirmation {20} and then the imported process {10} is run {22, 23}.

10	import c12.canteen.*
11
12	def chefNodeIP = "127.0.0.1"
13	def canteenNodeIP = "127.0.0.2"
14	def philosopherNodeIP = "127.0.0.3"
15
16	def TCPIPNodeAddress chefNodeAddr = new TCPIPNodeAddress(chefNodeIP,3003)
17	Node.getInstance().init (chefNodeAddr)
18	def canteenAddress = new TCPIPNodeAddress(canteenNodeIP,3000)
19	def cooked = NetChannel.one2net(canteenAddress, 50)
20	println "cooked location = ${cooked.getLocation()}"
21
22	def processList = [ new Kitchen ( supply: cooked) ]
23	new PAR ( processList ).run() 

Listing 15-10 The Kitchen Node

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

26 

Communication over Networks: Process Parallelism


The collection of Philosopher processes is invoked by means of the script shown in Listing 15-11. 

10	import c12.canteen.*
11
12	def chefNodeIP = "127.0.0.1"
13	def canteenNodeIP = "127.0.0.2"
14	def philosopherNodeIP = "127.0.0.3"
15
16	def philosopherNodeAddr = new TCPIPNodeAddress(philosopherNodeIP,3002)
17	Node.getInstance().init (philosopherNodeAddr)
18	def gotOne = NetChannel.net2any() 
19	println "gotOne location = ${gotOne.getLocation()}"
20
21	def canteenAddress = new TCPIPNodeAddress(canteenNodeIP,3000)
22	def getOne = NetChannel.any2net(canteenAddress,51)
23	println "getOne location = ${getOne.getLocation()}"
24
25	getOne.write(0)
26	def philList = ( 0 .. 4 ).collect{
27	 �i -> return new Philosopher(philosopherId:i, service:getOne, deliver:gotOne)
28	 }
29	new PAR ( philList ).run() 

Listing 15-11 The Node Running the Collection of the Philosopher Processes

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Corporate eLibrary
See our Business Solutions for employee learning

Click here

Management

CoachingMotivationGoal setting

Problem solving

Time Management

Project Management

http://s.bookboon.com/bbg-elibrary-2015


Using Concurrency and  
Parallelism Effectively – II

27 

Communication over Networks: Process Parallelism


The Philosopher node instance is created {16, 17} and then the input channel from the Canteen is 
created as the channel gotOne {18} and its location printed {19}. The channel gotOne is shared among 
all the Philosophers and so is defined to be net2any. The Canteen node has to be created before the 
Philosphers node and so we can create the required output channel connection to the Canteen called 
getOne {21–23}. It is important to note here that the channel numbers allocated at each node have 
to be carefully managed so that the correct connections are made. Here for example we know that the 
input channel in the Canteen node was the second one created and hence will be numbered 51. The 
Philosopher node can now write a signal on the getOne channel {25}, which allows the Canteen node 
to complete its creation. The collection of Philosopher processes can now be created and run {26–29}.

15.5	 Running the CREW Database in a Network

The simplest way to run the CREW Database example of Chapter 13 (see Figure 13-1) is to execute the 
Database process on one node and each of the external Read and Write processes on their own node. 
Each process is allocated to its own node with its own TCP/IP address. The scripts that run each of the 
required node processes are described in the following sections.

15.5.1	 Read Process Node

The script to create a Read process node is shown in Listing 15-12. The first aspect to note is that the 
script imports the Read process from package c13 {10} ensuring that the process previously described, 
that ran in a single node system is exactly the same as that being used in the multi-node version.

10	import c13.Read
11
12	def dbIp = "127.0.0.1"
13	def readBase = 100
14	def readerBaseIP = "127.0.0."
15	def readerId = Ask.Int ("Reader process ID (0..4)? ", 0, 4)
16	def readerIndex = readBase + readerId
17	def readerIP = readerBaseIP + readerIndex
18	def readerAddress = new TCPIPNodeAddress(readerIP, 1000)
19	Node.getInstance().init(readerAddress)
20	 
21	�println "Read Process $readerId, $readerIP is creating its Net channels "
22
23	//NetChannelInput 
24	def fromDB = NetChannel.numberedNet2One(75) // the net channel from the database
25	println "fromDB location = ${fromDB.getLocation()}"
26
27	//NetChannelOutput 
28	def dbAddress = new TCPIPNodeAddress(dbIp, 3000)
29	�def toDB = NetChannel.one2net(dbAddress, readerIndex) // the net 

channel to the database

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

28 

Communication over Networks: Process Parallelism


30	println "toDB location = ${toDB.getLocation()}"
31	toDB.write(0)
32	fromDB.read()
33
34	println "Read Process $readerId has created its Net channels "
35	def consoleChannel = Channel.one2one()
36	def pList = [ 
37		�  new Read ( id:readerId, r2db: toDB, db2r: fromDB, toConsole: 

consoleChannel.out() ),
38		�  new GConsole(toConsole:consoleChannel.in(), frameLabel: "Reader 

$readerId" ) 
39		  ]
40	new PAR (pList).run()

Listing 15-12 CREW Database Read Process Node Creation Script

The database IP-address is defined as the variable dbIp {12}. The system assumes that all Read processes 
have a base IP-address that starts from 100 {13}. The user is asked for the identification of the Read process 
as a number in the range 0 to 4 {15}. Each Read process must be allocated to a node that has a different 
IP-address. The readerIP address is then created from the constants and variable previously defined 
{17} and this is then used to create the node address for this reader as readAddress {18}. The node 
can then be initialised using that readAddress {19}. A message is then printed confirming the creation 
of the node {21}. The script now continues with the creation of the required communication channels. 

The script assumes that the Database node has been created before any of the Read and Write processes 
are created. First the input channel from the database, fromDB, is created {24} as a numberedNet2One 
channel. The input channel is allocated the index 75, which is confirmed by printing out the connection 
data {25}. The output channel from the Read node to the Database node can now be created. The IP-
address of the Database node is created as dbAddress {28}, after which the channel toDB is created 
{29}. The channel is created with index number readerIndex, which is unique to this node. It assumes 
that channels with this index number have been created in the Database node. The location of the toDB 
channel is printed to confirm its creation {30}. 

At this point the script causes a signal to be sent to the Database node {31}. Each Read or Write node 
will send an equivalent signal, so that the database can ensure that all channels have been created before 
any of the actual node processes are started. Thus the script then reads a signal from the Database node 
{32}, which will only be sent once all the scripts have reached the same point. A message is then printed 
confirming this has happened {34}.

The script now creates an internal channel, consoleChannel, {35} that will be used to connect the 
Read process to its associated GConsole process. The process list pList is created {36–39} and then 
the processes are run {40}.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

29 

Communication over Networks: Process Parallelism


15.5.2	 Write Process Node

The script to create a Write process node is shown in Listing 15-13. This has the same structure as the 
Read process, previously described.

10	import c13.Write
11
12	def dbIp = "127.0.0.1"
13	def writeBase = 200
14	def writerBaseIP = "127.0.0."
15	def writerId = Ask.Int ("Writer process ID (0..4)? ", 0, 4)
16	def writerIndex = writeBase + writerId
17	def writerIP = writerBaseIP + writerIndex
18	def writerAddress = new TCPIPNodeAddress(writerIP, 2000)
19	Node.getInstance().init(writerAddress)
20	 
21	�println "Write Process $writerId, $writerIP is creating its Net channels "
22
23	//NetChannelInput 
24	�def fromDB = NetChannel.numberedNet2One(150) // the net channel from 

the database
25	println "fromDB location = ${fromDB.getLocation()}"
26
27	//NetChannelOutput

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://thecvagency.co.uk


Using Concurrency and  
Parallelism Effectively – II

30 

Communication over Networks: Process Parallelism


28	def dbAddress = new TCPIPNodeAddress(dbIp, 3000)
29	�def toDB = NetChannel.one2net(dbAddress, writerIndex) // the net 

channel to the database
30	println "toDB location = ${toDB.getLocation()}"
31	toDB.write(0)
32	fromDB.read()
33
34	println "Write Process $writerId has created its Net channels "
35	def consoleChannel = Channel.one2one()
36
37	def pList = [ 
38		�  new Write ( id:writerId, w2db:toDB, db2w:fromDB, toConsole: 

consoleChannel.out() ),
39		�  new GConsole(toConsole:consoleChannel.in(), frameLabel: "Writer $writerId" ) 
40		  ]
41	new PAR (pList).run()

Listing 15 – 13 CREW Database Write Process Node Creation Script

The IP-address base for Write nodes is 200 {13} and the input channels to the node a numbered at 150 {24}. 

15.5.3	 Database Process Node

The script to create the Database process node is shown in Listing 15-14. Lines {12–14} create a node 
instance for the Database node. The number of Reader and Writer nodes is then obtained {16, 17}.

10	import c13.DataBase
11
12	def dbIp = "127.0.0.1"
13	def dbAddress = new TCPIPNodeAddress(dbIp, 3000)
14	Node.getInstance().init(dbAddress)
15
16	int nReaders = Ask.Int ( "Number of Readers ? ", 1, 5)
17	int nWriters = Ask.Int ( "Number of Writers ? ", 1, 5)
18
19	def readerAddresses = []
20	def writerAddresses = []
21	def toDB = new ChannelInputList()
22	def fromDB = new ChannelOutputList()
23
24	println "Creating reader network channels"
25	def readBase = 100
26	def readerBaseIP = "127.0.0."
27
28	for ( readerId in 0 ..< nReaders ) {
29	  def readerIndex = readBase + readerId
30	  def readerIP = readerBaseIP + readerIndex

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

31 

Communication over Networks: Process Parallelism


31	  readerAddresses << new TCPIPNodeAddress(readerIP, 1000)
32	  toDB.append ( NetChannel.numberedNet2One(readerIndex) )
33	  println "Reader: $readerId, $readerIndex, $readerIP – " +
34	  "toDB location = ${toDB[readerId].getLocation()}"
35	}
36	println "Creating writer network channels"
37	def writeBase = 200
38	def writerBaseIP = "127.0.0."
39
40	for ( writerId in 0 ..< nWriters ) {
41	  def writerIndex = writeBase + writerId
42	  def writerIP = writerBaseIP + writerIndex
43	  writerAddresses << new TCPIPNodeAddress(writerIP, 2000)
44	  toDB.append ( NetChannel.numberedNet2One(writerIndex) )
45	  println "Writer: $writerId, $writerIndex, $writerIP – " +
46	  " toDB location = ${toDB[writerId+nReaders].getLocation()}"
47	}
48
49	for ( r in 0 ..< nReaders){
50	  toDB[r].read()
51	  fromDB.append ( NetChannel.one2net ( readerAddresses[r], 75) )
52	  println "Reader $r fromDB location = ${fromDB[r].getLocation()}"
53	}
54

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/elearningforkids


Using Concurrency and  
Parallelism Effectively – II

32 

Communication over Networks: Process Parallelism


55	for ( w in 0..< nWriters){
56	  toDB[w + nReaders].read()
57	  fromDB.append ( NetChannel.one2net ( writerAddresses[w], 150) )
58	  �println "Writer $w fromDB location = ${fromDB[w + nReaders].

getLocation()}"
59	}
60
61	for ( c in 0 ..< (nReaders + nWriters)){
62	 fromDB[c].write(0)
63	}
64	println "DBM: Creating database process list"
65
66	def pList = [ new DataBase ( inChannels: toDB,
67				     outChannels: fromDB,
68				     readers: nReaders,
69				     writers: nWriters ) ]
70	println "DBM: Running Database"
71
72	new PAR (pList).run() 

Listing 15-14 CREW Database Node Creation Script

The lists readerAddresses and writerAddresses {19, 20} are used to hold the node addresses 
of each of the other nodes. The ChannelInputList toDB {21} is used to hold all the input channels 
from the other nodes. Similarly, the ChannelOutputList fromDB {22} is used to hold all the output 
channels to the other nodes. The coding shown from lines {24–35} is used to create the node address 
of each of the Read nodes. The readerIP is created {30} and then used to create a node address that 
is appended to readerAddresses {31}. A net input channel is then created, at the required index 
number and appended to the toDB channel input list {44}. The channel index number is the same as 
that used in the creation of the Read node. This coding is then repeated for the equivalent channels for 
each Write node {36–47}.

The next phase causes the signal to be read from each Read node {50}, after which the output channel to 
that node can be created and appended to the fromDB channel output list {51}. The index number used 
in the channel creation is the same as that specified when the channel was created in the Read process. 
The output channel cannot be created until the script knows that the Read process at the input end of 
the channel exists, hence the requirement for the signal on the toDB channel. Lines {55–59} repeat the 
coding for each Write node. Once all the input signals have been read and the corresponding output 
channel created, the matching signal telling the other nodes they can continue with their creation can 
be sent {61–64}.

The Database, imported from package c13 {10} can now be created and run {66–72}.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

33 

Communication over Networks: Process Parallelism


15.6	 Summary

In this chapter we have seen how to create networks of nodes executing on a TCP/IP based network. 
For ease of implementation, the nodes have been created using the ‘loop-back’ IP-address 127.0.0.n. The 
scripts can be easily modified to run on a real network simply by changing the base IP-address in each 
script. Each of the examples has been based on one that ran on a single processor and demonstrates 
that transforming an application merely requires the scripts to invoke the nodes but no change to any 
of the application’s processes.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/academictransfer


Using Concurrency and  
Parallelism Effectively – II

34 

Dynamic Process Networks: A Print Server


16	� Dynamic Process Networks: 
A Print Server

Dyanmic process networks require a few simple concepts which are explained:

•	 creation of net channels at run-time
•	 communicating net channel locations over network channels
•	 dynamic creation and destruction of network topologies on as needed basis

A print server is probably the simplest service used by users of a networked service. It provides a means 
whereby a user can send a file for printing using a printer shared among the users of the network. In 
this implementation a print service will be constructed that accepts print lines, a line at a time, from a 
user. The print service will accept print lines from a number of users, in parallel, up to some limit set 
when the print server is installed. Once the user has sent all the lines of text to be printed; the print 
server will then output those lines in a single printed output. The printed output will be preceded by a 
job number that can be recognised by the user of the service. The user of the service will be informed 
both when their job has been accepted and when it has completed. The user will be unaware that the 
print service is dealing with other user requests. The print service should run in the background and 
always be ready to accept requests from a user, that is, the user processes should start asynchronously 
with the print service process. The order in which the respective processes start should have no bearing 
on the operation of the system, apart from the fact that the print service must commence before any of 
the user processes.

From the foregoing it is obvious that users need to request that their lines of output are sent to the print 
service and subsequently on completion of their output the user needs to indicate that the lines of text 
can be printed. To this end the print service provides two named channels by which the user can request 
and subsequently release their use of the print service.

In addition, if the print service is going to manage print operations from more than one user in parallel 
then some means of telling the user which of the services to use will be required. The user also needs 
to be able to send lines to be printed to the print service. These connections will change with each print 
job and thus the corresponding network channels will be created dynamically.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

35 

Dynamic Process Networks: A Print Server


The architecture of the system is shown in Figure 16-1. The PrintSpooler process provides the print 
service using two named net2one channels called request and release. The network connections are 
indicated by the dashed lines, one for each channel. Each PrintUser process can dynamically connect 
to the request and release channels by defining them as any2net when their node is created. In order 
to avoid multiple communications on the request and release channels only one communication will be 
permitted on each channel for each print job.

The diagram shows the state when the PrintSpooler is willing to accept print lines from up to two 
PrintUser processes in parallel. These have been given names for clarity but in reality are anonymous. 
The useChannel is used by PrintSpooler to tell the PrintUser the location of the printChannel 
it is to use to send the lines to the PrintSpooler. The printChannel is used to send the lines to be 
printed to the PrintSpooler.

 

Print 

Spooler 

 

 

PrintUser 

PrintUser 

PrintUser 

PrintUser 

PrintUser 

request 

release 

useChannel 

printChannel 

Figure 16-1 The Print Service Architecture

16.1	 Print Spooler Data Objects

Two data objects are required, which both are used to transfer information from PrintUser processes to 
the PrintSpooler process. These objects must implement the Serializable interface as the objects 
are to be communicated over the network and thus will be transferred from one address space to another. 
The first, PrintJob, shown in Listing 16-1 is used to make an initial request for service. It comprises 
two properties, the identity of the user {2} and the net channel location to be used by PrintSpooler 
as the useChannel {3}. The manner of its creation and its use will be described later.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

36 

Dynamic Process Networks: A Print Server


10	class PrintJob implements Serializable{
11		
12	  def int userId
13	  def NetChannelLocation useLocation
14	}

Listing 16-1 The PrintJob Data Object

The other data object, PrintLine, shown in Listing 16-2, is used to transfer the lines to be printed from a 
PrintUser process to the PrintSpooler process. It is written by the PrintUser to a printChannel. 
The property printKey {6} indicates to which, of the possibly several internal concurrent spoolers within 
PrintSpooler, this line of text is intended. The String line {7} is the text to be added to the output.

10	class Printline implements Serializable { 
11		
12	  def int printKey
13	  def String line 
14	}

Listing 16-2 The PrintLine Data Object

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

By 2020, wind could provide one-tenth of our planet’s 
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the 
world’s wind turbines. 

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our 
systems for on-line condition monitoring and automatic 
lubrication. We help make it more economical to create 
cleaner, cheaper energy out of thin air. 

By sharing our experience, expertise, and creativity, 
industries can boost performance beyond expectations. 

Therefore we need the best employees who can 
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering. 

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge


Using Concurrency and  
Parallelism Effectively – II

37 

Dynamic Process Networks: A Print Server


16.2	 The PrintUser Process

Listing 16-3 shows the coding of the PrintUser process. This process has three properties; 
printerRequest {12}, the network channel used to make requests to the PrintSpooler, 
printerRelease {13}, the network channel used to release the PrintSpooler at the end of printing 
and the identity of the user, userId{14}.

10	class PrintUser implements CSProcess { 
11		
12	  def ChannelOutput printerRequest
13	  def ChannelOutput printerRelease
14	  def int userId 
15	  
16	  void run() {	 
17	  def printList = [ "line 1 for user " + userId, 
18					      "line 2 for user " + userId,
19					      "last line for user " + userId 
20	  ]
21	  def useChannel = NetChannel.net2one()
22	  printerRequest.write(new PrintJob ( userId: userId,
23	 useLocation: useChannel. 
	 getLocation() ) )
24	  def printChannelLocation = useChannel.read()
25	  def useKey = useChannel.read()
26	  println "Print for user ${userId} accepted using Spooler $useKey"
27	  def printerChannel = NetChannel.one2net ( printChannelLocation) 
28	  �printList.each { printerChannel.write (new Printline ( printKey: 

useKey, line: it) )} 
29	  printerRelease.write ( useKey )
30	  println "Print for user ${userId} completed"
31	  }
32	}

Listing 16-3 The PrintUser Process Definition

The List printList {17–20} holds the lines of text that are to be printed. Each user prints the same 
output, only differentiated by their userId.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

38 

Dynamic Process Networks: A Print Server


A net2one NetChannel is created at the node with a default index number {21}. This input network 
channel is assigned to variable useChannel. A PrintJob object is constructed from userId and the 
location of useChannel {22–23}. The location of a network channel is obtained by calling the method 
getChannelLocation() {23}, which returns the IP address, port and unique channel number of the 
channel. The PrintJob object is then written to the printerRequest network channel. This write 
{22} may be delayed if the PrintSpooler is already dealing with the maximum number of print requests, 
but the user will be unaware of this, in the sense that they do not have to undertake any additional 
processing. This is also the first part of a client behaviour with its corresponding server response being 
the read of a printerChannelLocation on the useChannel {24}. The useChannel is also used 
to read useKey from the PrintSpooler {25}. The useKey is the means by which the PrintUser 
process identifies which of the concurrent spoolers maintained by PrintSpooler it is to use. A message 
is then printed indicating that the request has been accepted {26}.

The process now creates the channel printerChannel on which it is to send lines to the PrintSpooler. 
The location of this channel has been read as printerChannelLocation. A network channel can be 
created from this location by a call to the NetChannel factory to create a one2net channel with the 
location specified in printerChannelLocation {27}. This channel is then used to write each of the 
printList elements to printerChannel using a constructed PrintLine object for each element 
{28} The Groovy operator each iterates through the elements of a List and the associated closure 
can refer to the specific element using the it keyword.

Once all the elements of PrintList have been written to the PrintSpooler it can be released and 
this is simply achieved by writing the useKey to the printerRelease channel {29}, after which a 
message can be printed {30}.

16.3	 The PrintSpooler Process

Listings 16-4 and 16-5 show the coding of the PrintSpooler process. Properties printerRequest 
{12} and printerRelease {13} are the request and release networked channels PrintUsers use to 
indicate their desire to access the PrintSpooler. The PrintSpooler will create two concurrent 
spoolers by default {14} but this can be changed when the process is invoked. 

10	class PrintSpooler implements CSProcess { 
11		
12	  def ChannelInput printerRequest
13	  def ChannelInput printerRelease
14	  def int spoolers = 2 
15	  
16	  void run() {
17	  def timer = new CSTimer()
18	  def spooling = 0
19	  def spoolChannels = []

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

39 

Dynamic Process Networks: A Print Server


20	  def spoolChannelLocations = [:]
21	  def unusedSpoolers = []
22	  def preCon = new boolean[spoolers + 2 ]
23	  def printMap = [:]
24	  def jobMap = [:]
25	  preCon[0] = true
26	  0.upto(spoolers – 1) { i -> def c = NetChannel.net2one()
27							        spoolChannels << c
28							        �spoolChannelLocations.put(i, 

c.getLocation() )
29							        unusedSpoolers << i
30							        preCon[i+2] = false
31	 }
32	  def altChans = [ printerRelease, printerRequest ]
33	  altChans = altChans + spoolChannels
34	  def psAlt = new ALT ( altChans )

Listing 16-4 PrintSpooler Initialisation

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

AXA Global 
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA


Using Concurrency and  
Parallelism Effectively – II

40 

Dynamic Process Networks: A Print Server


The variable spooling {18} is used to count how many users are currently sending output to the 
PrintSpooler and initially this is none. SpoolChannels will hold a List of the channels {19} that 
will become the printChannels of Figure 16-1. These will be created at the outset rather than recreating 
them on each occasion individually for each print request. The Map spoolChannelLocations {20} 
will hold the NetChannelLocation of each spool channel used by each spooler; its key is the index 
of the spooler. The List unusedSpoolers {21} holds the index of the spoolers that are currently not 
being used. The Map printMap {23} is used to hold the lines for each concurrent print request and its 
key is the associated spooler index. The Map jobMap {24} is used to maintain the connection between 
spooler index and user requesting the print job.

The process is going to use an alternative to determine which input channels it will receive input from. 
These are going to be further managed using a precondition array and this is defined as preCon {22}. 
There is an input channel for each spooler plus the two named request and release channels, giving the 
number of elements in the array.

Lines {26–31} initialise these data structures as follows by iterating over the number of spoolers {14}, 
with i indexed from 0. A NetChannelInput c is created {26} and this will be subsequently used as 
the printChannel. It is then appended to spoolChannels {27}. Its net channel location is then 
put in the i’th element of spoolChannelLocations {28}. The value of i is then appended to the 
List of unusedSpoolers {29}. Finally, preCon[i+2] {30} is set false indicating that the processes 
cannot accept input on any of its spool channels. The List altChans {32} is initialised with the 
printerRelease and printerRequest channels to which is added the List of spoolChannels 
{33}. The process is always willing to accept an input on its release channel and so preCon[0] is set 
true {25}. The reason for the offset of i+2 {30} is to take account of the fact that the printer release 
and request channels appear first in the alternative psAlt {34}.

Listing 16-5 shows the main body loop of the PrintSpooler process. At the start of each iteration 
a test is made to determine the state of preCon[1] {36} which ensures that a request for service will 
only be accepted if at least one of the available spoolers is free. The index of the enabled alternative is 
selected {37} and used to determine which case is processed. 

35	  while (true) {
36	  preCon[1] = (spooling < spoolers)
37	  def index = psAlt.select(preCon)
38	  switch (index) { 
39	  case 0:
40	  //user releasing a print channel
41	  def usedKey = printerRelease.read()
42	  unusedSpoolers.add(usedKey)
43	  preCon[usedKey + 2] = false
44	  spooling = spooling – 1

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

41 

Dynamic Process Networks: A Print Server


45	  // now print the spooled lines
46	  def lines = printMap.get(usedKey)
47	  print "\n\nOutputFor User ${jobMap.get(usedKey)}\n"
48	  println "Produced using spooler $usedKey \n\n"
49	  lines.each{ println "$it" }
50	  println "\n\n================================\n\n"
51	  printMap.remove(usedKey)
52	  jobMap.remove(usedKey)
53	  break
54	  case 1:
55	  // user requested a print channel
56	  def job = printerRequest.read()
57	  def useChannelLocation = job.useLocation
58	  def userId = job.userId
59	  def useChannel = NetChannel.one2net(useChannelLocation)
60	  spooling = spooling + 1
61	  def useKey = unusedSpoolers.pop()
62	  preCon[useKey+2] = true
63	  �printMap[useKey] = [] // initialise the printlist for this user
64	  jobMap[useKey] = userId
65	  useChannel.write(spoolChannelLocations.get(useKey) )
66	  useChannel.write( useKey )
67	  break
68	  default :
69	  // printline being received from a user
70	  def pLine = spoolChannels[ index – 2].read()
71	  printMap[pLine.printKey] << pLine.line
72	  timer.sleep(5000)
73	  } //switch 
74	  } //while
75	  } // run
76	} // class

Listing 16-5 The PrintSpooler Process Loop

Case 0 represents an input on the release channel, which means that the lines can be printed and 
the associated spooler released for another user. The input usedKey from the printerRelease 
channel identifies the spooler allocated to the user {41}. This spooler can then be added to the List of 
unusedSpoolers {42}. The process is now unwilling to accept any more inputs from the user and thus 
sets the corresponding preCon element false {43}. Similarly, the number of spooling spoolers can 
be decremented {44}. The List lines comprises the Map entry for usedKey {46} obtained using the 
Map get() method. The printed output banner lines can now be printed {47–48}, after which the lines 
can themselves be printed {49} followed by a terminating banner {50}. The Map entry for usedKey can 
now be removed {51}. Similarly the entry relating job and user from jobMap can be removed {52}. 
This code sequence recovers the printing resources, prints the lines and ensures that the associated data 
structure have been updated accordingly.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

42 

Dynamic Process Networks: A Print Server


Case 1 pertains to a request for printing by a user process and will only be accepted if at least one of 
the spoolers is available. The print job details are read from the printerRequest channel {56} and 
the PrintJob properties are extracted into variables useChannelLocation {57} and userId {58}. 
The channel by which the PrintSpooler process sends data to the PrintUser process, useChannel, 
is created by taking the value of useChannelLocation {59} as a parameter to a call of NetChannel.
one2net(). In the PrintSpooler process we are creating the output end of the channel to be 
connected to the input end that was created in the PrintUser process. The number of spoolers that 
are spooling can be incremented {60} and the index of an unused spooler can be pop’ed from the 
List of unusedSpoolers {61} and assigned to useKey. The pre-condition element of the array preCon 
associated with this spooler can be set true because the process is now willing to accept inputs on the 
related spool channel {62}. A Map entry that uses useKey as its key can be initialised to an empty List 
{63}. An entry can be placed in jobMap that relates useKey to the userId of the job being processed 
by this spooler {64}. 

The PrintSpooler process acts as a server to the PrintUser processes and a request for service 
expects a response in finite time. The generated response is the location of the spool channel that the 
PrintUser process is to use for writing lines of text to the PrintSpooler {65}. Secondly, the value 
of useKey which is used by the PrintUser process to identify which spooler is being used to form 
the lines of text to be output {66}.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/Subscrybe


Using Concurrency and  
Parallelism Effectively – II

43 

Dynamic Process Networks: A Print Server


The default case {68} is perhaps the simplest and reflects the input of a line of text from a PrintUser 
process to the PrintSpooler. The line of text is read into pLine from the element of spoolChannels 
indexed by index – 2 {70}. The value of index is obtained from the select method call on the 
alternative psAlt {37}. However, psAlt precedes the spoolChannels with the printerRelease 
and printerRequest channels and thus it is necessary to subtract 2 from the index value to access 
the correct element of spoolChannels. The variable pLine is of type PrintLine and the properties 
printKey and line are used to add the line to the printMap entry for the printKey {71}. In this 
manner each of the active PrintUser processes can send lines to the PrintSpooler adding lines to 
the List contained in the printMap. All that is required by a PrintUser process is the key of the 
printMap used to add lines to the List of lines. Thus, each spooler is in fact just represented by an entry 
in the printMap structure. Once a line has been processed a delay is introduced {72} so that it is easier 
for exploration of the system behaviour enabling the invoking of more PrintUser easily.

16.4	 Invoking The PrintSpooler Node

Listing 16-6 shows the script used to invoke the PrintSpooler process. The initial interaction {10} 
determines the number of spoolers maintained by the PrintSpooler and thus the maximum number 
of concurrent spoolers active at any time. Next the PrintSpooler node is created as the IP-address 
‘127.0.0.1’ {12–14}. The net request and release channels are created using the default channel index 
numbers, with pRequest allocated to index 50 {15} and pRelease allocated to index 51 {16}. The 
locations are then printed to confirm their creation {17–18}. The process can then be invoked {20–24}. 
The PrintSpooler process must be invoked before any of the PrintUser processes are invoked.

10	def spoolers = Ask.Int ("Number of spoolers ? ", 1, 9)
11
12	def printSpoolerIP = "127.0.0.1"
13	def psAddress = new TCPIPNodeAddress(printSpoolerIP, 2000)
14	Node.getInstance().init(psAddress)
15	def pRequest = NetChannel.net2one()		  // cn = 50
16	def pRelease = NetChannel.net2one()		  // cn = 51
17	println "pRequest location = ${pRequest.getLocation()}"
18	println "pRelease location = ${pRelease.getLocation()}"
19
20	new PAR ( [ new PrintSpooler ( printerRequest: pRequest, 
21					      printerRelease: pRelease, 
22					      spoolers : spoolers 
23					     )
24	  ] ).run()

Listing 16-6 The Script to Invoke the PrintSpooler Process

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

44 

Dynamic Process Networks: A Print Server


16.5	 Invoking A PrintUser Node

Listing 16-7 shows the script that invokes a PrintUser node. Any number of PrintUser nodes can be 
created. All ‘printed’ output appears in the PrintSpooler console window.

The IP-address of the PrintSpooler is defined as printSpoolerIP {10}. The IP-address of the 
PrintUser is created as printUserIP {11–13}. The print user node is then created {15–16} and then 
the node address of the PrintSpooler {17}. The net channel connections to the PrintSpooler can 
now be created using the default allocated channel index numbers {19–20}. These net output channels 
are created as any2net so that there can be many processes that write to the channels. These details are 
printed {22–23} after which the PrintUser process is executed. {25–29}.

10	def printSpoolerIP = "127.0.0.1"
11	def printUserIPmask = "127.0.0."
12	def user = Ask.Int ("User Number (2 to 254) ? ", 2, 255)
13	def printUserIP = printUserIPmask + user
14
15	def printUserAddr = new TCPIPNodeAddress(printUserIP, 3000)
16	Node.getInstance().init(printUserAddr)
17	def printSpoolerAddr = new TCPIPNodeAddress(printSpoolerIP, 2000)
18
19	def pRequest = NetChannel.any2net (printSpoolerAddr, 50)
20	def pRelease = NetChannel.any2net (printSpoolerAddr, 51)
21
22	println "pRequest location = ${pRequest.getLocation()}"
23	println "pRelease location = ${pRelease.getLocation()}"
24
25	new PAR ( [ new PrintUser ( printerRequest: pRequest, 
26	 printerRelease: pRelease, 
27	 userId : user
28	 )
29	 ] ).run()

Listing 16-7 The Script to Invoke a PrintUser Process.

16.6	 Summary

This chapter has shown how net channel locations can be transferred from one process to another so 
that communication links between the processes can be created directly at run time. This means that 
dynamic process architectures can be created.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

45 

More Testing: Non-terminating Processes


17	� More Testing: Non-terminating 
Processes

This chapter explores the testing of non-terminating process networks by:

•	 defining a generic architecture
•	 separating the test network from the network under test using a TCP/IP network
•	 ensuring the test network terminates to enable assertion testing
•	 requiring no change to the network under test

Chapter 6 showed it is possible to use the GroovyTestCase capability to test networks of processes, 
provided each of the processes in the network terminates. Most of the processes used in this book do 
not terminate and so a means of testing such non-terminating process networks has to be developed.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Losing track of your leads?
Bookboon leads the way
Get help to increase the lead generation on your own website. Ask the experts.  

Interested in how we can help you? 
email ban@bookboon.com

http://bookboonglobal.com/en/qualities2/content-and-dialogue-marketing-2/


Using Concurrency and  
Parallelism Effectively – II

46 

More Testing: Non-terminating Processes


First, however, we need to reflect on the operation of PAR. A PAR only terminates when all the process in 
the list of processes passed to it terminate. Thus, if only one of the processes does not terminate then a PAR 
will never terminate. However, if the assertion testing commonly used in JUnit and GroovyTestCase 
is to be undertaken then at least some of the test environment has to terminate. Figure 17-1 shows a 
generic architecture that allows a process network under test (PNUT) to run without terminating, while 
the Test-Network does terminate, which then allows the assertion testing to take place in the normal 
manner (Kerridge, 2007).

Process-Network-Under-

Test 

TCP/IP Network 

Test-Network 

Input-Generator Output-Gatherer 

Assertion-Testing 

Figure 17-1 Generic Testing Architecture

The separation of the PNUT from the Test-Network by means of a TCP/IP communications network 
means that the two process networks run independently of each other and it does not matter if the 
PNUT does not terminate, provided the Test-Network does. We can assume that the PNUT requires 
input and also that it outputs results in some format. This data is communicated by means of the network 
channels shown. Both the Input-Generator and Output-Gatherer processes must run as a PAR within 
the process Test-Network, they then terminate; after which their internal data structures can be tested 
within Assertion-Testing. This demonstrates the generic nature of the architecture in that the only parts 
that have to be specifically written are the processes that implement the Input-Generator and Output-
Gatherer respectively. The architecture will now be demonstrated using the Scaling Device example 
described previously in Chapter 5. The Scaling Device takes a stream of input numbers and outputs an 
equivalent stream of scaled numbers, while monitoring the operation of a Scale process by modifying 
the applied scaling factor.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

47 

More Testing: Non-terminating Processes


17.1	 The Test-Network

The class RunTestPart, shown in Listing 17-1, implements the Test-Network {10} and simply extends 
the class GroovyTestCase. The method testSomething {12} creates the Test-Network as a process 
running in a node on a network. The node is initialized in the normal manner within the JCSP framework 
{13–17}. Two NetChannels, ordinaryOutput {19} and scaledIntput {21} are defined and their 
locations printed. 

The test mechanism assumes that the PNUT node is created before the RunTestPart node. To ensure 
this happens the RunTestPart process writes a signal to the PNUT {23}. Once this signal has been 
read by the PNUT, the processes required by RunTestPart can be created and invoked.

The processes are created {25, 26} and then invoked {28, 30}. Once the PAR has terminated, the properties 
generatedList, collectedList and scaledList can be obtained from the processes {32–34} 
using the Groovy dot notation for accessing class properties. In this case we know that the original 
generated set of values should equal the unscaled output from the collector and this is tested in an 
assertion {35}. In this case we also know that each modified output from the PNUT should be greater 
than or equal to the corresponding input value. This is implemented by a method contained in a package 
TestUtilities called list1GEList2, which is used in a second assertion {36}.

10	class RunTestPart extends GroovyTestCase {
11		
12		  void testSomething() {	
13	  def testPartIP = "127.0.0.1" 
14	  def deviceIP = "127.0.0.2"
15	  def testPartAddr = new TCPIPNodeAddress(testPartIP, 3000)
16	  def deviceAddr = new TCPIPNodeAddress(deviceIP, 3000)
17	  Node.getInstance().init(testPartAddr)	  
18	  
19	  def ordinaryOutput = NetChannel.one2net(deviceAddr, 50)
20	  �println "ordinaryOutput location = ${ordinaryOutput.getLocation()}"
21	  def scaledInput = NetChannel.net2one()
22	  println "scaledInput location = ${scaledInput.getLocation()}"
23	  ordinaryOutput.write(1)
24	  
25	  def collector = new CollectNumbers ( inChannel: scaledInput)
26	  def generator = new GenerateNumbers (outChannel: ordinaryOutput)
27	  
28	  def testList = [ collector, generator]
29	  
30	  new PAR(testList).run()
31	  
32	  def original = generator.generatedList
33	  def unscaled = collector.collectedList

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

48 

More Testing: Non-terminating Processes


34	  def scaled = collector.scaledList
35	  assertTrue (original == unscaled)
36	  assertTrue (TestUtilities.list1GEList2(scaled, original))
37		  }
38	}

Listing 17-1 The Extended GroovyTestCase Class to Run The Test Network

The benefit of this approach is that we are guaranteed that the Test-Network will terminate, provided 
the CollectNumbers and GenerateNumbers processes terminate and thus values derived from these 
processes can be tested in assertions. The fact that the PNUT continues running is made disjoint by 
the use of the network. This could not be achieved if all the processes were run in a single JVM as the 
assertions could not be tested because the PAR would never terminate. The process network comprising 
the PNUT and the Test-Network can be run on a single processor with each running in a separate JVM. 
RunTestPart will write its output to a console window indicating whether or not the test has passed. 
The console window associated with PNUT will continue to produce any outputs associated with the 
network being tested.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/EOT


Using Concurrency and  
Parallelism Effectively – II

49 

More Testing: Non-terminating Processes


17.1.1	 The Generate Numbers Process

Listing 17-2 shows the coding of the GenerateNumbers process. Recall from Chapter 5 that the Scaling 
Device expects to receive numbers at regular intervals, which it then processes. The property delay {12} 
is used to specify the time between the generation of an output of numbers to the PNUT. The length 
of the generated sequence is specified in iterations {13}. The channel outChannel {14} is used to 
communicate the generated numbers to the PNUT. The list generatedList {15} is used to hold the 
sequence of generated numbers for subsequent testing in an assertion in the process RunTestPart.

10	class GenerateNumbers implements CSProcess{
11		
12	  def delay = 1000
13	  def iterations = 20
14	  def ChannelOutput outChannel 
15	  def generatedList = []
16	  
17	  void run() {
18	  println "Numbers started"
19	  def timer = new CSTimer()
20	  for (i in 1 .. iterations) {
21	  outChannel.write(i)
22	  generatedList << i
23	  timer.sleep(delay)
24	  }
25	  println "Numbers finished"
26	  }
27	}

Listing 17-2 The GenerateNumbers Process

The run method {17} outputs a start message {18} and then defines a timer {19}. Each number is then 
generated using a for loop {20}, limited by the value of iterations. The next number in sequence is 
output {21} and then appended (<<) to generatedList {22}. The process then sleeps for the defined 
delay period {23}. Finally, a finished message is output {25}.

17.1.2	 The Collect Numbers Process

Listing 17-3 shows the CollectNumbers process. The inChannel {12} is used to input data from 
the PNUT. The output from the Scaling Device is in the form of objects comprising two properties; the 
original value and the scaled value (See 5.1.3). The original, unmodified values are appended 
{21} to the property collectedList {13} and the scaled values are appended {22} to the property 
scaledList {14}. The number of iterations {15} is required to ensure that the process terminates 
after it has read the expected number of outputs from the PNUT. The run method simply iterates over the 
expected outputs, inputting ScaledData from the PNUT {20} and placing the data into the respective lists 
{21, 22}. The method also indicates, by console messages, when the process starts {18} and finishes {24}.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

50 

More Testing: Non-terminating Processes


10	class CollectNumbers implements CSProcess { 
11		
12	  def ChannelInput inChannel
13	  def collectedList = []
14	  def scaledList = [] 
15	  def iterations = 20
16	  
17	  void run() {
18	  println "Collector Started"
19	  for ( i in 1 .. iterations) {
20	  def result = (ScaledData) inChannel.read()
21	  collectedList << result.original
22	  scaledList << result.scaled
23	  }
24	  println "Collector Finished"
25	  }
26	}

Listing 17-3 The CollectNumbers Process

17.2	 The Process Network Under Test

The Process Network Under Test (PNUT) is the ScalingDevice described in Chapter 5 and can be 
represented by the CSProcess shown in Listing 17-4.

10	import c05.*
11	class ScalingDevice implements CSProcess {
12		
13	  def ChannelInput inChannel
14	  def ChannelOutput outChannel 
15	  
16	  void run() {
17	  println "scaling device started"
18	  def oldScale = Channel.one2one()
19	  def newScale = Channel.one2one()
20	  def pause = Channel.one2one()
21
22	  def scaler = new Scale ( inChannel: inChannel,
23						       outChannel: outChannel,
24						       factor: oldScale.out(),
25						       suspend: pause.in(),
26						       injector: newScale.in(),
27						       multiplier: 2,
28						       scaling: 2 )

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

51 

More Testing: Non-terminating Processes


29
30	  def control = new Controller ( testInterval: 7000,
31							        computeInterval: 700,
32							        addition: 1,
33							        factor: oldScale.in(),
34							        suspend: pause.out(),
35							        injector: newScale.out() ) 
36
37	  def testList = [ scaler, control] 
38		   
39	  new PAR(testList).run() 
40	  }
41	}

Listing 17-4 The Scaling Device Process Definition

The ScalingDevice has an inChannel property {13} from which input numbers are read and an 
outChannel property {14} to which objects of ScaledData are written. The run method is simply 
the parallel instantiation {37, 39} of a Scale {22} and a Controller {30} process. These processes are 
connected by means of the channels oldScale {18}, newScale {19} and pause {20} as described in 
5.1 and 5.1.4.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book  
is made with 
SetaPDF

http://s.bookboon.com/Setasign


Using Concurrency and  
Parallelism Effectively – II

52 

More Testing: Non-terminating Processes


17.3	 Running The Test

The test requires that the two parts, PNUT and TestNetwork execute as nodes of a network. The 
script to run the ScalingDevice node is shown in Listing 17-5. This node must be created first. The 
node is created first {10-14}. The network channels are now created, ordinaryInput {16} first, from 
which the signal generated by RunTestPart can be read enabling the rest of the node’s creation. The 
scaledOutput channel {19} that connects the ScalingDevice to the Test Network can now be 
created. The signal between the nodes ensures that the necessary input channels are created before they 
are written to. The ScalingDevice process is then invoked within a PAR {22}.

10	def testPartIP = "127.0.0.1" 
11	def deviceIP = "127.0.0.2"
12	def testPartAddr = new TCPIPNodeAddress(testPartIP, 3000)
13	def deviceAddr = new TCPIPNodeAddress(deviceIP, 3000)
14	Node.getInstance().init(deviceAddr)
15
16	def ordinaryInput = NetChannel.net2one()
17	println "ordinaryInput location = ${ordinaryInput.getLocation()}"
18	ordinaryInput.read()
19	def scaledOutput = NetChannel.one2net(testPartAddr, 51)
20	println "scaledOutput location = ${scaledOutput.getLocation()}"
21
22	�new PAR(new ScalingDevice (inChannel: ordinaryInput, outChannel: 

scaledOutput) ).run()

Listing 17-5 The ScalingDevice Node Script

The node that runs the TestNetwork is created as part of the class RunTestPart, Listing 17-1, where 
it can be seen that the corresponding ends of the channels, ordinaryInput {16} and scaledOutput 
{19} are created.

17.4	 Summary

This chapter has shown that it is possible to test a system that is intended to run in parallel using an 
existing technology JUnit and GroovyTestCase formulation. The formulation described is somewhat 
limited in that only one test can be undertaken against the system under test, which is not the normal 
mode of operation within the JUnit framework.

The package c17 contains some further process definitions that can be used to create TestNetworks 
depending upon the nature of the PNUT.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

53 

Mobile Agents: Going for a Trip


18	 Mobile Agents: Going for a Trip
This chapter introduces the concept of mobility and agents by:

•	 defining a mobile agent interface
•	 enabling connection and disconnection of an agent from a host node
•	 letting agents manage their own transition from one node to another
•	 using the JCSP ProcessManager class to manage agent execution using the start and 

join methods
•	 developing a series of increasingly complex examples to demonstrate the concept

A mobile agent is a means by which an autonomous unit of processing can be made to visit a number 
of processing nodes to undertake some operation on data held at each node and to be returned to some 
initiating node. On arrival at a node an agent will connect itself to the host node, thereby enabling it to 
access the host’s resources. Once the interaction is complete, the agent will disconnect itself from the 
host’s resources before moving to the next host node according to some agent transfer regime. During 
the course of its travels, an agent is required to collect some data from the host nodes, which it either 
communicates immediately or can be accessed when the agent returns to its originating node. An agent 
can also modify the nodes that it visits depending on the outcome of an interaction at a particular node 
(Kosek, et al., 2009) (Kerridge, et al., 2008).

18.1	 Mobile Agent Interface

The MobileAgent interface is shown in Listing 18-1. It extends CSProcess {10} because we want the 
agent to be able to run as a process on arrival at a node. It has to extend Serializable because the 
agent is to be communicated over a network. Two methods are required. First, connect {11}, which 
is passed a List of channels by which the agent is able to communicate with its host and any other 
initialisation properties. Secondly, disconnect {12} which is called prior to the agent moving to another 
node, which sets to null all the channel connections that were created by the connect method and 
any other properties of the agent that are not serializable.

10	interface MobileAgent extends CSProcess, Serializable {
11	  abstract connect(x)
12	  abstract disconnect()
13	}

Listing 18-1 The Mobile Agent Interface

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

54 

Mobile Agents: Going for a Trip


18.2	 A First Parallel Agent System

The first agent system will simply send an agent round a ring of host nodes, passing a List into the 
host to which the host appends a value and returns the List to the agent before the agent moves to 
the next node. On its return to the root node the agent transfers the revised list to the root node before 
travelling around the ring again, as many times as required.

18.2.1	 The Agent

Listing 18-2 shows the definition of the Agent that will travel around the ring of host nodes. The 
process will interface to the host node by means of the channels toLocal {12} and fromLocal {13} 
and will collect data in the List results {15}. The connect method has a List parameter, c {17}, 
that contains two channels that are the toLocal and fromLocal channel ends respectively {18, 19}. 
The disconnect method {22–23} simply sets the local channels to null.

The Agent’s run method, which is required because the MobileAgent interface implements the 
interface CSProcess, simply writes the value of results to the toLocal channel {26} and then reads 
the results back from the fromLocal channel {27}. At which point the Agent process will terminate. 
It is assumed that local process running at the node will modify the results object in some way.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

EXPERIENCE THE POWER OF 
FULL ENGAGEMENT…

     RUN FASTER.
          RUN LONGER..
                RUN EASIER…

READ MORE & PRE-ORDER TODAY 
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd   1 22-08-2014   12:56:57

http://s.bookboon.com/Gaiteye


Using Concurrency and  
Parallelism Effectively – II

55 

Mobile Agents: Going for a Trip


10	class Agent implements MobileAgent { 
11
12	  def ChannelOutput toLocal
13	  def ChannelInput fromLocal
14
15	  def results = [ ] 
16
17	  def connect ( c ) {
18	  this.toLocal = c[0]
19	  this.fromLocal = c[1]
20	  } 
21	  def disconnect () {
22	  toLocal = null
23	  fromLocal = null
24	  } 
25	  void run() {
26	  toLocal.write (results)
27	  results = fromLocal.read()
28	  }
29	}

Listing 18-2 The Agent Process

18.2.2	 The Root Process

The Root process initially sends the Agent into the ring of processes and then receives the returning 
agent after it has travelled around the ring to extract the results before sending the Agent around 
the ring again. The structure of the process is shown in Listing 18-3.

The channels inChannel {12} and outChannel {13} connect the Root process to the ring of processes. 
The property iterations {14} indicates how many times the Agent will be sent round the ring of 
processes. The property initialValue {15} is a String that will be placed in the results List as 
the first element of that list.

10	class Root implements CSProcess{
11	  
12	  def ChannelInput inChannel
13	  def ChannelOutput outChannel
14	  def int iterations
15	  def String initialValue 
16
17	  void run() {
18	  def N2A = Channel.one2one()
19	  def A2N = Channel.one2one() 
20	  def ChannelInput toAgentInEnd = N2A.in()
21	  def ChannelInput fromAgentInEnd = A2N.in()

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

56 

Mobile Agents: Going for a Trip


22	  def ChannelOutput toAgentOutEnd = N2A.out()
23	  def ChannelOutput fromAgentOutEnd = A2N.out()
24
25	  def theAgent = new Agent( results: [initialValue])
26	  
27	  for ( i in 1 .. iterations) {
28	  outChannel.write(theAgent)
29	  theAgent = inChannel.read()
30	  theAgent.connect ( [fromAgentOutEnd, toAgentInEnd ] )
31	  def agentManager = new ProcessManager (theAgent)
32	  agentManager.start()
33	  def returnedResults = fromAgentInEnd.read()
34	  println "Root: Iteration: $i is $returnedResults " 
35	  returnedResults << "end of " + i
36	  toAgentOutEnd.write (returnedResults)
37	  agentManager.join()
38	  theAgent.disconnect()
39	  }
40	  }
41	}

Listing 18-3 The Root Process Definition

The channels N2A {18} and A2N {19} provide the local connections between theAgent and this node. 
They cannot be accessed externally from this node and hence are defined within the run {17} method. 
The input and output ends of these local channels are obtained {20–23}. A variable, theAgent, is defined 
{25} of type Agent that has only its results property initialised. Even though theAgent has been 
defined it is not connected to this, the Root node, until it has been round the ring of host processes at 
least once. More particularly, the local connections between theAgent and host cannot be made until 
theAgent has been transferred to a new host.

A for loop is used to send theAgent around the ring of processes the required number of times 
{27}. Initially, theAgent is written to the outChannel {28} and then the Root process waits until 
theAgent can be read from its inChannel {29}, which will only happen once theAgent has passed 
through all the host nodes on the ring.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

57 

Mobile Agents: Going for a Trip


The Root node can now connect to theAgent with the appropriate ends of the local connection 
channels {30}. An agentManager of type ProcessMananger is defined {31} and is used to manage 
the operation of the interaction of theAgent in parallel with the Root node. The agentManager is 
then started {32}. It first reads the returnedResults that are written by theAgent {33} using the 
fromAgentInEnd input channel. The value of returnedResults is printed on the console window 
{34} and then written back to theAgent, modified to indicate the end of an iteration {35}, using the 
toAgentOutEnd output channel {36}. The interaction between theAgent and the Root node is now 
complete, with the former having terminated and the latter still running. The agentManager joins the 
Root process {37}, which has the effect of recovering the resources used by the agentManager when 
the process it is managing terminates. The Root process can now disconnect theAgent from itself 
{38}. The Root process will now progress to execute any outstanding iterations.

18.2.3	 The Process Node

The ProcessNode simply provides the process that is executed at each of the nodes on the ring of 
processes which the agent visits. Its structure is shown in Listing 18-4. The inChannel and outChannel 
properties {12, 13} provide the channel connections to the ring of channels connecting all the processes 
together. The property nodeId {14} is just an integer identifier for the node. The mechanism by which 
the node is connected to the agent {17–22} is identical to that previously described for the Root process. 
The value of nodeId is copied into a localValue variable {23} and will be used in interactions with 
the agent.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

How to retain your  
top staff

FIND OUT NOW FOR FREE
Get your free trial

Because happy staff get more done

What your staff really want?

The top issues troubling them?

How to make staff assessments 
work for you & them, painlessly?

DO YOU WANT TO KNOW:

http://s.bookboon.com/performancereviewpro


Using Concurrency and  
Parallelism Effectively – II

58 

Mobile Agents: Going for a Trip


The main body of the process is an infinite loop {25} and is almost identical to that previously described 
for the Root process in that on receipt of theAgent {26} they are connected together {27} and started 
within a ProcessManager {28, 29}. The only difference is that the results passed from theAgent 
to this process are read into currentList {30}. The value of localValue is then appended to 
currentList {31} before it is printed in the process console window {32}. It is then written back to 
the agent {33}. Once theAgent has disconnected {35} from this process it can be written to the 
outChannel for transfer to the next process on the ring {36}. Finally, localValue is incremented by 
10 {37} as this makes it easier to observe the behaviour after a number of iterations around the ring 
of processes.

10	class ProcessNode implements CSProcess{
11	  
12	  def ChannelInput inChannel
13	  def ChannelOutput outChannel
14	  def int nodeId 
15
16	  void run() {
17	  def N2A = Channel.one2one()
18	  def A2N = Channel.one2one() 
19	  def ChannelInput toAgentInEnd = N2A.in()
20	  def ChannelInput fromAgentInEnd = A2N.in()
21	  def ChannelOutput toAgentOutEnd = N2A.out()
22	  def ChannelOutput fromAgentOutEnd = A2N.out()
23	  def int localValue = nodeId 
24
25	  while (true) {
26	  def theAgent = inChannel.read()
27	  theAgent.connect ( [fromAgentOutEnd, toAgentInEnd] )
28	  def agentManager = new ProcessManager (theAgent)
29	  agentManager.start()
30	  def currentList = fromAgentInEnd.read()
31	  currentList << localValue
32		   println "Node $nodeId: updated list = $currentList"
33	  toAgentOutEnd.write (currentList)
34	  agentManager.join()
35	  theAgent.disconnect()
36	  outChannel.write(theAgent)
37	  localValue = localValue + 10 
38	  }
39	  }
40	}

Listing 18-4 The Process Node Definition

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

59 

Mobile Agents: Going for a Trip


A sample of the output from the console window is shown in Output 18-1. The number of nodes, 
excluding the Root node is 3 and the agent will travel round the ring of processes 3 times. The initial 
value passed to the results property of the agent was “ex1”. This execution of the network of processes 
is achieved using a script that runs each process as a concurrent process within a single JVM using the 
script RunAgentSystem, available in the folder ChapterExamples/src/c18/net2.

Number of Nodes ? 3

Number of Iterations ? 3

Initial List Value ? ex1

Node 1: list = [ex1, 1]

Node 2: list = [ex1, 1, 2]

Node 3: list = [ex1, 1, 2, 3]

Root: Iteration: 1 is [ex1, 1, 2, 3] 

Node 1: list = [ex1, 1, 2, 3, end of 1, 11]

Node 2: list = [ex1, 1, 2, 3, end of 1, 11, 12]

Node 3: list = [ex1, 1, 2, 3, end of 1, 11, 12, 13]

Root: Iteration: 2 is [ex1, 1, 2, 3, end of 1, 11, 12, 13] 

Node 1: list = [ex1, 1, 2, 3, end of 1, 11, 12, 13, end of 2, 21]

Node 2: list = [ex1, 1, 2, 3, end of 1, 11, 12, 13, end of 2, 21, 22]

Node 3: list = [ex1, 1, 2, 3, end of 1, 11, 12, 13, end of 2, 21, 22, 23]

Root: Iteration: 3 is [ex1, 1, 2, 3, end of 1, 11, 12, 13, end of 2, 21, 22, 23] 

Output 18-1 Sample Console Window for the First Agent System

At the end of iteration 1 we observe that the nodeId of each node has been appended to the results 
list. At the end of iteration 2, we observe that the “end of ” iteration marker has been added to results and 
then the modified localValue (incremented by 10) has been appended. At the end of iteration 3 we 
observe that the “end of ” marker for the second iteration and the doubly incremented localValues have 
also been appended to results. Thus we have constructed an agent that traverses a ring of processes, 
collecting data from each node and retaining that data within its own internal structures. The agent 
makes these collected data values available to a root node, before resuming its transit around the network.

18.3	 Running the Agent on a Network of Nodes

More realistically we need to run the processes and root on separate nodes of a TCP/IP network such 
that each process runs in its own JVM. This is simply achieved by the RunNode script Listing 18-5 and 
a RunRoot script Listing 18-6.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

60 

Mobile Agents: Going for a Trip


10	def int nodeId = Ask.Int ("Node identification (2..9) ? ", 2, 9)
11	def Boolean last = Ask.Boolean ("Is this the last node? – ( y or n):")
12	 
13	def ipBase = "127.0.0."
14	def nodeIP = ipBase + nodeId
15	def nodeAddress = new TCPIPNodeAddress(nodeIP, 3000)
16	Node.getInstance().init(nodeAddress)
17	def fromRing = NetChannel.net2one()
18	fromRing.read()
19
20	def nextNodeIP = (last) ? "127.0.0.1" : ipBase + (nodeId + 1)
21
22	def nextNodeAddress = new TCPIPNodeAddress(nextNodeIP, 3000)
23	def toRing = NetChannel.one2net(nextNodeAddress, 50)
24	toRing.write(0)
25
26	def processNode = new ProcessNode ( inChannel: fromRing,
27	 outChannel: toRing,
28	 nodeId: nodeId) 
29
30	new PAR ([ processNode]).run()

Listing 18-5 The Run Node Script

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

https://inspiredbusinessmedia.co.uk/conferences/cmo-inspired-oct-2018/


Using Concurrency and  
Parallelism Effectively – II

61 

Mobile Agents: Going for a Trip


The identification of a node, nodeId, is obtained by means of a simple user interaction {10}. It is required 
that the processing nodes are number consecutively from 2 upwards. It is also necessary to know whether 
this is the last node in the ring {11}. The nodeId is used as the last part of the node’s IP-address {13, 14}. 
A node address is created {15} with the node listening for communications on port 3000, after which a 
node instance is created {16}. An input channel fromRing is now defined as a net2one channel {17}. 
The script now reads an input from the fromRing channel {18}. The order of executing the node creation 
scripts is crucial. All the node processes have to be created before the root node is created. When the 
root node is created it will send a signal to the first node which will be read on the fromRing channel. 
The first node can then create its output channels, knowing the required node has been created.

The IP-address of the next node can now be determined {20}. If this is not the last node then its IP-
address is one more than this node’s IP-address, otherwise it is the address of the root node which is 
assumed to be “127.0.0.1”. The address of the next node can be determined and is also assumed to be 
listening on port 3000. The output channel toRing can be created using nextNodeAddress and it will 
be located at the default channel number 50 {23}. The initialisation signal can now be sent to the next 
node {24} after which the node process can be constructed {26–28} and invoked {30}.

The script to run the root node is very similar (Listing 18-6), except that we need to determine the 
number of iterations {15} and the initialValue of the results list {16}. The script creates the 
toRing {10–13} and fromRing {18–20} channels. The script then writes the initialisation signal to the 
first node in the ring {22} and then waits to receive the returned signal from the ring of nodes {23}.

The node is then constructed {25–28} and executed {30}. The output from this set of nodes is similar to 
that shown above and in particular, the output from the root node is identical for the same number of 
nodes and iterations. This can be observed by running the required node scripts RunNode and RunRoot 
available in the package ChapterExamples/src/c18/net2.

10	def rootIP = "127.0.0.1"
11	def rootAddress = new TCPIPNodeAddress(rootIP, 3000)
12	Node.getInstance().init(rootAddress)
13	def fromRing = NetChannel.net2one()
14
15	def int iterations = Ask.Int ("Number of Iterations ? ", 1, 9)
16	def String initialValue = Ask.string ( "Initial List Value ? ")
17
18	def nextNodeIP = "127.0.0.2"
19	def nextNodeAddress = new TCPIPNodeAddress(nextNodeIP, 3000)
20	def toRing = NetChannel.one2net(nextNodeAddress, 50)
21
22	toRing.write(0)
23	fromRing.read()
24

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

62 

Mobile Agents: Going for a Trip


25	def rootNode = new Root ( inChannel: fromRing, 
26	 outChannel: toRing,
27	 iterations: iterations,
28	 initialValue: initialValue )
29
30	new PAR ( [rootNode] ).run()

Listing 18-6 The Run Root Script

Figure 18-1 shows the structure that can be created with a root and three other nodes. Similar structures 
will be created for the other examples in this chapter. The system will not deadlock because the channels 
are used to send the agent from one node to the next and not for communication between the nodes. 
The internode communication structure is neither shown nor created.

root 

node 

node 

node 

IP: 127.0.0.1 

IP: 127.0.0.2 IP: 127.0.0.4 

IP: 127.0.0.3 

Figure 18-1 Node Structure

18.4	 Result Returning Agent

The previous, relatively simple agent will be modified so that as it passes from node to node as well as 
collecting a value from the node, it also returns that value directly to the root node. The only modifications 
required are to the agent and the root process. The node process is not changed in any way because all 
the processing is contained within the agent itself.

18.4.1	 The BackAgent Specification

The BackAgent is shown in Listing 18-7. An additional property, backChannel, is required {14} that 
is the location of a net channel used by the agent to return values back to the root node. The property 
backChannel holds all the data required to create a net channel output.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

63 

Mobile Agents: Going for a Trip


10	class BackAgent implements MobileAgent { 
11
12	  def ChannelOutput toLocal
13	  def ChannelInput fromLocal
14	  def NetChannelLocation backChannel
15
16	  def results = [ ] 
17
18	  def connect ( c ) {
19	  this.toLocal = c[0]
20	  this.fromLocal = c[1]
21	  }
22 
23	  def disconnect (){
24	  toLocal = null
25	  fromLocal = null
26	  }
27	  
28	  void run() {
29	  def toRoot = NetChannel.one2net (backChannel)
30	  toLocal.write (results)
31	  results = fromLocal.read()
32	  def last = results.size – 1
33	  toRoot.write(results[last])
34	  } 
35	}

Listing 18-7 The BackAgent Specification

The run method {28–34} is also modified slightly to permit the return value communication. The agent 
initially makes the connection for the backChannel creating a net output channel toRoot {29}. The 
interaction with the node is the same as before {30, 31}. The index of the last element in the results 
list is determined {32} and this element is then written to the toRoot channel {33} immediately back 
to the root process. 

18.4.2	 The Back Root Process

Listing 18-8 shows the structure of the BackRoot process. The properties of the process are the same as 
for Root (Listing 18-3), except that an additional property, backchannel {16} is required to provide the 
NetChannelInput of the channel that connects the BackAgent to the BackRoot, when it is running 
in another node. The channels required to connect the BackRoot process to the BackAgent, when the 
agent is running in the BackRoot process, are then defined and their input and output ends created 
{19–24}. The net channel location of the backChannel is then obtained by a call to getLocation() 
and stored as backChannelLocation {26}.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

64 

Mobile Agents: Going for a Trip


An instance of BackAgent is then constructed as theAgent {28, 29}, with property values of a list 
containing the element initialValue and the backChannelLocation. The BackRoot process can 
receive inputs on its inChannel, when the BackAgent returns to the BackRoot process, or from 
the BackAgent on the backChannel, when BackAgent is running in another node. The alternative 
rootAlt captures this behaviour {31}. The agent is written to the outChannel {32} to starts its trip 
around the nodes. A count variable i {33} and a Boolean running {34} are defined and initialised. 
The main loop of the process now commences {36} with the determination of the source of any 
input communication {37}. 

Case 0 {39} relates to return of the agent from an iteration around the other nodes. The agent is read 
from inChannel {40} into theAgent and subsequent processing is the same as previously described, 
except that a returned value still has to be read from theAgent on the backChannel {48}, which is 
stored in backValue but is effectively ignored. It is interesting to note that this communication is in fact 
a net channel communication between two processes running on the same node because theAgent is 
now executing within the BackRoot process. If this communication did not take place the backAgent 
would deadlock because it is expecting to output a value on the backChannel. The remainder of this 
alternative’s coding {49–58} relates to the management of the number of iterations and the termination 
of the process and is the same as in the previous agent structure. 

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Free eBook on  
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free


Using Concurrency and  
Parallelism Effectively – II

65 

Mobile Agents: Going for a Trip


Case 1 deals with an input from the agent when it is running on another node. A variable backValue 
is read from backChannel {61} and printed {62}.

10	class BackRoot implements CSProcess{ 
11		
12	  def ChannelInput inChannel
13	  def ChannelOutput outChannel
14	  def int iterations
15	  def String initialValue
16	  def NetChannelInput backChannel 
17
18	  void run() {
19	  def N2A = Channel.one2one()
20	  def A2N = Channel.one2one() 
21	  def ChannelInput toAgentInEnd = N2A.in()
22	  def ChannelInput fromAgentInEnd = A2N.in()
23	  def ChannelOutput toAgentOutEnd = N2A.out()
24	  def ChannelOutput fromAgentOutEnd = A2N.out()
25
26	  def backChannelLocation = backChannel.getLocation()
27
28	  def theAgent = new BackAgent( results: [initialValue],
29	 backChannel: backChannelLocation)
30
31	  def rootAlt = new ALT ( [inChannel, backChannel])
32	  outChannel.write(theAgent)
33	  def i = 1
34	  def running = true
35
36	  while ( running) {
37	  def index = rootAlt.select()
38	  switch (index) {
39	  case 0:		  // agent has returned
40	  theAgent = inChannel.read()
41	  theAgent.connect ( [fromAgentOutEnd, toAgentInEnd] )
42	  def agentManager = new ProcessManager (theAgent)
43	  agentManager.start()
44	  def returnedResults = fromAgentInEnd.read()
45	  println "Root: Iteration: $i is $returnedResults " 
46	  returnedResults << "end of " + i
47	  toAgentOutEnd.write (returnedResults)
48	  def backValue = backChannel.read()
49	  agentManager.join()
50	  theAgent.disconnect()
51	  i = i + 1
52	  if (i <= iterations) {
53		   outChannel.write(theAgent)

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

66 

Mobile Agents: Going for a Trip


54	  }
55	  else {
56		   running = false
57	  }
58	  break
59
60	  case 1:
61	  def backValue = backChannel.read()
62	  println "Root: Iteration $i: received $backValue"
63	  break
64	  } // end switch
65	  }// end while
66	  } // end run
67	}

Listing 18-8 The Back Root Process

18.4.3	 Running BackRoot

The script to run BackRoot is shown in Listing 18-9 and again is very similar to that which ran the 
Root process before.

10	def rootIP = "127.0.0.1"
11	def rootAddress = new TCPIPNodeAddress(rootIP, 3000)
12	Node.getInstance().init(rootAddress)
13	def fromRing = NetChannel.net2one() // 50
14
15	def int iterations = Ask.Int ("Number of Iterations ? ", 1, 9)
16	def String initialValue = Ask.string ( "Initial List Value ? ")
17
18	def backChannel = NetChannel.net2one() // 51
19	println " BackRoot channel location = ${backChannel.getLocation()} "
20
21	def nextNodeIP = "127.0.0.2"
22	def nextNodeAddress = new TCPIPNodeAddress(nextNodeIP, 3000)
23	def toRing = NetChannel.one2net(nextNodeAddress, 50)
24
25	toRing.write(0)
26	fromRing.read()
27
28	def rootNode = new BackRoot ( inChannel: fromRing, 
29						        outChannel: toRing,
30						        iterations: iterations,
31						        initialValue: initialValue,
32						        backChannel: backChannel)
33
34	new PAR ( [rootNode] ).run()

Listing 18-9 The Script to Run BackRoot

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

67 

Mobile Agents: Going for a Trip


The only differences are the definition of a NetChannelInput backChannel {18} and its inclusion 
as a property in the construction of the BackRoot process {32}. It is noted that the backChannel is 
allocated channel number 51 by default, however, this is never needed by the programmer because the 
channel is created dynamically by the agent when it arrives at each node.

18.4.4	 Execution of the BackAgent System

Output from running the BackAgent system is shown in Output 18-2. The BackRoot process is run as 
shown in Listing 18-9 and each of the nodes are run using the RunNode process (Listing 18-5), without 
alteration. As the agent progresses round the network of three nodes it can be observed that the nodeId 
(2, 3 and 4) is returned to BackRoot from each node. The agent then returns to the BackRoot process 
where the complete contents of the results list are output. The agent then goes round the network again 
and this time augmented values (12, 13, 14) are returned to BackRoot. The agent returns to BackRoot 
and the extended set of values in results are printed. This is then repeated for the final iteration.

Number of Iterations ? 3
Initial List Value ? ex2
Root: Iteration 1: received 2
Root: Iteration 1: received 3
Root: Iteration 1: received 4
Root: Iteration: 1 is [ex2, 2, 3, 4] 
Root: Iteration 2: received 12

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

http://www.deloitte.ca/careers


Using Concurrency and  
Parallelism Effectively – II

68 

Mobile Agents: Going for a Trip


Root: Iteration 2: received 13
Root: Iteration 2: received 14
Root: Iteration: 2 is [ex2, 2, 3, 4, end of 1, 12, 13, 14] 
Root: Iteration 3: received 22
Root: Iteration 3: received 23
Root: Iteration 3: received 24
Root: Iteration: 3 is [ex2, 2, 3, 4, end of 1, 12, 13, 14, end of 2, 22, 23, 24] 

Output 18-2 Output From the BackRoot Console Window

The output from each of the node processes can be seen in the console print areas associated with 
each process.

18.5	 An Agent with Forward and Back Channels

In this variation an agent is constructed that reads a value from the root process, modifies the data held 
within the agent; that data is then sent to the node running the agent, where the data is again modified 
and returned to the agent. The agent then returns the last value added to the data back to the root node 
before moving to the next node. This is a relatively simple modification of BackAgent but demonstrates 
that a large amount of functionality can be built into agents built using parallel processing capabilities 
in conjunction with network communications.

18.5.1	 The Forward and Back Agent

Listing 18-10 shows the changes made to the run method of the BackAgent (Listing 18-7) to achieve 
the required effect. Initially a net input channel, fromRoot is created {29} and its net channel location 
determined {30}. Once the back channel, toRoot, has been created {31}, it is used to write the 
fromRootLocation to the root process {32}. A value is then read from the fromRoot channel and 
appended to the results list {33}. The agent then writes the augmented results object to the node 
process {34}, which then responds with a further revision to results {35}. The index of the last 
revision is determined {36} and this is sent straight back to the root node {37}.

28	 void run() {
29	  def fromRoot = NetChannel.net2one()
30	  def fromRootLocation = fromRoot.getLocation()
31	  def toRoot = NetChannel.one2net (backChannel)
32	  toRoot.write(fromRootLocation)
33	  results << fromRoot.read()
34	  toLocal.write (results)
35	  results = fromLocal.read()
36	  def last = results.size – 1
37	  toRoot.write(results[last])
38	 }

Listing 18-10 The Modified Forward Back Agent

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

69 

Mobile Agents: Going for a Trip


18.5.2	 The Forward Back Root Process

The only changes required to the BackRoot process (Listing 18-8) to create the process that also has a 
forward channel are shown in Listing 18-11. These changes both occur in the while loop and are identical 
in both cases within the switch statement because whether the agent is running in a remote node or in 
the root process the same connections to the agent channels have to be made.

The location of the forward channel is read from backChannel {47, 68} into forwardLocation. This is 
then used to create the output end of a net channel forwardChannel {48, 69}. A variable rootValue, 
initially -1, is written to the forwardChannel {49, 70} and then its value is decremented by 1 {50, 71}. 
This means that the agent and the root processes have created a pair of net channels that connect the 
two processes over which values can be interchanged as required by the application. The agent can then 
interact with the process running on the remote node as needed.

39	  while ( running) {
40	  def index = rootAlt.select()
41	  switch (index) {
42	  case 0:		  // agent has returned
43	  theAgent = inChannel.read()
44	  theAgent.connect ( [fromAgentOutEnd, toAgentInEnd] )
45	  def agentManager = new ProcessManager (theAgent)
46	  agentManager.start()
47	  def forwardLocation = backChannel.read()
48	  def forwardChannel = NetChannel.one2net(forwardLocation)
49	  forwardChannel.write (rootValue)
50	  rootValue = rootValue – 1
51	  def returnedResults = fromAgentInEnd.read()
52	  println "Root: Iteration: $i is $returnedResults " 
53	  returnedResults << "end of " + i
54	  toAgentOutEnd.write (returnedResults)
55	  def backValue = backChannel.read()
56	  agentManager.join()
57	  theAgent.disconnect()
58	  i = i + 1
59	  if (i <= iterations) {
60		   outChannel.write(theAgent)
61	  }
62	  else {
63		   running = false
64	  }
65	  break
66
67	  case 1:
68	  def forwardLocation = backChannel.read()
69	  def forwardChannel = NetChannel.one2net(forwardLocation)

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

70 

Mobile Agents: Going for a Trip


70	  forwardChannel.write (rootValue)
71	  rootValue = rootValue – 1
72	  def backValue = backChannel.read()
73	  println "Root: During Iteration $i: received $backValue"
74	  break
75	  } // end switch
76	  } // end while 

Listing 18-11 The Changes Required to BackRoot to Create ForwardBackRoot

18.5.3	 Forward back System Output

Output 18-3 shows typical output from the forward and back connected agent and root system. The 
processes were running using the same RunNode script as before and a minor modification {28} to the 
RunBackAgent script to invoke the ForwardBackRoot was required to that shown in Listing 18-9.

It can be seen that the output is very similar except that a negative number appears in the results list 
before each new value is appended. At the end of each iteration a further negative number is appended, 
which is the value appended when the agent is resident with the ForwardBackRoot process but for 
which no value is appended by the root process itself. As in the previous examples the output generated 
by each of the nodes can be seen in their console print windows.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

TMP PRODUCTION NY026057B

PSTANKIE

gl/rv/rv/baf

ACCCTR0005

Bookboon Ad Creative

4

6 x 4

12/13/2013

Bring your talent and passion to a
global organization at the forefront of
business, technology and innovation.
Discover how great you can be. 

Visit accenture.com/bookboon

©
2013 Accenture. 

All rights reserved.

http://s.bookboon.com/accentureCZintl


Using Concurrency and  
Parallelism Effectively – II

71 

Mobile Agents: Going for a Trip


Number of Iterations ? 3
Initial List Value ? ex3
Root: During Iteration 1: received 2
Root: During Iteration 1: received 3
Root: During Iteration 1: received 4
Root: Iteration: 1 is [ex3, -1, 2, -2, 3, -3, 4, -4] 
Root: During Iteration 2: received 12
Root: During Iteration 2: received 13
Root: During Iteration 2: received 14
Root: Iteration: 2 is [ex3, -1, 2, -2, 3, -3, 4, -4, end of 1, 
	 -5, 12, -6, 13, -7, 14, -8] 
Root: During Iteration 3: received 22
Root: During Iteration 3: received 23
Root: During Iteration 3: received 24
Root: Iteration: 3 is [ex3, -1, 2, -2, 3, -3, 4, -4, end of 1, 
	 -5, 12, -6, 13, -7, 14, -8, end of 2, 
	 -9, 22, -10, 23, -11, 24, -12] 

Output 18-3 Typical Output from the Forward backward System

18.6	 Let’s Go On A trip

In this final version, the ring of channels connecting the processes is dispensed with. A number of 
independent nodes will be created each of which has a connection to a root node using an any2one 
net channel. Each node will create a net input channel, the location of which will be sent to the root 
process. The root process will create a list of these individual node net channel locations, together with 
a net input channel location for the root process. This list of net locations will be passed to the agent. 
The agent will be sent to the first node in the list, where it will undertake some interaction with the local 
node that will cause the updating of a results list held within the agent. The agent will then disconnect 
itself from the node and cause itself to be written to the next node in the list of net channel locations. In 
due course it will return to the root node where the results list will be printed. Thus the agent is going 
on a trip, the precise ordering of which, it has no knowledge of in advance.

18.6.1	 The Trip Agent

The TripAgent, shown in Listing 18-12, has local channels {12, 13} that enable its connection to the 
node upon which it is hosted. The property tripList {14} will hold the net channel locations that 
form the trip the agent will travel. The result property {15} is a list that will be modified as the agent 
travels to each node. The pointer property {16} indicates the next element in tripList that is the 
location to which the agent will travel. The connect and disconnect methods are identical to those 
used in previous agents {18–26}.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

72 

Mobile Agents: Going for a Trip


10	class TripAgent implements MobileAgent {
11	  
12	  def ChannelOutput toLocal
13	  def ChannelInput fromLocal
14	  def tripList = [ ]
15	  def results = [ ]
16	  def int pointer
17	  
18	  def connect ( c ) {
19	  this.toLocal = c[0]
20	  this.fromLocal = c[1]
21	  }
22	  
23	  def disconnect (){
24	  toLocal = null
25	  fromLocal = null
26	  }
27
28	  void run() {
29	  toLocal.write (results)
30	  results = fromLocal.read()
31	  if (pointer > 0) {
32	  pointer = pointer – 1
33	  def nextChannel = NetChannel.one2net (tripList.get(pointer))
34	  disconnect()
35	  nextChannel.write(this)
36	  }
37	  else {
38	  println "Agent has returned to TripRoot"
39	  }
40	  }
41	}

Listing 18-12 The Trip Agent Definition

The run method initially writes the current results list to the node process {29} using the toLocal 
channel and then reads the modified version of results from the channel fromLocal {30}. This is 
the same as happened in the previously described agents. The remainder of the processing deals with 
tripList processing.

It is presumed that the zero’th element of tripList contains the net channel location for the root 
process. Thus, once the value of pointer reaches zero, the trip has finished and in this case a simple 
message is printed {38} because the agent can be sent to no other nodes.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

73 

Mobile Agents: Going for a Trip


If the value of pointer is greater than zero {31} then the agent can be transferred to the next node in 
tripList, indicated by (pointer – 1). A net channel location is obtained from tripList using 
the List method get() and this is then used to create a one2net output channel variable called 
nextChannel{33}. The agent then disconnects itself from the local node because the toLocal and 
FromLocal properties will not be Serializable as they refer to addresses within this node. The 
agent can now be written to nextChannel using the usual Java self-reference this {35}. Thus in this 
example the agent itself causes itself to be written to the next node, whereas in previous examples the 
node process has undertaken this task.

18.6.2	 The Trip Node Process

Listing 18-13 shows the coding of the TripNode process. The property toRoot {12} is the net output 
channel by which the process can communicate its net input channel location to the root process. The 
property nodeId is the unique integer identification of this node {13}. Its value will also be used as the 
last element in the node’s IP-address. Within the run method {16} channels are created {17, 18} together 
with their channel ends {19–22} which provide the internal channel mechanism by which the agent 
communicates with the host node, as described previously.

A net input channel is then defined, agentInputChannel {24}, and its net channel location is written 
to the root process using the toRoot net output channel {25}. The node process now waits until it can 
read theAgent from the agentInputChannel {26}.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

 

 
                . 

http://s.bookboon.com/AlcatelLucent


Using Concurrency and  
Parallelism Effectively – II

74 

Mobile Agents: Going for a Trip


Using the local channels, theAgent can be connected to the local node and then executed using a 
ProcessManager {27–29}. The interaction with the agent then takes place {30–32}, after which the 
agentManager can join the node process {33}, so that in this case they can both terminate. In this 
simple case the node process does not contain a loop so the agent can only be hosted once. 

10	class TripNode implements CSProcess{
11	  
12	  def ChannelOutput toRoot
13	  def int nodeId
14	  
15	  def N2A = Channel.one2one()
16	  def A2N = Channel.one2one() 
17
18	  void run() {
19	  def ChannelInput toAgentInEnd = N2A.in()
20	  def ChannelInput fromAgentInEnd = A2N.in()
21	  def ChannelOutput toAgentOutEnd = N2A.out()
22	  def ChannelOutput fromAgentOutEnd = A2N.out()
23	  
24	  def agentInputChannel = NetChannel.net2one()
25	  toRoot.write ( agentInputChannel.getLocation())
26	  def theAgent = agentInputChannel.read()
27	  theAgent.connect ( [fromAgentOutEnd, toAgentInEnd] )
28	  def agentManager = new ProcessManager (theAgent)
29	  agentManager.start()
30	  def currentList = fromAgentInEnd.read()
31	  currentList << nodeId
32	  toAgentOutEnd.write (currentList)
33	  agentManager.join()
34	  }
35	}

Listing 18-13 The Trip Node Process

18.6.3	 The Trip Root Process

Listing 18-14 shows the coding of the TripRoot process. This is very similar to previous root processes 
until the part that deals with the inputting of the net channel input locations from the nodes. The 
fromNodes channel {12} is the net input channel used by each of the nodes to communicate the location 
of the net channel to be used by the agent in forming its tripList. The channels used to connect locally 
to the agent are set up {17–22}, in a similar manner as before.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

75 

Mobile Agents: Going for a Trip


The tripList is initialised with the net channel location of the fromNodes channel and will be the 
last element to be accessed in the list thereby ensuring that TripRoot is the last process in the trip 
{24}. The for loop {26–29} then reads from the fromNodes channel the net input channel location 
of each of the nodes, which are appended to tripList. The next section of coding {30–35} gets the 
last element of tripList, which becomes the net location to which the agent will be sent first. A net 
output channel, firstNodeChannel, is created {31} from the location. An instance of the TripAgent 
is then constructed {32–34} as theAgent after which it can be written to the firstNodeChannel {35}.

The remainder of the coding {36–44} shows the return of theAgent after the trip. It will be read from 
the channel fromNodes {36}. The process interaction between theAgent and the TripRoot process 
is very similar to other such root nodes {37–42}. In order that the root node terminates correctly it is 
necessary for the agent to disconnect itself from the TripRoot node. Thus the host node has to join() 
the agentManager {43} and then theAgent must call disconnect() {44} so that both theAgent 
and the TripRoot processes terminate.

10	class TripRoot implements CSProcess{
11	  
12	  def ChannelInput fromNodes
13	  def String initialValue
14	  def int nodes
15	  
16	  void run() { 
17	  def N2A = Channel.one2one()
18	  def A2N = Channel.one2one() 
19	  def ChannelInput toAgentInEnd = N2A.in()
20	  def ChannelInput fromAgentInEnd = A2N.in()
21	  def ChannelOutput toAgentOutEnd = N2A.out()
22	  def ChannelOutput fromAgentOutEnd = A2N.out()
23	  
24	  def tripList = [ fromNodes.getLocation() ]
25	  
26	  for ( i in 0 ..< nodes) {
27	  def nodeChannelLocation = fromNodes.read()
28	  tripList << nodeChannelLocation
29	  }
30	  def firstNodeLocation = tripList.get(nodes)
31	  def firstNodeChannel = NetChannel.one2net(firstNodeLocation)
32	  def theAgent = new TripAgent( tripList: tripList, 
33							        results: [initialValue],
34							        pointer: nodes)
35	  firstNodeChannel.write(theAgent)
36	  theAgent = fromNodes.read()
37	  theAgent.connect ( [fromAgentOutEnd, toAgentInEnd] )
38	  def agentManager = new ProcessManager (theAgent)

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

76 

Mobile Agents: Going for a Trip


39	  agentManager.start()
40	  def returnedResults = fromAgentInEnd.read()
41	  println "TripRoot: has received $returnedResults " 
42	  toAgentOutEnd.write (returnedResults)
43	  agentManager.join()
44	  theAgent.disconnect() 
45	  }
46	}

Listing 18-14 The Trip Root Process

18.6.4	 Running a Trip Node Process

The script to run a node of the system is shown in Listing 18-15. The any2net channel toRoot {20} 
forms the channel between the nodes to the root process.

10	def int nodeId = Ask.Int ("Node identification (2..9)? ", 2, 9)
11
12	def ipBase = "127.0.0."
13	def nodeIP = ipBase + nodeId
14	def nodeAddress = new TCPIPNodeAddress(nodeIP, 3000)
15	Node.getInstance().init(nodeAddress)
16
17	def rootNodeIP = "127.0.0.1"

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

��������	
�����
������
��������
���������
�����������
��������
�����
��
���������������������������

������
������

������������������������������ �����	�����
	�
�����	������!���"�
	������������

�
	�

�����#$%����&'())%�*+������
	�
���,���������
�-

.�
��������������������
������������
��

��������	
��
����


��	��������	
��
����


���������
���


����������


����������
�����
��


���������

 The Wake
the only emission we want to leave behind

http://www.mandieselturbo.com


Using Concurrency and  
Parallelism Effectively – II

77 

Mobile Agents: Going for a Trip


18	def rootNodeAddress = new TCPIPNodeAddress(rootNodeIP, 3000)
19
20	def toRoot = NetChannel.any2net(rootNodeAddress, 50)
21
22	def processNode = new TripNode ( toRoot: toRoot,
23							        nodeId: nodeId) 
24
25	new PAR ([processNode]).run()

Listing 18-15 The Script To Run TripNode

18.6.5	 Running the Trip Root Process

The script to run the root of the system is shown in Listing 18-16. The net2one channel fromNodes 
{13} forms the net input channel from the nodes to the root process. In this case the RunTripRoot script 
must be executed first because it creates the net input channel to which all the nodes write a channel 
location. It therefore holds the input end of the channel. The variable nodes {16} is required to ensure 
that the TripRoot process reads all the net channel locations from all the TripNode processes.

10	def rootIP = "127.0.0.1"
11	def rootAddress = new TCPIPNodeAddress(rootIP, 3000)
12	Node.getInstance().init(rootAddress)
13	def fromNodes = NetChannel.net2one()
14
15	def String initialValue = Ask.string ( "Initial List Value ? ")
16	def int nodes = Ask.Int ("Number of nodes (1..8) ? ", 1, 8)
17
18	def rootNode = new TripRoot ( fromNodes: fromNodes, 
19							       nodes: nodes,
20							       initialValue: initialValue )
21
22	new PAR ( [rootNode] ).run()

Listing 18-16 The Script to Run TripRoot

18.6.6	 Output From the Trip System

The output shown in Output 18-4 was produced by a system that comprised four nodes and the trip root 
process. The nodes were initialised not in numerical sequence but, as can be seen, the agent visited the 
nodes in a different order. This reflects the way in which the underlying system deals with inputs on an 
any2one net channel and the order in which processes are executed. 

Initial List Value ? ex4
Number of nodes (1..8) ? 4
TripRoot: has received [ex4, 5, 4, 3, 2] 
Agent has returned to TripRoot

Output 18-4 Typical Output From the Trip System

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

78 

Mobile Agents: Going for a Trip


18.7	 Summary

Agents are generally considered to have their roots in actor models which are self contained, interactive, 
concurrently executing objects, having internal state and that respond to messages from other agents 
(Nwana, 1996). More prosaically, an agent is that which “denotes something that produces or is capable of 
producing an effect” (Magedanz, et al., n.d.) and which can migrate to many hosts thereby demonstrating 
that the “concept of mobile agent supports ‘process mobility’ ”. Mobile Agents are also considered to 
have their own thread of control and to respond to received messages (Pham & Karmouch, 1998). More 
recently, it has been argued (Chalmers, et al., 2007) that more correctly a CSP process together with the 
required network communication can be seen to implement the relatively simple Mobile Agent concept 
described above. In the next chapter we shall introduce a mobile process capability, where a process is 
loaded over a network to undertake processing at a host node. In a later chapter we shall investigate a 
system in which agents traverse a network to find a process they can load into the node that created the 
agent, in a network which is created dynamically at run time.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/gee_change


Using Concurrency and  
Parallelism Effectively – II

79 

Mobile Processes: Ubiquitous Access


19	� Mobile Processes: 
Ubiquitous Access

The concept of process mobility is introduced by:

•	 defining a generic system architecture
•	 communicating process definitions as serializable objects over network channels
•	 describing a universal capability applicable to mobile devices

The previous chapter showed how it is possible to create network channels over which agents could be 
transferred. In this chapter we take that concept one stage further and provide a mechanism whereby 
a process can be communicated from one node to another within the network. The only requirement 
is that the receiving node has to run a simple process that loads the mobile process. This is further 
extended to load a process from a server over a wireless network to a mobile device. The mobile device 
becomes a member of the server’s network for the duration of the interaction. The mobile device scans 
for accessible wireless networks and then is able to download a process from that network with which 
it can interact with the service provided.

This technology could be used in a retail environment to let stores make offers to customers, as they walk 
into the store, based upon their previous shopping patterns. In addition, the store could make offers on 
surplus items to customers they know might be susceptible to the offer. The only requirement is that the 
customer has a mobile device into which the process loading process has been installed. The customer 
would also need to store some means of identifying themselves to the store’s systems but with loyalty or 
reward cards this is not a problem.

The technology could be used in a hospital environment to allow access to a hospital information system 
by registered users, using their own mobile device. The great advantage being that the location of a 
person can be determined by the wireless access points that are available and this could result in the 
most appropriate process being downloaded into the mobile device depending upon the user and their 
role. Obviously, some form of authentication process would be required to ensure authorised access but 
the advantage of this style of interaction is that no sensitive data is retained in the mobile device.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

80 

Mobile Processes: Ubiquitous Access


Finally, it could be used in museums to provide additional resources to visitors about the items on 
display. In this case, rather than using wi-fi we could use Bluetooth to give more locality of information. 
The downloaded process could provide additional information in the form of an audio stream giving 
an aural description of the exhibit, possibly supported by an image that shows the particular part of the 
object being described. The audio stream could be in any language. The particular advantage for the 
museum is that visitors can use their own mobile devices, provided they have the process to download 
other processes.

The capability is provided with the ability to dynamically load classes over the network in an efficient 
manner that is totally transparent to the programmer and of the underlying network technology. Processes 
are loaded just like any other object as a Serializable data object. The processes will include some 
of the network channels in their definition that will allow the loaded process to communicate from the 
mobile device to the server. However, channels that enable communication from the server to the loaded 
mobile process will need to be created dynamically.

19.1	 The Travellers’ Meeting System

The meeting system is a service provided by a travel authority such as a railway station or airport that 
enables people travelling together to find out where other members of a group are located especially in the 
event of a travel delay (Kerridge & Chalmers, 2006). A member of the group registers the name by which 
the group recognises itself together with the location of where they are to congregate. Other members 
may try to create another location but will be informed that the group has already been registered and 
given that location. Other members will just try to find the meeting location and will be informed of its 
location. People who try to find a meeting that is not yet registered are informed of this case.

The primary requirement is for an initial channel by which a mobile device can register itself with the 
server network. This is similar to the Request channel used in Chapter 16 to make requests to the 
printer spooling service. All the PrintUser processes knew was that an access channel was available. 
The situation becomes more complex as we move to a more general environment. If the process loaded 
into the mobile device is to function with all such publicly available service providers then they are all 
going to have to use the same mechanism for their access channel. In the case of the hospital environment 
briefly described above this would not be made publicly available.

Once the initial mobile process has been loaded this can then be used to determine the required service 
and then further processes can be loaded using private access channels. In the meeting example the initial 
mobile process will be loaded using the publicly available access channel. The initial mobile process will 
then determine, by means of a user interaction, whether the user is creating a new meeting location or 
finding an existing meeting.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

81 

Mobile Processes: Ubiquitous Access


19.2	 The Service Architecture

The complete architecture is shown in Figure 19-1, in which channel names are shown in italics and 
communicated objects are shown in a regular font. The diagram also shows the IP-addresses, ports and 
channel numbers used by the different components.

 

 
 
Mobile 
Device 

Access 
Server 

toAccess 
ClientLocation / 

ClientRequestData 

processReceive 
Access Process /  

Specific Service Processes 

Server – 127.0.0.1 

:2345/1 

Service 
      B 

:5678/1 

requestService 
 
ClientRequestData 

Process Specific data 

Service 
      C 

:6789/1 

Figure 19-1 The Mobile Device Server Architecture

Initially there are no connections between the Mobile Device and the Server. The mobile device creates 
the processReceive and the toAccess any2net channels. Both these channels can be accessed by more 
than one source process as will be explained later. The location of the processReceive channel is sent to 
the Access Server by means of a Client Location object using the toAccess channel. The Access Server 
then sends the Access Process object to the Mobile Device using the processReceive channel. The Mobile 
Device can now run the Access Process. This creates a user interface with which the user can determine 
the service they require. The chosen service and the processReceive channel location are then sent to 
the Access Server using a Client Request Data object. The Access Server then determines the required 
service and passes the object to the required service process together with the processReceive channel 
location. The required Service then sends a specific Service Process client to the Mobile Device using the 
processReceive channel. The Mobile Device can now execute the client service process and interact with 
the service on the Server. The initial part of the interaction may necessitate the dynamic creation of a net 
channel with which the service client process running in the Mobile Device can communicate with the 
service. While the service client and Server are interacting they can communicate service-specific data 
objects between themselves. The required class definitions for any data will be communicated as part of 
the service client process when it is first transferred from the Server to the Mobile Device. Each server 
executes with its own node:port/channel number combination. These are internal and can be created 
by the service provider. The only port/channel number that has to be fixed for a universal service is that 
of the Access Server.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

82 

Mobile Processes: Ubiquitous Access


19.3	 Universal Client

Each mobile device has to execute the same initial process. This is referred to as the Universal Client 
because it is able to access any such service that follows the same access standard. This is the only 
process that has to be available in the user’s mobile device. All other processes are loaded dynamically 
once a network connection has been made with the service provider. The Universal Client comprises 
two processes running in parallel. One provides the functional capability and the other a user interface. 
This model will be used also in all the processes that are subsequently loaded from the service provider 
into the user’s mobile device. In this demonstration version, we do not model the acquisition of wireless 
networks but simply assume that such a capability is available.

The script that runs the Universal Client (UC) is shown in Listing 19-1. It simply runs two processes 
in parallel, UCInterface {12} and UCCapability {13}, which access a channel ipChannel {10} to 
transfer data between the processes.

10	def ipChannel = Channel.one2one(new OverWriteOldestBuffer(5))
11
12	new PAR([ new UCInterface(sendNodeIdentity: ipChannel.out()), 
13	  �new UCCapability(receiveNodeIdentity: ipChannel.in() )]).run()

Listing 19-1 The Script use to Run the Universal Client Process in a Simulated Mobile Device

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Corporate eLibrary
See our Business Solutions for employee learning

Click here

Management

CoachingMotivationGoal setting

Problem solving

Time Management

Project Management

http://s.bookboon.com/bbg-elibrary-2015


Using Concurrency and  
Parallelism Effectively – II

83 

Mobile Processes: Ubiquitous Access


The UCInterface process is shown in Listing 19-2. This follows the design principles used in Chapters 
11 and 14. The interface simply comprises a set of active components that are placed in the ActiveFrame 
main {16}. The active components are then executed within a PAR {29}. The resulting graphical interface 
is shown in Figure 19-2.

Figure 19-2 Universal Client Interface

The user simply has to type in the last part of the Universal Client’s IP-address. The system assumes that 
the Server processes are located at node “127.0.0.1” and that Universal Client nodes are located at other 
IP-addresses of the form “127.0.0.?”, where the ? will be replaced by whatever the user types in. This 
interaction is simply to simulate what would happen in a real mobile device that is able to dynamically 
obtain an IP-address from the server to which it has connected.

10	class UCInterface implements CSProcess {
11	  
12	  def ChannelOutput sendNodeIdentity
13	  
14	  void run (){
15	  def root = new ActiveClosingFrame ("Universal Client")
16	  def main = root.getActiveFrame()
17	  def requestlabel = new Label("Client IP Node Identity ?")
18	  def enterIPfield = new ActiveTextEnterField (null, sendNodeIdentity)
19	  def enterIP = enterIPfield.getActiveTextField ()
20	  def container = new Container()
21	  container.setLayout(new GridLayout(2,1))
22	  container.add(requestlabel)
23	  container.add(enterIP)
24	  main.setLayout(new BorderLayout())
25	  main.setSize(480, 640)
26	  main.add(container)
27	  main.pack()
28	  main.setVisible(true)
29	  new PAR([root, enterIPfield]).run()
30	  }
31	}

Listing 19-2 The Univeral Client Interface Process

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

84 

Mobile Processes: Ubiquitous Access


The UCCapability process is shown in Listing 19-3. Initially, the process reads the clientNodeId 
from the user interface using the channel receiveNodeIdentity {16}. The clientIpAddress is 
then formed {17} and used to create a node listening on port 1000 {18, 19}. The process then creates a 
numbered net channel with channel number 2 {21} which will be used to receive processes from the 
server. The location of this channel has to be sent to the server as processReceiveLocation {22, 26}.

10	class UCCapability implements CSProcess {
11
12	  def ChannelInput receiveNodeIdentity
13	  def networkBaseIP = "127.0.0."
14
15	  void run(){
16	  def clientINodeId = receiveNodeIdentity.read()
17	  def clientIpAddress = networkBaseIP + clientINodeId
18	  def nodeAddr = new TCPIPNodeAddress(clientIpAddress,1000)
19	  Node.getInstance().init(nodeAddr)
20	  // create channel on which to receive processes from server
21	  def processReceive = NetChannel.numberedNet2One(2)
22	  def processReceiveLocation = processReceive.getLocation()
23	  //create default channel to access server
24	  def accessAddress = new TCPIPNodeAddress("127.0.0.1",2345)
25	  def toAccess = NetChannel.any2net(accessAddress, 1)
26	  �def receiveLocation=new ClientLocation(processReceiveLocation:proces

sReceiveLocation)
27	  toAccess.write(receiveLocation)
28	  def accessProcess = processReceive.read()
29	  def pmA = new ProcessManager(accessProcess)
30	  pmA.start()
31	  def serviceProcess = processReceive.read()
32	  def pmS = new ProcessManager(serviceProcess)
33	  pmS.start()
34	  }
35	}

Listing 19-3 The Universal Client Capability Process

The process now creates the connection to the server. In this example it is assumed that the Access Server 
is located at node “127.0.0.1” and is listening on port 2345 and this is used to create the accessAddress 
{24}. This is then used to create an any2net channel called toAccess that uses channel number 1 
{25}. An any2net channel is used because any number of mobile devices can connect to the server at 
the same time.

The only parts of this system that have to be standardised for the Universal Client to work anywhere are 
the port number, 2345, and the access channel number 1. The IP-address of the server can be deduced 
by the initial wireless interaction between the mobile device and the server.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

85 

Mobile Processes: Ubiquitous Access


Once the channel to the Access Server has been created it can be used to send the 
processReceiveLocation variable to the server in an object ClientLocation {26, 27}. The 
process, acting as a client, then reads the accessProcess from the processReceive channel, created 
previously {28}. An instance of ProcessManager is then started {29, 30}. The accessProcess then 
executes and as a result of another user interaction determines the service required. The accessProcess 
sends that information to the Access Server, which enables the sending of the required service process 
to the mobile device using the same processReceive channel {31}. The serviceProcess is then 
started using another instance of Process Manager {32, 33}. Once the serviceProcess terminates the 
interaction is complete, all the loaded processes can now terminate and the resources can be recovered 
by the mobile device. Thus the mechanism only uses mobile device resources while the user is interacting 
with the service.

19.4	 The Access Server

The Access Server is a process that simply waits for interactions from Mobile Devices as shown in 
Listing 19-4. 

10	def serverIP = "127.0.0.1"
11	 
12	def accessAddress = new TCPIPNodeAddress(serverIP, 2345)
13	Node.getInstance().init(accessAddress)
14	def accessRequestChannel = NetChannel.numberedNet2One(1)

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://thecvagency.co.uk


Using Concurrency and  
Parallelism Effectively – II

86 

Mobile Processes: Ubiquitous Access


15	def accessRequestLocation = accessRequestChannel.getLocation()
16	println "access request location is $accessRequestLocation"
17	// now create all the request channels to each of the service processes
18	def groupLocationServerAddress = new TCPIPNodeAddress(serverIP, 3456)
19	def requestGLservice = NetChannel.one2net(groupLocationServerAddress, 1)
20	//
21	def AServerAddress = new TCPIPNodeAddress(serverIP, 4567)
22	def requestAservice = NetChannel.one2net(AServerAddress, 1)
23	//
24	def BServerAddress = new TCPIPNodeAddress(serverIP, 5678)
25	def requestBservice = NetChannel.one2net(BServerAddress, 1)
26	//
27	def CServerAddress = new TCPIPNodeAddress(serverIP, 6789)
28	def requestCservice = NetChannel.one2net(CServerAddress, 1)
29
30	while (true) {
31	  def clientRequest = accessRequestChannel.read()
32	  if (clientRequest instanceof ClientLocation) {
33	  def clientProcessLocation = clientRequest.processReceiveLocation
34	  def clientProcessChannel = NetChannel.one2net(clientProcessLocation )
35	  �def accessProcess = new AccessProcess (accessRequestLocation:access

RequestLocation,
36									�         processReceiveLocation: 

clientProcessLocation)
37	  clientProcessChannel.write (accessProcess)
38	  }
39	  if (clientRequest instanceof ClientRequestData ) {
40	  def serviceRequired = clientRequest.serviceRequired
41	  switch (serviceRequired) {
42	  case "Service – A" :
43	  requestAservice.write(clientRequest)
44	  break
45	  case "Service – B" :
46	  requestBservice.write(clientRequest)
47	  break
48	  case "Service – C" :
49	  requestCservice.write(clientRequest)
50	  break
51	  case "Group Location Service" :
52	  requestGLservice.write(clientRequest)
53	  break
54	  }
55	  } 
56	}

Listing 19-4 The Script for the Access Server

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

87 

Mobile Processes: Ubiquitous Access


Initially the Access server node is created {12, 13} together with the accessRequestChannel and its 
location {14, 15}. Each of the requestService channels for each of the services available on this server are 
now created {18–28}. The demonstration Server has four services known as A, B, C and Group Location. 
Only the latter provides a service in this demonstration. It should be noted that each service is located to 
a different port on the Server node, thereby avoiding communication contention between the services. 
In larger systems each service could be provided by different nodes on an internal TCP/IP network.

The main body of the Access Server is a loop that repeatedly waits for a clientRequest, which it reads 
on the accessRequestChannel {31}. The type of communication is determined {32, 39}. If the request 
is a ClientLocation the Access Server sends a newly constructed instance of an AccessProcess 
to the requesting Mobile Device using the processReceiveLocation held in the clientRequest 
{33–38} to create the clientProcessChannel.

If the request is an instance of ClientRequestData, the Access Server determines the required service 
and then passes the object to the required service process using the appropriate channel it had previously 
created {39–54}.

19.4.1	 Access Process

The AccessProcess is the process that is written to the Mobile Device, which then enables the user to 
specify the specific service they wish to interact with. The AccessProcess comprises capability and user 
interface processes. The user interface for this process is shown in Figure 19-3 . The user selects a service 
by clicking the button associated with the required service.

 

Figure 19-3 The Access Server Interface 

Listing 19-5 shows the definition of the AccessProcess.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

88 

Mobile Processes: Ubiquitous Access


10	class AccessProcess implements CSProcess, Serializable {
11
12	  def NetChannelLocation processReceiveLocation
13	  def NetChannelLocation accessRequestLocation
14
15	  void run (){
16	  def buttonChannel = Channel.one2one(new OverWriteOldestBuffer(5))
17	  new PAR ([new AccessInterface( buttonEvents: buttonChannel.out()),
18			   new AccessCapability( buttonEvents: buttonChannel.in(),
19	� processReceiveLocation: 

processReceiveLocation,
20	� accessRequestLocation:accessRequest

Location)]).run()
21	  }
22	}

Listing 19-5 The Access Process definition

The process has two properties that give the location of the process receive and the access request locations 
respectively {12, 13}. The buttonChannel provides a connection between the two internal processes 
{16}. The process is itself a parallel of the two processes providing the capability and the interface {17–20}. 
The AccessCapability process is shown in Listing 19-6.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/elearningforkids


Using Concurrency and  
Parallelism Effectively – II

89 

Mobile Processes: Ubiquitous Access


10	class AccessCapability implements CSProcess {
11
12	  def ChannelInput buttonEvents
13	  def NetChannelLocation processReceiveLocation
14	  def NetChannelLocation accessRequestLocation
15	  
16	  void run (){
17	  def serviceRequired = buttonEvents.read()
18	  def clientRequest = new ClientRequestDa�ta ( �processReceiveLocation:

processReceiveLocation,
19	� serviceRequired: 

serviceRequired )
20	  def toAccess = NetChannel.any2net(accessRequestLocation)
21	  toAccess.write(clientRequest)
22	  }
23	}

Listing 19-6 The AccessCapability Process Definition

The process reads the name of the required service from the buttonEvents channel {17} and then 
constructs an instance of ClientRequestData which it sends to the AccessServer using the 
toAccess channel it has created internally as an any2net channel {18–21}. Once the AccessServer 
reads the clientRequest it can pass it to the identified service process as described previously.

19.5	 Group Location Service

The Group Location Service is the only one that provides a real user interaction. The other services are 
simply dummies and will not be described further. The Group Location Server is shown in Listing 19-7.

10	def serverIP = "127.0.0.1"
11	// each service is located at a different port 
12	def groupLocationServerAddress = new TCPIPNodeAddress(serverIP, 3456)
13	Node.getInstance().init(groupLocationServerAddress)
14	def initialChannel = NetChannel.numberedNet2One(1)
15	def requestChannel = NetChannel.numberedNet2One(2)
16	def requestLocation = requestChannel.getLocation()
17	def glAlt = new ALT([initialChannel, requestChannel])
18	def locationMap = [:]
19	while (true) {
20	  switch (glAlt.select()){
21	  case 0: // initial request
22	  def request = initialChannel.read()
23	  �def processSendChannel = NetChannel.one2net(request.processReceiveLocation)
24	  def glProcess = new GLprocess(requestLocation: requestLocation)
25	  processSendChannel.write(glProcess) 
26	  break
27	  case 1: // request from user

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

90 

Mobile Processes: Ubiquitous Access


28	  def requestData = requestChannel.read()
29	  �def responseChannel = NetChannel.one2net(requestData.responseLocation)
30	  def groupName = requestData.groupName
31	  if ( locationMap.containsKey(groupName)){
32	  requestData.location = locationMap[groupName]
33	  responseChannel.write(requestData)
34	  }
35	  else {
36	  requestData.location == null
37	  responseChannel.write(requestData)
38	  requestData = requestChannel.read()
39	  groupName = requestData.groupName
40	  location = requestData.location
41	  locationMap.put(groupName, location)
42	  println "location map = $locationMap"
43	  }
44	  break
45	  }
46	}

Listing 19-7 The Script of the Group Location Server

This service listens on port 3456 {12} for which a node is created {13}. The initialChannel is the 
channel {14} upon which a client request is received from the Access Server. The requestChannel 
is the one from which requests from the client process running on the mobile device will be read. The 
process alternates over its two input channels {17}. The variable locationMap is used to record where 
each group is located {18}. The server reads inputs from either of its input channels {19, 20}. 

In the case of an initial request it reads the request {22} and extracts the location of the Mobile Device’s 
processReceive channel to create a channel {23} to which it can write {25} a newly constructed instance 
of GLprocess {24}. A GLprocess has a single property which is the location of the request channel.

In the case of a request from the Mobile Device {27–44}, the server reads the requestData from the 
requestChannel {28}. The requestData contains a property that is the location of the channel 
upon which the server is to respond to the Mobile Device and this is used to create the required 
responseChannel {29}. The other property of the requestData is the name of the group. If the 
locationMap contains this groupName then the location of the group can be returned to the user 
of the Mobile Device {31–34}. The server is now interacting with the instance of GLprocess that is 
executing on the Mobile Device. If the locationMap does not contain the groupName then this is a 
new group and the user must be asked for the location where the group are to meet. The location is 
set null in the requestData object and returned to the GLprocess running on the Mobile Device 
{37}. The server now reads a location and adds it to the locationMap {36–42}.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

91 

Mobile Processes: Ubiquitous Access


19.5.1	 The GLprocess

The GLprocess also comprises a capability process and a user interface process running in parallel as 
previously described. The GLcapability process is the one which undertakes the interaction with the 
server and is shown in Listing 19-8.

10	class GLcapability implements CSProcess, Serializable {
11
12	  def ChannelInput nameChannel
13	  def ChannelInput locationChannel
14	  def ChannelOutput label1Config
15	  def ChannelOutput label2Config
16	  def NetChannelLocation requestLocation
17
18	  void run(){
19	  def responseChannel = NetChannel.net2one()
20	  def responseLocation = responseChannel.getLocation()
21	  def requestChannel = NetChannel.any2net(requestLocation)
22	  def groupName = nameChannel.read()
23	  def groupData = new GLdata( responseLocation: responseLocation,
24	  groupName: groupName) 
25	  requestChannel.write(groupData) 
26	  def replyData = responseChannel.read()
27
28	  if (replyData.location != null){
29	  label1Config.write("Meeting at")
30	  label2Config.write(replyData.location)
31	  }
32	  else {
33	  label1Config.write("Does not yet exist")
34	  label2Config.write("Type meeting location")
35	  def location = locationChannel.read()
36	  def newGroup = new GLdata( responseLocation: responseLocation,
37							        groupName: groupName,
38							        location: location)
39	  requestChannel.write(newGroup)
40	  }
41	  }// end run
42	}

Listing 19-8 The GLcapability Process Definition

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

92 

Mobile Processes: Ubiquitous Access


The channels nameChannel, locationChannel, label1Config and label2Config provide 
connections to the active elements of the user interface process {12–15}. The property requestLocation 
{16} is the location of the net channel by which the process interacts with the Group Location Server when 
it is running in the user’s Mobile Device. The process creates a responseChannel that can be used by 
the server {19}. It creates the channel requestChannel from the requestLocation property which it 
will use to send requests to the server {21}. The process now reads the name of the group from the user 
interface using the nameChannel {22}. A new GLdata object is created with properties groupName and 
the location of the repsonseChannel {23, 24}. It is then written to the server using the requestChannel 
{25}. It then reads a response as replyData {26}, thereby implementing the client behaviour required in 
an interaction with a server. If the location in replyData is not null then the ActiveLabels in the 
interface can be updated accordingly {28–30}. If the location is null then no location for the group has 
yet been recorded by the service, so the interface labels are updated appropriately and the process then 
reads the location from the locationChannel, which is connected to an ActiveTextEnterField 
in the interface. A new GLdata object is created with all the required property values and written to the 
server {36–39}, which can now update its locationMap as described previously.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/academictransfer


Using Concurrency and  
Parallelism Effectively – II

93 

Mobile Processes: Ubiquitous Access


19.6	 Running the System

The packages c19.net2.* contain the coding for each of the servers and also for the other processes 
required by each server. There is also a script RunUC that can be used to execute an instance of the 
Universal Client process. The service servers must be started before the AccessServer after which many 
instances of the User Capability can be executed.

19.7	 Commentary

The implementation has some limitations, in that once a Universal Client process has started it has to 
run to completion before another instance running on a different node can start its interaction even if 
it has been created. This is not a problem if a location for a group already exists. If the location has not 
been created then this requires a further interaction which may take some time.

It would be preferable if each user had its own connection to the server. This would necessitate the 
creation of many request channels in each server, over which they could alternate. This then creates its 
own problem in that what happens if there are so many requests that there are no request channels left. 
The server obviously has to manage these channels in a pool but also has to have the ability to inform 
a user that it does not have sufficient resource to service the request immediately. The interested reader 
may take this as a challenge and revise the system as described to cater for these additional requirements.

Each of the application areas described in the introduction to this chapter has been implemented as a 
demonstration. These were implemented using a Personal Data Assistant (PDA) an early form of Smart-
phone running a Java Virtual Machine to which the JCSP library had been ported. A more complete 
version of the Group Meeting system was also implemented in this manner. More recently a proof-of-
concept implementation has been undertaken using smart-phone and tablets running various versions 
of the Android operating system.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

94 

Redirecting Channels: A Self-Monitoring Process Ring


20	� Redirecting Channels: 
A Self-Monitoring Process Ring

In this chapter a system is described in which the channels connecting nodes are dynamically changed 
in response to external stimuli. This is achieved using:

•	 two agents; one to disconnect and another to reconnect channels
•	 no centralised control is required; all necessary coding is in the agents
•	 the agents are created as and when required

In Chapter 18 it was shown how Mobile Agents can be constructed using serializable CSProcesses. 
In Chapter 10 a solution was developed to the problem of a ring of processes that circulated messages 
around themselves. No consideration was given to the problems that might happen if messages were not 
taken from the ring immediately. In this chapter we explore a solution to the problem that utilises two 
mobile agents that dynamically manage the ring connections in response to a node of the ring detecting 
that incoming messages are not being processed sufficiently quickly.

The solution as presented does not require any form of central control to initiate the corrective action. 
The agents are invoked by the node when it is determined that the processing of incoming messages 
has stopped. The solution essentially builds an Active Network at the application layer, rather than the 
more usual network layer. The solution also utilises the Queue and Prompter processes developed in 
Chapter 5. These provide a means of providing a finite buffer between the ring node process and the 
process receiving the messages. Additionally, a console interface has been added to the message receiver 
process so that users can manipulate its behaviour and more easily observe the effect the agents have 
on the overall system operation.

20.1	 Architectural Overview

Figure 20-1 shows the process structure of one node and also its relationship to its adjoining nodes. It 
is presumed that there are other nodes on the ring all with the same structure. It shows the state of the 
system once it has been detected that RingElement n has stopped receiving messages. The net channel 
connections joining RingElement n to the ring have been removed and replaced by the connection 
that goes between RingElement n-1 and RingElement n+1.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

95 

Redirecting Channels: A Self-Monitoring Process Ring


The figure also shows the additional processes used to provide the required management. The 
RingElement outputs messages into the Queue process, instead of directly into the Receiver process. 
The Prompt process requests messages from the Queue which it passes on to the Receiver process. 
Whenever the Queue process is accessed, either for putting a new message or getting a message in 
response to a Prompt request, the number of messages in the Queue is output to the StateManager 
process. The StateManager process is able to determine how full the Queue is and, depending on 
pre-defined limits, will inform the RingElement that the Receiver has stopped inputting messages 
or has resumed. This will be the trigger to send either the StopAgent or the RestartAgent around 
the network.

The Queue contains sufficient message slots to hold two messages from each node. The signal to indicate 
that the receiver has stopped inputting messages is generated by the StateManager when the Queue 
is half full. A naive solution would just create an infinite queue to deal with the problem and not worry 
about the fact that the messages were no longer being processed by the Receiver. However, this is not 
sensible because were the situation to be sustained over a long period the processor would run out of 
memory and would fail in a disastrous manner. It is thus much better to deal with the situation rather 
than ignore it. The Sender process has been modified in as much that a delay has been introduced 
so that there is a pause between the sending of one message and the next. This was done so that the 
operation of the revised system could be more easily observed.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

By 2020, wind could provide one-tenth of our planet’s 
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the 
world’s wind turbines. 

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our 
systems for on-line condition monitoring and automatic 
lubrication. We help make it more economical to create 
cleaner, cheaper energy out of thin air. 

By sharing our experience, expertise, and creativity, 
industries can boost performance beyond expectations. 

Therefore we need the best employees who can 
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering. 

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge


Using Concurrency and  
Parallelism Effectively – II

96 

Redirecting Channels: A Self-Monitoring Process Ring


Ring 

Element n -1 

Ring 

Element n 

Sender 

Receiver 

Ring 

Element n +1 

Queue Prompt 

State Manager 

Extra 

Element 

Console 

Figure 20-1 The Architecture of the Self Monitoring Ring Structure

20.2	 The Receiver process

Listing 20-1 shows the modified Receiver process, the behaviour of which is modified by the Console 
process. The channel fromElement {12} is the input channel from the Prompt process. The remaining 
channel properties connect the Receiver process to the Console process. The channel outChannel 
{13} is used to display messages on the Console and the channel fromConsole {15} is used to input 
messages from the Console. The clear channel {14} is used to reset the input area of the Console.

The process can receive inputs on either the fromConsole or fromElement channel and an ALT is 
constructed to this effect {18}. The main loop {21-40} waits for the enabling of an alternative guard {22, 
23} and then deals with that input. The expected input from the Console {24-34} is either any string 
to stop the Receiver process, typically “stop”, followed by “go” to restart the Receiver process. If 
the input is from the ring element {35–38} then a message is sent to the Console writing the content 
of the data received in the Console’s output area. The Console process is implemented using the 
GConsole process.

10	class Receiver implements CSProcess {
11
12	  def ChannelInput fromElement
13	  def ChannelOutput outChannel
14	  def ChannelOutput clear
15	  def ChannelInput fromConsole
16	  

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

97 

Redirecting Channels: A Self-Monitoring Process Ring


17	  def void run() {
18	  def recAlt = new ALT ([ fromConsole, fromElement])
19	  def CONSOLE = 0
20	  def ELEMENT = 1
21	  while (true) {
22	  def index = recAlt.priSelect()
23	  switch (index) {
24	  case CONSOLE:
25	  def state = fromConsole.read()
26	  outChannel.write("\n go to restart")
27	  clear.write("\n")
28	  while (state != "go") { 
29		   state = fromConsole.read()
30		   outChannel.write("\n go to restart")
31		   clear.write("\n")
32	  }
33	  outChannel.write("\nresuming …\n")
34	  break
35	  case ELEMENT:
36	  def packet = fromElement.read()
37	  outChannel.write ("Received: " + packet.toString() + "\n")
38	  break
39	  }
40	  }
41	  }
42	}

Listing 20-1 The Receiver Process

20.3	 The Prompter Process

The Prompter process, shown in Listing 20-2 has channels that communicate with the Queue process 
as follows. The channel toQueue {12} is used by the Prompter to signal {18} that it is ready to read an 
item from the Queue. The channel fromQueue {13} is used to input an item from the Queue {19}, 
which is immediately written to the Receiver process {19} using the toReceiver channel {14}.

10	class Prompter implements CSProcess{
11
12	  def ChannelOutput toQueue
13	  def ChannelInput fromQueue
14	  def ChannelOutput toReceiver
15
16	  void run() {
17	  while (true) {
18	  toQueue.write(1)
19	  toReceiver.write ( fromQueue.read() )
20	  } 
21	  }
22	}

Listing 20-2 The Prompter Process

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

98 

Redirecting Channels: A Self-Monitoring Process Ring


20.4	 The Queue Process

The Queue process shown in Listing 20-3, is very similar to that described in Chapter 5. 

The main difference is the addition of an output channel toStateManager {14} to the properties. The 
property slots {16} is used to specify the number of items that can be held in the queue. The channels 
fromPrompter and toPrompter {13, 15} are the respective channel ends of the Prompter process’ 
toQueue and fromQueue channels. The channel fromElement {12} is used to receive inputs from 
the ring element process.

Each time an item is either put into or removed from the queue, depending on the enabled case, the 
value of the counter {26}, which holds the number of items stored in the Queue, is output to the 
StateManager process using the channel toStateManager {36, 43}.

10	class Queue implements CSProcess {
11
12	  def ChannelInput fromElement
13	  def ChannelInput fromPrompter
14	  def ChannelOutput toStateManager
15	  def ChannelOutput toPrompter
16	  def int slots
17

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

AXA Global 
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA


Using Concurrency and  
Parallelism Effectively – II

99 

Redirecting Channels: A Self-Monitoring Process Ring


18	  void run() {
19	  def qAlt = new ALT ( [ fromElement, fromPrompter ] )
20	  def preCon = new boolean[2]
21	  def ELEMENT = 0
22	  def PROMPT = 1
23	  preCon[ELEMENT] = true 
24	  preCon[PROMPT] = false 
25	  def data = []
26	  def counter = 0 
27	  def front = 0 
28	  def rear = 0 
29	  while (true) {
30	  def index = qAlt.priSelect(preCon)
31	  switch (index) {
32	  case ELEMENT:
33	  data[front] = fromElement.read()
34	  front = (front + 1) % slots
35	  counter = counter + 1
36	  toStateManager.write(counter)
37	  break
38	  case PROMPT:
39	  fromPrompter.read() 
40	  toPrompter.write( data[rear])
41	  rear = (rear + 1) % slots
42	  counter = counter – 1
43	  toStateManager.write(counter)
44	  break
45	  }
46	  preCon[ELEMENT] = (counter < slots)
47	  preCon[PROMPT] = (counter > 0 )
48	  } // end while
49	  } // end run
50	}

Listing 20-3 The Queue Process

20.5	 The State Manager Process

The role of the StateManager process, shown in Listing 20-4, is to determine how full the Queue 
has become. It inputs the number of items in the Queue as the variable usedSlots {20} from Queue 
using the channel fromQueue {12}. It does this every time the Queue process either adds or removes 
an item. The variable limit {17} is half the maximum number of items that can be held in the Queue, 
which is available by means of the property queueSlots {14}. The Boolean variable aboveLimit 
determines whether the number of items in the Queue is greater than or equal to the limit value {21}. 
The variable state {18} indicates the current state of the relationship between usedSlots and limit 
and is initially “NORMAL”. 

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

100 

Redirecting Channels: A Self-Monitoring Process Ring


There are two cases of interest; first, when the number of items in the Queue is increasing and goes above 
the limit {22–26}, which means the Queue is now half full and getting fuller because the Receiver 
has stopped processing items. In this case we need to inform the ring element process of this situation by 
outputting the “STOP” state on the toElement channel {24}. The other case {27-31} occurs when the 
Queue has been above the limit and is now emptying, because the Receiver has resumed processing. 
In this case we reset state to “NORMAL” and write “RESTART” to the toElement channel. The coding 
also includes some print statements {25, 30}, which can be observed in the Eclipse console window for 
the node as it executes, in addition to the output that appears in the GConsole window.

The STOP and RESTART messages have the effect of causing the associated Ring Element process to send 
a Stop Agent and then a Restart Agent around the network respectively, as described in the next section.

10	class StateManager implements CSProcess{
11	  
12	  def ChannelInput fromQueue
13	  def ChannelOutput toElement
14	  def int queueSlots
15
16	  void run() {
17	  def limit = queueSlots / 2
18	  def state = "NORMAL" 
19	  while (true) {
20	  def usedSlots = fromQueue.read()
21	  def aboveLimit = ( usedSlots >= limit)
22	  if ((state == "NORMAL") && ( aboveLimit)) {
23	  state = "ABOVE_LIMIT"
24	  toElement.write("STOP")
25	  println "SM: stopping"
26	  }
27	  if ((state == "ABOVE_LIMIT") && ( !aboveLimit)) {
28	  state = "NORMAL"
29	  toElement.write("RESTART")
30	  println "SM: restarting"
31	  } 
32	  } // end while
33	  } // end run
34	}

Listing 20-4 The State Manager Process

20.6	 The Stop Agent

The StopAgent, shown in Listing 20-5, is constructed within the RingAgentElement process Listing 
20-7. It is activated whenever a RingAgentElement process receives an “STOP” message from its 
StateManager process.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

101 

Redirecting Channels: A Self-Monitoring Process Ring


The channel properties toLocal {12} and fromLocal {13} will be used to connect the StopAgent to a 
host process when it arrives at a new RingAgentElement process. These properties are not initialised in 
its constructor. The property homeNode {14} is used to hold the node identity of the RingAgentElement 
that has detected the fault. The property previousNode {15} is used to hold the node identity of the 
RingAgentElement that precedes the node that has detected the fault condition. This is the node that 
will be required to redirect its output channel to the one following the faulty node. The Boolean property 
initialised {16} is used to indicate whether the property nextNodeInputEnd {17} has been set. The 
nextNodeInputEnd holds the net channel input end of the channel to which the previous node’s net 
channel output has to be redirected. This can only be obtained once the StopAgent has moved from 
the faulty node to the next node.

The methods connect {19–23} and disconnect {25–28} are used to initialise and then remove the 
channel connections between the StopAgent and the host process. The run method {30–45} initially 
outputs the properties homeNode, previousNode and initialised to the host process using the 
channel toLocal. If the StopAgent has not been initialised it reads the nextNodeInputEnd 
from the host process using the channel fromLocal. The host process then sends the StopAgent a 
Boolean gotThere indicating whether or not the StopAgent has arrived at the node identified by 
previousNode. If the StopAgent has arrived then the value of nextNodeInputEnd is written to the 
host process. The StopAgent prints messages to the host node’s Eclipse console window {31, 38 and 
43} to show the state of interactions between the agent and the host node.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/Subscrybe


Using Concurrency and  
Parallelism Effectively – II

102 

Redirecting Channels: A Self-Monitoring Process Ring


The Stop Agent has to pass through every node. As it does this it informs the Ring Element the identity 
of the node that has failed {32}. This subsequently has the effect of stopping the node from sending any 
further messages to the failed node.

An implication of this design is that a network must consist of at least three RingAgentElements and an 
AgentExtraElement process otherwise there would be no possibility of undertaking the redirection. A 
further implication is that faults cannot be detected in the AgentExtraElement process as the system 
only detects errors once messages have been processed by the RingAgentElement process. The system 
also assumes that the nodes are numbered such that their IP-addresses are numbered consecutively 
starting with 1 for the AgentExtraElement process.

10	class StopAgent implements MobileAgent {
11
12	  def ChannelOutput toLocal
13	  def ChannelInput fromLocal
14	  def int homeNode
15	  def int previousNode
16	  def boolean initialised
17	  def NetChannelLocation nextNodeInputEnd
18	  
19	  def connect (c) {
20	  this.toLocal = c[0]
21	  this.fromLocal = c[1]
22
23	  }
24	  
25	  def disconnect () {
26	  this.toLocal = null
27	  this.fromLocal = null
28	  }
29
30	  void run() {
31	  println "SA: running $homeNode, $previousNode, $initialised"
32	  toLocal.write(homeNode)	 // tells node not to send to this node
33	  toLocal.write(previousNode) // where we want to get to
34	  toLocal.write(initialised)
35	  if ( ! initialised) {
36	  nextNodeInputEnd = fromLocal.read()
37	  initialised = true
38	  println "SA: initialised"
39	  }
40	  def gotThere = fromLocal.read()
41	  if ( gotThere ) {
42	  toLocal.write(nextNodeInputEnd)
43	  println "SA: got to $previousNode"

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

103 

Redirecting Channels: A Self-Monitoring Process Ring


44	  }
45	  } // end run
46	}

Listing 20-5 The Stop Agent

20.7	 The Restart Agent

The RestartAgent shown in Listing 20-6 undoes the effect of the StopAgent once the faulty node 
detects that the fault has been removed. 

Its properties are very similar and are used in the same way as those with similar names in the StopAgent. 
The firstHop {16} property is used to indicate whether the RestartAgent has arrived at the node that 
follows the node that was faulty. This has to be dealt with especially if deadlock is not to occur in the 
system as will be explained in 20.8.2.2 and 20.8.2.3.

The run method of the RestartAgent {29–36} simply writes firstHop to the host process and then 
sets firstHop false if it is true. The values of homeNode and previousNode are then written to the 
host process, which processes them accordingly. The agent also prints messages {30, 35} to the Eclipse 
console for the node.

The interactions between the Restart Agent and the node mean that the node can now resume the 
sending of messages to the previously failed node. This is achieved by the sending of homeNode to the 
local node {33}. The communication of previousNode to the local node {34} means that the local node 
can determine whether it was the previous node and can thus modify its internal structures so that it 
resumes sending messages to the previously failed node.

10	class RestartAgent implements MobileAgent {
11	  
12	  def ChannelOutput toLocal
13	  def ChannelInput fromLocal
14	  def int homeNode
15	  def int previousNode
16	  def boolean firstHop
17	  
18	  def connect (c) {
19	  this.toLocal = c[0]
20	  this.fromLocal = c[1]
21
22	  }
23	  
24	  def disconnect () {
25	  this.toLocal = null
26	  this.fromLocal = null

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

104 

Redirecting Channels: A Self-Monitoring Process Ring


27	  }
28
29	  void run() { 
30	  println "RA: running $homeNode, $previousNode"
31	  toLocal.write(firstHop)
32	  if (firstHop) { firstHop = false }
33	  �toLocal.write(homeNode)	 // tells node to resume sending to 

this node
34	  toLocal.write(previousNode)
35	  println "RA: finished"
36	  } // end run
37	}

Listing 20-6 The Restart Agent

20.8	 The Ring Agent Element Process

The RingAgentElement process is somewhat lengthy and thus its description will be subdivided 
into the sections it comprises. The structure is very similar to that described in Chapter 10 with the 
modifications required to deal with the agent processing. It should be recalled that the deadlock free 
architecture developed in Chapter 10 was optimised so that any node that had data to put onto the ring 
could do so provided an empty packet had been received from the ring. Thus the number of packets 
circulating around the ring was the same as the number of nodes, excluding the extra element used to 
overcome one aspect of the deadlock profile of the network.

20.8.1	 Properties and Initialisation

The properties and initialisation of the variables used in the operation of the AgentRingElement process 
is shown in Listing 20-7. The channels fromRing {12} and toRing {13} are net channels used to connect 
this node to the preceding and following nodes respectively. Messages are received from the Sender 
process on the channel fromSender {14}. Similarly outputs of the state of the Queue are input from 
StateManager on the fromStateManager channel {15}. In this revised version, messages received 
for the node are now output to the Queue process on the toQueue {16} channel, rather than directly 
to the Receiver process. The element {17} property holds the identity of this node as an integer. The 
nodes are numbered from 2 upwards, in sequence, with the AgentExtraElement given the identity 1.

The run method {19}, initially defines the channels and channel ends used to connect this process to 
any agent {20–25}. The mechanism is exactly the same as that described previously in Chapter 18. The 
two agents are then constructed {27–32} and the properties that need to be defined are initialised in an 
obvious manner. The AgentExtraElement has also had to be modified to deal with the arrival of agents 
in a manner very similar to that to be presented. The precise changes for the AgentExtraElement 
will not be described but can be determined from the accompanying folder ChapterExamples/src/
c20/net2.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

105 

Redirecting Channels: A Self-Monitoring Process Ring


10	class RingAgentElement implements CSProcess {
11	  
12	  def ChannelInput fromRing
13	  def ChannelOutput toRing
14	  def ChannelInput fromSender
15	  def ChannelInput fromStateManager
16	  def ChannelOutput toQueue
17	  def int element
18	  
19	  void run() {
20	  def N2A = Channel.one2one()
21	  def A2N = Channel.one2one()
22	  def ChannelInput toAgentInEnd = N2A.in()
23	  def ChannelInput fromAgentInEnd = A2N.in()
24	  def ChannelOutput toAgentOutEnd = N2A.out()
25	  def ChannelOutput fromAgentOutEnd = A2N.out()
26
27	  def stopper = new StopAgent ( homeNode: element, 
28							        previousNode: element – 1, 
29							        initialised: false)
30	  def restarter = new RestartAgent ( homeNode: element, 
31								         previousNode: element – 1,
32								         firstHop: true)
33

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Losing track of your leads?
Bookboon leads the way
Get help to increase the lead generation on your own website. Ask the experts.  

Interested in how we can help you? 
email ban@bookboon.com

http://bookboonglobal.com/en/qualities2/content-and-dialogue-marketing-2/


Using Concurrency and  
Parallelism Effectively – II

106 

Redirecting Channels: A Self-Monitoring Process Ring


34	  def NetChannelLocation originalToRing = toRing.getLocation()
35
36	  def failedList = [ ]
37	  
38	  def RING = 0
39	  def SENDER= 1
40	  def MANAGER = 2
41	  �def ringAlt = new ALT ( [ fromRing, fromSender, fromStateManager ] )
42	  def preCon = new boolean[3]
43	  preCon[RING] = true
44	  preCon[SENDER] = true
45	  preCon[MANAGER] = true // always the case
46	  �def emptyPacket = new RingPacket(source:-1, destination:-1, 

value:-1, full: false)
47	  def localBuffer = new RingPacket()
48	  def localBufferFull = false
49	  def restartBuffer = null
50	  def restarting = false
51	  def stopping = false
52	  toRing.write ( emptyPacket )
53	  while (true) {
54	  def index = ringAlt.select(preCon)
55	  switch (index) {

Listing 20-7 The Properties and Initialisation of the Ring Element Process

The variable originalToRing {34} is initialised to the NetChannelLocation of the toRing channel 
when the process is initialised. If this channel were to be redirected then it is easier to have a record of 
the original value pre-stored in the process when it comes to reinstating the original connection. The list 
variable failedList {36} will be modified by interaction with the agent to indicate the node(s) that 
have become faulty. This means that messages destined for a faulty node can be stopped from being sent.

The alternative ringAlt {41} has been extended, from that described in Chapter 10, to include the 
channel fromStateManager, so that inputs from the StateManager are considered. The related 
preCon element preCon[MANAGER] is always true {45} as such inputs must always be processed. The 
variable restartBuffer is used when a RestartAgent is received {49} and the Boolean variables 
restarting and stopping {50, 51} are also used to manage agent processing and their use will be 
described later.

20.8.2	 Dealing With Inputs From The Ring

The main loop of the process essentially deals with incoming packets from the ring, the Sender process 
and the StateManager process as indicated by the first part of the loop which selects the enabled 
alternative from these inputs. The incoming packets from the ring are of three types; data packets, 
StopAgents and RestartAgents. Each of these cases will be dealt with separately.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

107 

Redirecting Channels: A Self-Monitoring Process Ring


20.8.2.1 Ring Packet Processing

Listing 20-8 shows how RingPackets are dealt with as a result of the selection of the fromRing 
alternative. The first action is to read the data from the ring {57}. The instanceof operator is then 
used to determine the type of data that has been read {58}, which in this case is of type RingPacket. 
It has the same structure as that used in Chapter 10.

56	  case RING:
57	  def ringBuffer = fromRing.read()
58	  if ( ringBuffer instanceof RingPacket) {
59	  if ( ringBuffer.destination == element ) { 
60		   // packet for this node; full should be true
61		   toQueue.write(ringBuffer)
62		   �// now write either stopper, restarter, localBuffer or 

empty packet to ring
63		   if (stopping) {
64			    stopping = false
65			    toRing.write(stopper)
66		   }
67		   else {
68			    if (restarting) {
69				     restarting = false
70				     toRing.write(restartBuffer)
71			    }
72			    else {
73				     if ( localBufferFull ) {
74					      toRing.write ( localBuffer )
75					      �preCon[SENDER] = true // allow another packet 

from Sender
76					      �localBufferFull = false
77				     } 
78				     else {
79					      toRing.write ( emptyPacket )
80				     }
81			    }
82		   } 
83	  }
84	  else {
85		   if ( ringBuffer.full ) {
86			    // packet for onward transmission to another element
87			    toRing.write ( ringBuffer )
88		   }
89		   else {
90			    // have received an empty packet
91			    �// write either stopper, restarter, localBuffer or empty 

packet to ring
92			    if (stopping) {
93				     stopping = false

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

108 

Redirecting Channels: A Self-Monitoring Process Ring


94				     toRing.write(stopper)
95			    }
96			    else {
97				     if (restarting) {
98					      restarting = false
99					      toRing.write(restartBuffer)
100				     }
101				     else {
102					      if ( localBufferFull ) {
103						       toRing.write ( localBuffer )
104						       �preCon[SENDER] = true // allow another 

packet from Sender
105						       localBufferFull = false
106					      } 
107					      else {
108						      toRing.write ( emptyPacket )
109					      }
110				     }
111			    }
112		   }
113	  }
114	  }
115	  else { // dealing with Stop and Restart Agents

Listing 20-8 RingPacket Processing

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/EOT


Using Concurrency and  
Parallelism Effectively – II

109 

Redirecting Channels: A Self-Monitoring Process Ring


If ringBuffer {59} contains a message destined for this node then it is written to the Queue process 
using the toQueue channel {61}. The subsequent action taken depends on the state of various Boolean 
variables. If stopping is true indicating that the StateManager has detected a fault then the 
StopAgent stopper is written to the ring {65}. This action is given the highest priority. If restarting 
is true indicating that a RestartAgent has been received then the instance saved in restartBuffer 
is written to the ring {70}. If a message has been received from the Sender process then it is written to 
the ring and the preCon and variable values are modified so that another message can be received from 
Sender {73–76}. If none of the above conditions are true then an empty packet is written to the ring {79}.

If ringBuffer {59} contains a message that is intended for another node then the message is simply 
written to the ring {87}. The only other possible case is that a message has been received that is the 
emptyPacket {89} and thus the processing required is governed, as before, by the state of the variables 
associated with, stopping, restarting and the state of the buffer that holds messages from the 
Sender process. If none of these requires any action then an emptyPacket is written to the ring {108}.

20.8.2.2 Stop Agent Processing

The coding associated with StopAgent processing is shown in Listing 20-9. The previously read 
ringBuffer {57} is placed in the variable theAgent {117}. The agent is then connected to this process 
and executed {118–120} in the same manner as described in Chapter 18. The interaction with the agent 
can now commence with the reading of the failed node identity {121}, which can be appended to the 
failedList {122}. A descriptive message is then printed on the node’s Eclipse console window {123}. 
The targetNode for the agent can then be read {124} and then the indication of whether the agent has 
been initialised or not into alreadyInitialised {125}. If the agent has not been initialised then the 
channel location of the input fromRing channel can be written to the agent {127}. The StopAgent is 
only initialised when it gets to the node following the node that has failed. The channel location of the 
fromRing channel is required so that it can be sent round the ring to the target node, which is the node 
preceding the failed node. The target node could be the extra element.

116	  if (ringBuffer instanceof StopAgent) {
117	  def theAgent = ringBuffer
118	  theAgent.connect ( [fromAgentOutEnd, toAgentInEnd] )
119	  def agentManager = new ProcessManager (theAgent)
120	  agentManager.start()
121	  def failedNode = fromAgentInEnd.read()
122	  failedList << failedNode
123	  �println "Node $element: stopping failed list now $failedList"
124	  def targetNode = fromAgentInEnd.read()
125	  def alreadyInitialised = fromAgentInEnd.read()

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

110 

Redirecting Channels: A Self-Monitoring Process Ring


126	  if ( ! alreadyInitialised ) {
127		   toAgentOutEnd.write (fromRing.getLocation())
128	  }
129	  if (element == targetNode) {
130		   // got to node that needs to be changed
131		   toAgentOutEnd.write(true)
132		   �def NetChannelLocation revisedToRing = fromAgentInEnd.read()
133		   toRing = NetChannel.any2net(revisedToRing)
134		   agentManager.join()
135		   theAgent.disconnect()
136		   println "Node $element: stopping has redirected toRing"
137		   �// no need to send agent any further its got to its target
138		   // ring has lost a node hence do not send an empty packet
139	  }
140	  else {
141		   toAgentOutEnd.write(false)
142		   agentManager.join()
143		   theAgent.disconnect()
144		   toRing.write(theAgent)
145		   �println "Node $element: stopping has passed agent on to next node"
146	  } 
147	  }
148	  else { // must be instance of RestartAgent

Listing 20- 9 Stop Agent Processing

The remainder of the processing deals with whether or not the agent has arrived at the required destination 
node, which is the node preceding the faulty node. By the time the agent has travelled to the destination 
node all the intervening nodes will have had their failedList updated so they will no longer be 
sending messages to the failed node.

If the agent has arrived at the target node {129} then true is written to the agent {131} and the 
channel location to be used for subsequent outputs by this destination node is read from the agent 
as revisedToRing {132}. The channel toRing is then assigned the any2net channel created from 
revisedToRing {133}. An any2net channel has been used so that more than one process can write 
to the channel, which is required in this situation. When the faulty node detects that it can resume 
processing because the Receiver process has started to accept messages again; a RestartAgent will 
be written on the original toRing channel.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

111 

Redirecting Channels: A Self-Monitoring Process Ring


The agentManager then joins with the agent {134} waiting for the latter to terminate at which point 
theAgent can be disconnected {135}. There is no need to write theAgent to the next node as it 
was the faulty node and we now know that its input, fromRing, has been bypassed. More importantly 
we do not write an emptyPacket to the ring even though the agent has taken up an emptyPacket, 
when it was first written to the ring. If we were to write an emptyPacket to the ring there would be 
more packets than nodes and deadlock would ensue.

If theAgent has not yet arrived at its destination then processing is much simpler. A false signal is written 
to the agent {141}. The process then waits for the agent to terminate {142} after which it can disconnect 
itself from the agent {143}. The process can then write theAgent to the ring {144}. A descriptive message 
is then written {145}.

20.8.2.3 Restart Agent Processing

RestartAgent processing is shown in Listing 20-10, which starts with assigning {149} theAgent from 
ringBuffer into which it was originally read {57}. In the same manner as before, theAgent can be 
connected to the host process, allocated to an agentManager and started {150–152}.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book  
is made with 
SetaPDF

http://s.bookboon.com/Setasign


Using Concurrency and  
Parallelism Effectively – II

112 

Redirecting Channels: A Self-Monitoring Process Ring


Three values are then read from the agent, firstHop {153}, resumedNode {154} and targetNode {155} 
using the channel fromAgent. As the agent passes through each element it needs to modify the list of 
failed nodes by removing the identifier of the resumedNode from the failedList {155}. The target 
node identity is read {157} into targetNode after printing a descriptive message.

If this is the first move made by the agent the firstHop will be true {158}. In this case the resuming 
node will have injected the RestartAgent into the ring of nodes as an extra packet (see the next 
section 23.8.3) and this needs to be dealt with specially, if deadlock is not to occur. All the processing 
between agent and host element has been completed so all that remains is to wait for the agent to terminate 
and to disconnect it from the host {159, 160}. Instead of writing theAgent onto the ring it is placed 
in a buffer, restartBuffer {161} and restarting is set true {162}. In due course when either an 
empty packet arrives at the node or a packet is received that is destined for this node the restartBuffer 
will be written to the ring {63–71, 92–100} and restarting is reset to false.

The remainder of the processing deals with determination of whether or not the agent has arrived at the 
node, targetNode, which needs to have its toRing output channel returned to its original setting so 
that the resumed node is reconnected to the network. This is dealt with by resetting {166} toRing to 
the originalToRing value previously saved {34}. The host then waits for the agent to terminate and 
disconnects itself from the agent. {168–169}. Finally, an emptyPacket is written to the ring {172} 
because the previously faulty node is now operating again. If the agent has not arrived at the targetNode 
it simply waits for theAgent to terminate, disconnects itself and then writes theAgent to the next 
node {175–178}.

149	  def theAgent = ringBuffer
150	  theAgent.connect ( [fromAgentOutEnd, toAgentInEnd] )
151	  def agentManager = new ProcessManager (theAgent)
152	  agentManager.start()
153	  def firstHop = fromAgentInEnd.read()
154	  def resumedNode = fromAgentInEnd.read()
155	  failedList = failedList – [resumedNode]
156	  �println "Node $element: restarting failed list now $failedList"
157	  def targetNode = fromAgentInEnd.read()
158	  if (firstHop) {
159	  agentManager.join()
160	  theAgent.disconnect()
161	  restartBuffer = theAgent
162	  restarting = true
163	  }
164	  else {
165	  if (element == targetNode) { 
166		   toRing = NetChannel.any2net (originalToRing)
167		   println "Node $element: restarting has redirected toRing"
168		   agentManager.join()

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

113 

Redirecting Channels: A Self-Monitoring Process Ring


169		   theAgent.disconnect()
170		   �// no need to send agent any further its got to its target
171		   �// but the node has been reinstated hence need another 

packet on ring
172		   toRing.write ( emptyPacket )
173	  }
174	  else {
175		   agentManager.join()
176		   theAgent.disconnect()
177		   toRing.write(theAgent)
178		   �println "Node $element: restarting has passed agent on to next node"
179	  } 
180
181	  }
182	  }
183	  }
184	  break

Listing 20-10 Restart Agent Processing

The aspect of most importance in the processing of stop and restart agents is to ensure that the correct 
number of packets remain on the ring. If this is not carefully considered then either the ring will slowly 
empty of packets as nodes fail and will thus not work optimally, or, more likely, additional packets will 
be placed on the ring and deadlock will ensue. The design of the ring is inherently prone to deadlock 
and cannot be analysed using the client server pattern. It is thus up to the system designer to ensure that 
all possible cases are considered when avoiding the creation of possible deadlocks.

20.8.3	 Dealing With Inputs From the Sender Process

Listing 20-11 shows the processing concerned with messages received from the Sender process. The 
Sender process writes messages to the ring element node at regular intervals and sends messages to all 
the other nodes. Messages can only be received when the localBuffer is not full and its element in 
the preCon array is true. Once a message packet is received fromSender {186}, a test is undertaken to 
determine whether or not its destination is in the failedList {188}. If the message is destined for 
a failed node it is effectively ignored and the control variable localBufferFull is not changed. This 
means that the message will not get written to the ring and will be overwritten by another message. This 
has the effect that while a node has failed it will receive no messages and for the time that it has failed 
any messages that it should have received will be lost. This of course is not the most sensible course of 
action but it does make it much easier to observe the dynamic operation of the system.

185	  case SENDER: 
186	  localBuffer = fromSender.read()
187	  // test to see if destination is not in failedList
188	  if ( ! failedList.contains(localBuffer.destination) ) {

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

114 

Redirecting Channels: A Self-Monitoring Process Ring


189		   �preCon[SENDER] = false // stop any more Sends until buffer 
is emptied

190		   localBufferFull = true
191	  }
192	  �// otherwise throw away the message to a stopped node and it 

is lost forever!
193	  break

Listing 20-11 Sender Process Input Processing

20.8.4	 Dealing With Inputs From the StateManager Process

The StateManager only generates inputs to the RingAgentElement whenever the state of the Queue is 
such that either a ring element needs to be removed from the ring or reinstated. The associated processing 
is shown in Listing 20-12. If the fromStateManager alternative {41} is enabled then the MANAGER case 
is processed {194} in the switch specified at {55}. The state is read from fromStateManager {196}. 

If “STOP” is read then stopping is set true {199}, which will cause the StopAgent, stopper, to be 
output when the next emptyPacket is read by the node or a packet arrives that is destined for this 
node. At this point the node is still operating normally with respect to incoming packets. Its operation 
will only be modified when it no longer receives packets on its fromRing channel because it has been 
redirected. In fact the faulty node is not modified in any way as its fromRing channel is still connected 
to the previous node. Its toRing channel is still connected and will, in due course, be used to output 
the RestartAgent, when it resumes normal operation.

If the value “RESTART” has been read then all that is required is to write {203} the RestartAgent, 
restarter, to the ring. This is an additional packet being placed on the ring without there having been 
a packet received because the node in this case has been disconnected from the ring. This justifies the 
firstHop processing previously described {158} otherwise deadlock would occur.

194	  case MANAGER:
195	  // receiver has restarted
196	  def state = fromStateManager.read() 
197	  if (state == "STOP") {
198		   �//will write the stopper agent when an empty packet is recieved
199		   stopping = true
200		   restarting = false
201	  }
202	  else {
203		   toRing.write ( restarter )
204		   �// this is a stopped node and thus this is the only thing 

it can do
205		   // but it will be putting an extra packet onto the ring

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

115 

Redirecting Channels: A Self-Monitoring Process Ring


206		   �// this is why the first Hop processing has to be done if a node
207		   // gets a restart agent
208	  }
209	  break

Listing 20-12 StateManager Input Processing

20.9	 Running A Node

The easiest way of instantiating the system is to create a script for each node and the extra element that 
creates the node directly. Such a script for node 2 is shown in Listing 20-13. It assumes that five ordinary 
nodes will be created, as well as the extra node. The ordinary nodes can be started in any order but the 
extra element node, which is numbered 1 must be started after the others have been created. The identity 
of the node is defined {10}, the number of messages that each node is to send {11} and the number of 
nodes, excluding the extra node, {12} are defined. The required node is created {17–18}, together with 
the net input channel fromRing {19}. The node then waits to input a message on the fromRing channel 
{22}. This can only happen once all the nodes have been created and the Extra Element node has been 
created last. It is the Extra Element node that initiates the sending of the signal around the network.

10	def int nodeId = 2
11	def int sentMessages = 500
12	def int nodes = 5
13

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

EXPERIENCE THE POWER OF 
FULL ENGAGEMENT…

     RUN FASTER.
          RUN LONGER..
                RUN EASIER…

READ MORE & PRE-ORDER TODAY 
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd   1 22-08-2014   12:56:57

http://s.bookboon.com/Gaiteye


Using Concurrency and  
Parallelism Effectively – II

116 

Redirecting Channels: A Self-Monitoring Process Ring


14	def nodeIP = "127.0.0.2"
15	def nextNodeIP = "127.0.0.3"
16
17	def nodeAddress = new TCPIPNodeAddress(nodeIP, 3000)
18	Node.getInstance().init(nodeAddress)
19	def fromRing = NetChannel.net2one()
20	println "Node $nodeId has been created"
21
22	fromRing.read()
23	def nextNodeAddress = new TCPIPNodeAddress(nextNodeIP, 3000)
24	def toRing = NetChannel.any2net(nextNodeAddress, 50)
25	toRing.write(0)
26
27	def processNode = new AgentElement ( fromRing: fromRing,
28								        toRing: toRing,
29								        element: nodeId,
30								        iterations: sentMessages,
31								        nodes: nodes) 
32
33	new PAR ([ processNode]).run()

Listing 20–11 Running Node 2

Once the signal has been read the connection to the next node can be created {23–24} and the signal 
then sent to the next node {25}. Finally, the AgentElement process, which creates the network of 
RingAgentElement, Sender, Queue, Prompter, Receiver and StateManager processes for each 
node, is constructed {27–31} and run {33}. The ring channels are defined as any2net because when 
a channel is redirected as seen in Figure 20-1 the receiving node has two channel connections on its 
fromRing input.

20.10	  Observing The System’s Operation

The folder ChapterExamples/src/c20/net2 contains all the processes and scripts and can be used 
to create a network of five nodes. Once all the nodes are operating, the console associated with each 
Receiver process will be visible. A Receiver process can be made to stop receiving messages by 
typing “stop” into the input area of the console. It will be observed that the other nodes will continue 
operation but will not send any messages to the failed node. The failed node can be restarted by typing 
“go” into the console input area. At which point it will be observed that the messages that have been 
saved in the Queue appear immediately and at some time later messages from the other nodes start to 
appear. However it can also be observed that the sequence of message values has a gap that corresponds 
to the time for which the node was not receiving messages.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

117 

Redirecting Channels: A Self-Monitoring Process Ring


20.11	 Summary

This chapter has demonstrated an agent based system that has neither a central control system nor a 
specific host to which agents return messages or data. The control is distributed around the system so 
that agents commence when a local situation develops that requires their intervention. The agents have a 
limited life span pertaining to the time they are required. They are then destroyed. If the node becomes 
faulty again the original agent is reused.

20.12	 Challenges

Does the processing deal with the case when two adjacent nodes fail? If not, what changes 
are required?

Modify the processing so that messages for faulty nodes are not lost but retained for later 
transmission once they resume normal processing.

Once a node fails because the Receiver has been stopped it no longer receives empty packets 
and therefore cannot send messages onto the ring, even though the Sender process is still 
functional. Modify the behaviour so that a failed node can still send messages. The real problem 
is that great care has to be taken to ensure that the system does not deadlock.

The interested reader is invited to address some or all of these challenges.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

118 

Redirecting Channels: A Self-Monitoring Process Ring


21	 Mobility: Process Discovery
Process discovery is needed in distributed highly parallel systems where each node may not have a 
complete set of the required processes. This is achieved by:

•	 defining an agent that can get the required process from another
•	 being able to incorporate a process dynamically into a node’s existing process structure

In this chapter we consider the difference between mobile agents and mobile processes by offering a 
defining example (Chalmers & Kerridge, 2005). Naming conventions in this area are very confused as to 
their precise meaning. Previously, we have used these terms in a manner that reflects these definitions 
but up till now there has been no need to be specific about their differences because there has been 
no conflict.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

How to retain your  
top staff

FIND OUT NOW FOR FREE
Get your free trial

Because happy staff get more done

What your staff really want?

The top issues troubling them?

How to make staff assessments 
work for you & them, painlessly?

DO YOU WANT TO KNOW:

http://s.bookboon.com/performancereviewpro


Using Concurrency and  
Parallelism Effectively – II

119 

Mobility: Process Discovery


In this example we are going to dynamically add nodes to a network. Nodes that are added may not 
have all the processes they require; even the initial nodes may not contain a full repertoire of processes. 
However, we shall assume that all the initial nodes do contain all the required data manipulation processes. 
When a node receives a data input for which it does not have the required process it will send an agent 
around the currently connected nodes. The goal of the agent is to locate a node with the required data 
manipulation process, acquire the process, return to its original node and transfer the data manipulation 
process into its home node. Upon receipt of such a process the home node will dynamically connect it 
into its internal channel structure and thereby cause the process to execute. Thus the node will now be 
able to manipulate any further data of the same type.

It can be seen from the above description that the mobile agent has a specific goal that it seeks to achieve. 
The goal is to find the required data manipulation process. This may require the agent to visit many 
nodes in order to find the solution to its goal. Once the goal has been achieved, including any return to 
its home node it then ceases to exist. Other agents with similar goals may be created but each will have 
a predetermined life expectancy. By contrast a mobile process is one that can be moved from one node 
to another, plugged into the channel structure at the receiving node and then continue to run as part of 
the node until such time as the node itself is no longer required. 

The system architecture is shown in Figure 21-1. The DataGenerator process provides a shared 
network input channel that can be connected to by any node, shown as a dotted arrow, thereby creating a 
networked any2one channel. Similarly, the Gatherer process provides a shared network input channel 
that can also be connected to by any node as indicated by the dotted arrow.

On creation, a NodeProcess simply needs to be told the locations of these channels in order to be 
connected to both the DataGenerator and Gatherer processes. Once these connections have been 
made, the NodeProcess creates a number of net input channels as follows. The From Data Generator 
channel provides a means by which data can be received from the DataGenerator by the NodeProcess. 
The Agent Visit Channel is the channel upon which agents from other nodes will be input so they can 
interact with this node. The Agent Return Channel is the channel used by an agent to return to its 
originating node.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

120 

Mobility: Process Discovery


From Data Generator 

Agent Return Channel 

Agent Visit Channel 

Nodes To Gatherer 

Nodes To Data Generator 

Data Generator 

Gatherer 

NodeProcess 

Agent 

Figure 21-1 Architecture of the Mobile Processes and Agents System

Once these channels have been created the NodeProcess outputs the location of the From Data 
Generator and the Agent Visit Channel to the DataGenerator using the Nodes to Data Generator 
channel. On receiving these locations the DataGenerator creates a one2one channel from it to the 
node using the From Data Generator channel location. The DataGenerator maintains a list of all 
the Agent Visit Channel locations, which it outputs to all of the connected NodeProcesses whenever 
the list changes. The NodeProcess uses this information to update its Agent with the locations of the 
Agent Visit Channels that it can use when it searches for a data manipulation process. In addition, the 
Node also ensures that the Agent holds the location of the Agent Return Channel so that a returning 
Agent knows its home location.

Once the system has been invoked, the DataGenerator randomly sends data object instances of any 
type to any of the nodes. If a NodeProcess already has an instance of the required data manipulation 
process the data is sent to that process where it is modified and subsequently output to the Gatherer 
process. If the node does not have an instance of the required process then it informs the Agent of the 
data manipulation process it requires and causes the Agent to be sent to the first location on its list of 
Agent Visit Channel locations. In due course the Agent will return, the new process will be transferred 
to the Node and it will be connected into the Node. As soon as a Node sends an Agent to find a required 
process it creates another instance of its Agent so that should another data object arrive for which it 
does not have the data processing process then an Agent can be sent to find it immediately. A Node also 
keeps a record on the data manipulation processes for which it has created Agents, so that it does not 
send another Agent to search for the same data object type.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

121 

Mobility: Process Discovery


The operation of a Node matches the interactions described above. On receipt of an input it determines 
if it is a list of Agent Visit Channel locations and if so updates the Agent appropriately. If it is an instance 
of a data object, it determines its type and if it already has an instance of the required process sends the 
data object to the required process. Otherwise, it sends the Agent the required process type information, 
which the Agent can use when visiting the other nodes. 

Each of the data manipulation processes in a NodeProcess is invoked using the ProcessManager 
class. When a process is received by a NodeProcess, from a returning agent, it creates a channel by 
which the NodeProcess can send data objects to it. All such processes are connected to the Nodes 
To Gatherer channel. Once a NodeProcess has received three such processes, its internal architecture 
would be as shown in Figure 21-2, ignoring its Agent.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

https://inspiredbusinessmedia.co.uk/conferences/cmo-inspired-oct-2018/


Using Concurrency and  
Parallelism Effectively – II

122 

Mobility: Process Discovery


Node 

Process Type 1 Process Type 2 Process Type 3 

Nodes To Gatherer 

From Data Generator 

Figure 21-2 The Node Architecture

21.1	 The Adaptive Agent 

The agent implements the interface described in Chapter 18 and thus it needs to define channels by 
which it can connect to processing nodes and also methods called connect and disconnect need 
to be defined. These are shown in Listing 21-1. The channel fromInitialNode {12} provides the 
input to the agent from the node where it is created and initialised with the task it is to undertake. 
The channel fromVisitedNode {13} provides an input from any node the agent visits and similarly 
toVisitedNode {14} provides an output connection to a visited node. Finally, toReturnedNode {15} 
provides a connection to the initial node once the agent has returned from its trip.

An agent can be in one of three states as represented by the value of the variables initial, visiting 
or returning {17–19}. When they are created agents are in the initial state, which means they 
have yet to be sent on a trip by the node which created them and they are connected to the node by the 
channel fromInitialNode. In the visiting state an agent has left the creating node and is attached 
to another node by the fromVisitedNode and toVisitedNode channels. Finally, in the returned 
state, the agent has returned to the creating node and is connected to it by the toReturnedNode channel.

10	class AdaptiveAgent implements MobileAgent, Serializable {
11
12	  def ChannelInput fromInitialNode
13	  def ChannelInput fromVisitedNode
14	  def ChannelOutput toVisitedNode
15	  def ChannelOutput toReturnedNode
16

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

123 

Mobility: Process Discovery


17	  def initial = true
18	  def visiting = false
19	  def returned = false
20
21	  def availableNodes = [ ]
22	  def requiredProcess = null
23	  def returnLocation
24	  def processDefinition = null
25	  def homeNode
26
27	  def connect ( c) {
28	  if (initial) {
29	  fromInitialNode = c[0]
30	  returnLocation = c[1]
31	  homeNode = c[2] 
32	  }
33	  if (visiting) {
34	  fromVisitedNode = c[0]
35	  toVisitedNode = c[1]
36	  }
37	  if (returned) {
38	  toReturnedNode = c[0]
39	  }
40	  }
41
42	  def disconnect() {
43	  fromInitialNode = null
44	  fromVisitedNode = null
45	  toVisitedNode = null
46	  toReturnedNode = null
47	  }
48

Listing 21-1 The Adaptive Agent Properties and connect Method

The list availableNodes {21} is used to hold the net channel locations of the nodes’ 
agentVisitChannels known to the system and is the set of nodes it can visit. The property 
requiredProcess {22} will be initialised to the name of the process for which the agent will search. 
When the agent is initialised the value of returnLocation {23} will be set to the net channel location 
of the node’s agentReturnChannel. The property processDefinition {24} will hold the required 
data manipulation process’ definition once it has been located in a visited node. The value of homeNode 
{25} will be set to the identity of the node from which the agent originates.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

124 

Mobility: Process Discovery


The behaviour of the connect method {27–40} varies depending upon its state and simply enable 
the agent to host node local channel connections described previously. In all cases it is passed a List 
containing one or more elements. These elements will be the value of some of the properties described 
above as required by the current state of the agent. The disconnect method {42–47} is always the same 
and ensures that any channel properties of the agent are set to null.

The run method of the agent is shown in Listing 21-2 and its behaviour depends upon the state of the 
agent. It should be noted that in any state the agent always terminates. If the agent is in the returned 
state it writes a list comprising the processDefinition and the name of the requiredProcess to its 
toReturnedNode channel {50–53}. It is presumed that the agent will always find the requiredProcess. 
Once this communication has been completed the agent will terminate completely and do no further 
processing whatsoever and will thus in due course be garbage collected. The Agent prints a message on 
its home node’s console window indicating that it has returned with the required process.

49	  void run( ) {
50	  if (returned) {
51	  toReturnedNode.write([processDefinition, requiredProcess])
52	  �println "AA: returned agent has written $requiredProcess to home node"
53	  }
54	  
55	  if (visiting) {

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Free eBook on  
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free


Using Concurrency and  
Parallelism Effectively – II

125 

Mobility: Process Discovery


56	  toVisitedNode.write(requiredProcess)
57	  println "AA: visitor wants $requiredProcess"
58	  processDefinition = fromVisitedNode.read()
59	  println "AA: visitor received $processDefinition"
60	  if ( processDefinition != null ) {
61	  toVisitedNode.write(homeNode)
62	  visiting = false
63	  returned = true
64	  def nextNodeLocation = returnLocation
65	  def nextNodeChannel = NetChannel.any2net(nextNodeLocation)
66	  println "AA: visitor being sent home to $nextNodeLocation"
67	  disconnect()
68	  �nextNodeChannel.write(this) // THIS has become NOT serializable!!
69	  println "AA: visitor is returning home"
70	  } 
71	  else { //determine next node to visit and go there
72	  disconnect() 
73	  def nextNodeLocation = availableNodes.pop()
74	  def nextNodeChannel = NetChannel.any2net(nextNodeLocation)
75	  println "AA: visitor continuing journey to $nextNodeLocation"
76	  nextNodeChannel.write(this) 
77	  println "AA: visitor has continued journey"
78	  }
79	  }
80	  
81	  if (initial) {
82	  def awaitingTypeName = true
83	  while (awaitingTypeName) {
84	  def d = fromInitialNode.read()
85	  if ( d instanceof List) {
86	  for ( i in 0 ..< d.size) { availableNodes << d[i] }
87	  }
88	  if ( d instanceof String) {
89	  requiredProcess = d
90	  awaitingTypeName = false
91	  initial = false
92	  visiting = true
93	  disconnect() 
94	  //determine next node to visit and go there
95	  def nextNodeLocation = availableNodes.pop()
96	  def nextNodeChannel = NetChannel.any2net(nextNodeLocation)
97	  println "AA: initial going visiting to $nextNodeLocation"
98	  nextNodeChannel.write(this)
99	  println "AA: initial has been sent to another node"
100	  }
101	  }
102	  }

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

126 

Mobility: Process Discovery


103
104	 } // end run
105	}

Listing 21-2 The Adaptive Agent’s run Method

If the agent is visiting another node {55–79}; it first writes the name of the requiredProcess 
to the visited node {56} and always reads a reply on the fromVisitedNode channel {58} into its 
processDefinition property. It also prints an account of the transaction on the visited node’s console 
window {57, 59}. Its subsequent behaviour depends on whether or not the visited node had the required 
process definition. If the processDefinition is not null {60}, the agent writes the identity of the 
agent’s homeNode to the visited node {61} so that it can keep a record of the nodes to which it has sent 
the process definition. The value of the state variables visiting and returned are updated as required 
{62, 63}. The value of nextNodeLocation is set to the agent’s returnLocation {64} and this is then 
used to create a NetChannelOutput {65}. The agent disconnects from the visited node {67} and 
then writes itself back to its original node {68}, documenting its progress {66, 69}. 

The behaviour of the agent when it has not received a process definition is very similar except that it 
pops the next visiting node location from its list of availableNodes {73} and uses that to create a net 
channel {74} on which it writes itself to the next node on its trip {76}, and again documents its progress 
{75, 77}.

When the agent is in the initial state {81–102} it has to wait until such time as it receives the name of a 
process which it is to find. During that time it may also receive notification of the registration of a new node 
in the network, which it has to add to its list of availableNodes. This behaviour is captured {83-101} by 
first defining a Boolean awaitingTypeName to true {82}, which can then be used to control a terminating 
while loop {83–101}. An object is read in from the fromInitialNode channel, and its type is determined 
{85, 88}. If it is a list then the agent has received an update to the list of available nodes, which it updates by 
simply overwriting the previous list {86}. If it is a String then the agent has received the name of a process 
for which it should search. The agent makes the necessary preparation before writing itself to the first node 
in the list of availableNodes it can visit. The name of the requiredProcess is stored {89} and then the 
values of awaitingTypeName {90}, initial {91} and visiting {92} are updated. The agent disconnects 
{93} itself and then causes itself to be written to another node {95–99}, documenting its progress {97, 99}.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

127 

Mobility: Process Discovery


21.2	 The Node Process

The NodeProcess’ properties and definitional part of its run method is shown in Listing 21- 3. The 
NodeProcess, unusually, has no channel properties, instead the IP-addresses of the globally available 
network channels are passed as the parameters, toGathererIP {13} and toDataGenIP {14}. These 
are then used to connect to the respective network channels. The processList {15} is used to hold 
any initial data manipulation processes with which the node may be initialised; as further processes 
are obtained these will be appended to this list. The vanillaList {16} contains a possibly empty 
list of data manipulation processes; initially it is identical to the processList. Once processes have 
been initialised within the processList they cannot then be used as the basis for sending a data 
manipulation process to another node because they will contain internal connections within the node that 
cannot be disconnected and which also render it not serializable. The process definitions in the 
vanillaList are never directly executed and are thus serializable; they are used to send to other nodes 
when requested by a visiting agent. The property nodeId {11} is used to uniquely identify a particular 
node. The property nodeIPFinalPart {12} is used to create the final part of the node’s IP-address.

The first part of the NodeProcess’s run method deals with its connection to the outside network 
environment and the internal structures needed to invoke the data manipulation processes. The first 
requirement is to connect to the DataGenerator process. This is achieved by creating the node’s IP-
address {19} and then its nodeAddress and finally, a node instance {21} listening on port 3000. The 
address of the Data Generator node is created from its IP-address {23}, enabling the creation of an 
any2net channel called toDataGen {24}. In a similar manner a connection is made to the Gatherer 
node {25–26}. A net channel to be used by the Data Generator to send data to the node is then created as 
a net2one channel called fromDataGen {27}. The next part creates the agent visit and return channels 
as net2one channels {28–29 and 30–31}. The locations of these channels are displayed on the process’s 
console window {32–33}. The location of the agentVisitChannel together with the location of the 
fromDataGen channel and nodeId are written to the DataGenerator using an object that has a single 
list property, dgl, using the channel toDataGen {35–37}.

10	class NodeProcess implements CSProcess {
11	  def int nodeId		
12	  def int nodeIPFinalPart // forms last part of IP address
13	  def String toGathererIP
14	  def String toDataGenIP
15	  def processList = null
16	  def vanillaList = null // these must be identical initially
17
18	  void run() {
19	  def nodeIP = "127.0.0." + nodeIPFinalPart
20	  def nodeAddress = new TCPIPNodeAddress(nodeIP, 3000)
21	  Node.getInstance().init(nodeAddress)
22

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

128 

Mobility: Process Discovery


23	  def dataGenAddress = new TCPIPNodeAddress(toDataGenIP, 3000)
24	  def toDataGen = NetChannel.any2net(dataGenAddress, 50)	  //50
25	  def gathererAddress = new TCPIPNodeAddress(toGathererIP, 3000)
26	  def toGatherer = NetChannel.any2net(gathererAddress, 50) //51
27	  def fromDataGen = NetChannel.net2one()		   //52
28	  def agentVisitChannel= NetChannel.net2one()		   //53
29	  def agentVisitChannelLocation = agentVisitChannel.getLocation()
30	  def agentReturnChannel= NetChannel.net2one()	  //54
31	  def agentReturnChannelLocation = agentReturnChannel.getLocation()
32	  println "NP: $nodeId, Visit Channel = $agentVisitChannelLocation"
33	  println "NP: $nodeId, Return Channel = $agentReturnChannelLocation"
34
35	  �toDataGen.write( new DataGenList ( dgl: [ fromDataGen.

getLocation(), 
36								         agentVisitChannelLocation,
37								         nodeId] ) )
38
39	  def connectChannels = [ ]
40	  def typeOrder = [ ]
41	  def vanillaOrder = [ ]
42	  def currentSearches = [ ]
43	  def cp = 0
44
45	  if (processList != null) { 
46	  for ( i in 0 ..< processList.size) {
47	  def processType = processList[cp].getClass().getName()
48	  �def typeName = processType.substring(0, processType.indexOf("Process"))
49	  typeOrder << typeName 
50	  vanillaOrder << typeName 
51	  connectChannels[cp] = Channel.one2one()
52	  �def pList = [connectChannels[cp].in(), nodeId, toGatherer.

getLocation()]
53	  processList[cp].connect(pList)
54	  def pm = new ProcessManager(processList[cp])
55	  pm.start()
56	  cp = cp + 1
57	  }
58	  }
59
60	  def NodeToInitialAgent = Channel.one2one()
61	  def NodeToVisitingAgent = Channel.one2one()
62	  def NodeFromVisitingAgent = Channel.one2one()
63	  def NodeFromReturningAgent = Channel.one2one()
64	  
65	  def NodeToInitialAgentInEnd = NodeToInitialAgent.in()
66	  def NodeToVisitingAgentInEnd = NodeToVisitingAgent.in()
67	  def NodeFromVisitingAgentOutEnd = NodeFromVisitingAgent.out()

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

129 

Mobility: Process Discovery


68	  def NodeFromReturningAgentOutEnd = NodeFromReturningAgent.out()
69	  
70	  def myAgent = new AdaptiveAgent()
71	  �myAgent.connect([NodeToInitialAgentInEnd, 

agentReturnChannelLocation, nodeId])
72	  def initialPM = new ProcessManager(myAgent)
73	  initialPM.start()
74	  
75	  �def nodeAlt = new ALT([fromDataGen, agentVisitChannel, agentReturnChannel])
76	  def currentVisitList = [ ] 
77
78	  while (true) {
79	  switch ( nodeAlt.select() ) {

Listing 21-3 The Node Process Definitions

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

http://www.deloitte.ca/careers


Using Concurrency and  
Parallelism Effectively – II

130 

Mobility: Process Discovery


The list connectChannels {39} is used to create a set of internal channels that are used subsequently 
within the node to connect to the data manipulation processes as they are initialised. The order in which 
data manipulation processes arrive and are initialised is not determined and thus we need to record 
the order in which they appear, both in the processList and the vanillaList; this is the use of 
typeOrder {40} and vanillaOrder {41} respectively. The list currentSearches {42} is used to 
record the names of the data manipulation processes for which an agent has already been sent. A node 
can initiate multiple parallel searches for different data manipulation processes and thus needs to ensure 
that it does not create an agent to undertake a search that has already been started. The variable cp {43} 
is used to count the number of processes in processList.

The next section {45-58} deals with the instantiation of any data manipulation processes in the 
processList that can be ignored if processList is null {45}. In this exemplar the names of the 
data types and associated data processing process have been restricted so that the name of a data type is 
specified as Type1 and its associated data process as Type1Process, for example. This has been utilised 
in the coding of this section where the names of data types have been extracted from the associated 
data manipulation process {47, 48}. The coding is undertaken for each data process in processList 
{46–57}. The name of a data process is extracted into processType {47} using the getClass and 
getName methods. The name of the data type is then obtained and placed in typeName {48} using the 
substring method and knowledge of the structure of the names as described previously. The typeName 
is then appended to both typeOrder {49} and vanillaOrder {50}. The channel which connects the 
NodeProcess to the specific data manipulation process now needs to be created and stored in the 
list connectChannels {51}, in the same relative position as typeName appears in typeOrder. Note 
that this is an internal one2one channel. A list pList is now created {52} comprising the in() end 
of this newly created channel, the nodeId and the location of the network channel that connects the 
data processing process to the Gatherer process. This list is then used as a parameter of the connect 
method call on the current element of processList {53}, which will cause the building of all the 
required channel connections. An instance of ProcessManager is now created {54} with the current 
element of processList as its process and it is then started {55}.

The channels used internally to connect an agent to the NodeProcess are now defined {60–63} and 
then the channel ends that will be required to be sent to the agent so that it can communicate with the 
NodeProcess are created {65–68}. An instance of the AdaptiveAgent is now created as myAgent {70} 
and a call to its connect method {71} ensures that myAgent can communicate with the NodeProcess, 
and knows its agentReturnChannelLocation and its home node identity. The agent is now started 
using another instance of ProcessManager {72–73}. 

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

131 

Mobility: Process Discovery


Once a NodeProcess is running it can receive inputs from the channels known as fromDataGen, 
the agentVisitChannel and the agentReturnChannel and thus these are all incorporated into 
an alternative nodeAlt {75}. Finally, an empty list currentVisitList is defined that will be used 
subsequently to maintain the list of agentVisitChannels that an agent, sent from this NodeProcess, 
can visit {76}. The run method enters an infinite loop {78} and switches on the enabled guard of the 
alternative nodeAlt {79}. Each case is dealt with separately.

Listing 21-4 shows the processing when an input from the DataGenerator process is received. 
The data is read into the variable d {81} and subsequent processing depends upon the data type. If 
the input is an instance of AvailableNodeList {82} then it is necessary to remove this node’s 
agentVisitChannelLocation from the anl property of the input because there is no point sending 
an agent to its home node if we already know the node does not contain the required data processing 
process. The members of d.anl are then appended to currentVisitList {86} and written to the 
local agent using the NodeToInitialAgent {88} channel. Note that it is necessary to explicitly refer 
to the out() end of the channel when writing to it because the channel was created within the process 
and not passed in as a ChannelOutput property of the process.

If the input data is one of the data types recognised by the system then the specific data type is obtained {91} 
and subsequent processing depends on the availability of that data type’s process in the processList. 
If the data type is known to the node because it is a member of typeOrder {92} then its position in 
that list can be determined {93–102}. The data can then be sent to the required data processing process 
by writing to the corresponding member of the connectChannels list {103}.

If the input data is not recognised then a search has to be started to obtain the required data processing 
process, only if a search has not already been started {106}. In this case the type for which the search 
is being started is appended to currentSearches {107} and also written to the agent using the 
NodeToInitialAgent channel {108}. The join method is then called {109} on the ProcessManager, 
initialPM, running the agent, which causes the NodeProcess to wait until the agent has stopped 
execution. Another instance of the AdaptiveAgent is then created {110} and connected {111–112} 
to the node. It is then passed to a new ProcessManager instance {113} and started {114}. The 
currentVisitList is then written to the newly created agent {115}.

80	  case 0: // data or update to available nodes
81	  def d = fromDataGen.read()
82	  if ( d instanceof AvailableNodeList ) {
83		   currentVisitList = [ ]
84		   for ( i in 0 ..< d.anl.size) { 
85			    �if (d.anl[i].toString() != agentVisitChannelLocation.

toString())
86				     currentVisitList << d.anl[i] 
87		   }

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

132 

Mobility: Process Discovery


88		   NodeToInitialAgent.out().write(currentVisitList)
89	  } 
90	  else { // must be a data type name 
91		   def dType = d.getClass().getName()
92		   if ( typeOrder.contains(dType) ) {
93			    def i = 0
94			    def notFound = true
95			    while (notFound) {
96				     if (typeOrder[i] == dType) {
97					      notFound = false
98				     }
99				     else {
100					      i = i + 1
101				     }
102			    }
103			    connectChannels[i].out().write(d)
104		   }
105		   else { // do not have process for this data type
106			    if ( ! currentSearches.contains(dType)) {
107				     currentSearches << dType
108				     NodeToInitialAgent.out().write(dType)
109				     initialPM.join()
110				     myAgent = new AdaptiveAgent()
111				     �myAgent.connect([NodeToInitialAgentInEnd, 

agentReturnChannelLocation, 
112							        nodeId])
113				     initialPM = new ProcessManager(myAgent)
114				     initialPM.start()
115				     NodeToInitialAgent.out().write(currentVisitList)
116			    }
117		   } 
118	  }
119	  break

Listing 21-4 Node Process: Data Input Processing

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

133 

Mobility: Process Discovery


Listing 21-5 shows the processing that occurs when an agent visits another node. The agent is read from 
the agentVisitChannel {121} and then appropriately connected to the node {122–123} by means of 
the required channel ends. An instance of ProcessManager is created {124} to run the visiting agent 
{125}. The node then reads the type of the data processing process required from the visiting agent into 
typeRequired {126}. If the node contains in the vanillaOrder list the typeRequired {127} then a 
search of the vanillaOrder is undertaken to find the position of the process {128–140}. The required 
process can then be obtained from the vanillaList of processes and written to the agent using the 
NodeToVisitingAgent.out() channel {138}. The visiting agent then writes its home node identity 
to the node using the NodeFromVisitingAgent.in() channel into agentHome {139}. If the node 
does not have the typeRequired in its vanillaOrder then a null is written to the visiting agent 
{142}. The interaction with the visiting agent is now complete so the node process can join the agent, 
waiting for it to terminate {144}, thereby completing the processing of a visiting agent, which either 
writes itself back to its originating node or the next node in its list of available nodes.

120	  case 1: // visiting agent has arrived
121	  def visitingAgent = agentVisitChannel.read()
122	  visitingAgent.connect([NodeToVisitingAgentInEnd, 
123	  NodeFromVisitingAgentOutEnd ])
124	  def visitPM = new ProcessManager(visitingAgent)
125	  visitPM.start()
126	  def typeRequired = NodeFromVisitingAgent.in().read()

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

TMP PRODUCTION NY026057B

PSTANKIE

gl/rv/rv/baf

ACCCTR0005

Bookboon Ad Creative

4

6 x 4

12/13/2013

Bring your talent and passion to a
global organization at the forefront of
business, technology and innovation.
Discover how great you can be. 

Visit accenture.com/bookboon

©
2013 Accenture. 

All rights reserved.

http://s.bookboon.com/accentureCZintl


Using Concurrency and  
Parallelism Effectively – II

134 

Mobility: Process Discovery


127	  if ( vanillaOrder.contains(typeRequired) ) {
128		   def i = 0
129		   def notFound = true
130		   while (notFound) {
131			    if (vanillaOrder[i] == typeRequired) {
132				     notFound = false
133			    }
134			    else {
135				     i = i + 1
136			    } 
137		   }
138		   NodeToVisitingAgent.out().write(vanillaList[i])
139		   def agentHome = NodeFromVisitingAgent.in().read()
140	  }
141	  else { // do not have process for this data type
142		   NodeToVisitingAgent.out().write(null) 
143	  }
144	  visitPM.join()
145	  break

Listing 21-5 Node Process: Visiting Agent Processing

The processing associated with a returned agent is shown in Listing 21-6. 

146	  case 2: // agent has returned to originating node
147		   def returnAgent = agentReturnChannel.read()
148		   returnAgent.connect([NodeFromReturningAgentOutEnd])
149		   def returnPM = new ProcessManager (returnAgent)
150		   returnPM.start()
151		   def returnList = NodeFromReturningAgent.in().read()
152		   returnPM.join()
153		   def returnedType = returnList[1]
154		   currentSearches.remove([returnedType])
155		   typeOrder << returnList[1] 
156		   connectChannels[cp] = Channel.one2one()
157		   processList << returnList[0] 
158		   �def pList = [connectChannels[cp].in(), nodeId, toGatherer.

getLocation()]
159		   processList[cp].connect(pList)
160		   def pm = new ProcessManager(processList[cp])
161		   cp = cp + 1
162		   pm.start() 
163		   break
164	  } // end switch 
165	  } // end while true 
166	  } // end run

Listing 21-6 Node Process: Return Agent Processing

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

135 

Mobility: Process Discovery


The returnAgent is read from the agentReturnChannel {147} and then connected to the node 
{148}. An instance of ProcessManager is created for the returnAgent {149} in which it is started 
{150}. The returnList is obtained from the returnAgent using the NodeFromReturningAgent.
in() channel{151}. This completes the interaction with the return agent and thus the node process 
can join the returnPM awaiting its termination {152}. The data elements from the returnList can 
now be processed updating the node data as required. Specifically, the returnedType can be removed 
from the list of currentSearches {154} and appended to the typeOrder list {155}. A channel is 
created that is used to connect the node to the newly acquired data processing process {156} in the 
connectChannels list. The body of the data processing process, returned as returnList[0] is 
appended to the processList {157}. A list of properties required for connection is then created as pList 
{158} and connected {159}. An instance of the ProcessManager is created {160} and used to start 
the process {162}. The value of cp, which keeps a record of the first empty element in processList, 
is incremented {161}.

21.3	 The Data Generator Process

The version of the DataGenerator processes presented, in Listing 21-7, assumes there are only three 
different types of data that can be processed called Type1, Type2 and Type3. It also presumes that at 
least three nodes will be initialised before the system starts to run. It also assumes that all the required 
data processing processes will be available, in some combination, in the first three nodes that are run.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

 

 
                . 

http://s.bookboon.com/AlcatelLucent


Using Concurrency and  
Parallelism Effectively – II

136 

Mobility: Process Discovery


The ChannelInput fromNodes {11} is the channel used by all the NodeProcesses to communicate 
with the DataGenerator process. The interval {12} is used as a timer alarm in an alternative that 
is selected every cycle to determine whether any new nodes have been registered. This interval 
subsequently governs the delay between the creation of data objects.

The ChannelOutputList toNodes {15} contains the list of net channel output ends used to 
communicate data to each of the registered NodeProcesses. Similarly, the agentVisitChannelList 
{16} maintains a list of all the agentVisitChannelLocations sent to the DataGenerator. The 
allocationList {17} holds the identity of each registered NodeProcess. The variable rng {18} 
is an instance of Random and timer is an instance of CSTimer {19}. The DataGenerator process 
alternates over the fromNodes channel and a timer alarm as indicated in the ALT dgAlt {20}. Each 
data type has its own associated type instance value {21–23} initialised as shown and there is also a global 
instanceValue {24} initialised to zero. These instance values will be used to differentiate instances of 
generated data type objects. A count of the number of registered nodes is kept in nodesRegistered {25}.

The never ending loop {26–69} of the process now starts; by defining and initialising two Boolean 
variables, checkingForNewNodes {27} and nodeAppended {28}; and by setting the timer alarm 
{29}. A while loop is now entered {30–44} that is always executed at the start of every cycle; and during 
initialisation of the process will ensure that at least three nodes are registered. The loop commences with 
the selection of an enabled guard in the alternative from dgAlt {31}. 

If a new node is registering itself then data from that node is read from the channel fromNodes into 
nodeData {33}. The nodeData is of type DataGenList that has a single list property dgl from which 
various data items can be extracted. Thus dgl[0] contains the location of the node’s fromDataGen 
net channel location, which can be used to create a net channel end that can be appended to the list 
toNodes {34}. The content of dgl[1] is the registering node’s agentVisitChannelLocation that 
can be appended to the agentVisitChannelList {35}. Finally, dgl[2] contains the identity of the 
registering node and is appended to the allocationList {36}. The values of nodesRegistered 
and nodeAppended are updated appropriately {37, 38}.

If the alternative selected from dgAlt is that corresponding to the timer alarm then the value of 
checkingForNewNodes is set false {41}. In all but the initialisation phase of the system this will 
cause the loop to terminate so that DataGenerator can progress to the next phase. If a node has been 
registered (or three nodes during the initialisation phase) then the updated agentVisitChannelList 
is written as the property anl of a new AvailableNodeList object to all the registered nodes in 
parallel using the ChannelOutputList toNodes {46–48}.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

137 

Mobility: Process Discovery


10	class DataGenerator implements CSProcess {
12	  def ChannelInput fromNodes
13	  def interval = 1000
14	  void run() {
15	  def ChannelOutputList toNodes = new ChannelOutputList()
16	  def agentVisitChannelList = [ ]
17	  def allocationList = [ ]
18	  def rng = new Random()
19	  def timer = new CSTimer()
20	  def dgAlt = new ALT ([fromNodes, timer])
21	  def type1Instance = 1000
22	  def type2Instance = 2000
23	  def type3Instance = 3000
24	  def instanceValue = 0
25	  def nodesRegistered = 0
26	  while (true) {
27	  def checkingForNewNodes = true
28	  def nodeAppended = false
29	  timer.setAlarm (timer.read() + interval)
30	  while (checkingForNewNodes || (nodesRegistered < 3)){
31	  switch ( dgAlt.select()) {
32	  case 0:
33		   def nodeData = fromNodes.read()
34		   toNodes.append ( NetChannel.one2net ( nodeData.dgl[0] ) )

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

��������	
�����
������
��������
���������
�����������
��������
�����
��
���������������������������

������
������

������������������������������ �����	�����
	�
�����	������!���"�
	������������

�
	�

�����#$%����&'())%�*+������
	�
���,���������
�-

.�
��������������������
������������
��

��������	
��
����


��	��������	
��
����


���������
���


����������


����������
�����
��


���������

 The Wake
the only emission we want to leave behind

http://www.mandieselturbo.com


Using Concurrency and  
Parallelism Effectively – II

138 

Mobility: Process Discovery


35		   agentVisitChannelList << nodeData.dgl[1]
36		   allocationList << nodeData.dgl[2] 
37		   nodesRegistered = nodesRegistered + 1
38		   nodeAppended = true
39		   break
40	  case 1:
41		   checkingForNewNodes = false
42		   break
43	  } 
44	  }
45
46	  if (nodeAppended) { 
47	  �toNodes.write(new AvailableNodeList ( anl: agentVisitChannelList)) 
48	  }
49	  def nNodes = toNodes.size()
50	  def nodeId = rng.nextInt(nNodes)
51	  switch ( rng.nextInt(3) + 1) {
52	  case 1:
53	  �toNodes[nodeId].write ( new Type1 ( typeInstance: 

type1Instance, 
54									          �instanceValue: 

instanceValue ))
55	  type1Instance = type1Instance + 1
56	  break
57	  case 2:
58	  �toNodes[nodeId].write ( new Type2 ( typeInstance: 

type2Instance, 
59									          �instanceValue: 

instanceValue ))
60	  type2Instance = type2Instance + 1
61	  break
62	  case 3:
63	  �toNodes[nodeId].write ( new Type3 ( typeInstance: 

type3Instance, 
64									          �instanceValue: 

instanceValue ))
65	  type3Instance = type3Instance + 1
66	  break
67	  }
68	  instanceValue = instanceValue + 1
69	  } // end while true 
70	  } // end run
71	}

Listing 21-7 The Data Generator Process

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

139 

Mobility: Process Discovery


The last part {49–69} of the DataGenerator process creates a random data object of one of the defined 
types and sends it to a randomly chosen node on the network. In all but the intial phase the value of 
interval {12} will govern the rate at which data objects are generated. The variable nNodes {49} is 
set to the number of nodes in the network. It is then used to choose the nodeId {50} to which the data 
object will be written. The switch {51} determines the type identifier of the data type to be generated. 
It is encoded such that one of three types will be created. In each case only the Type of the created data 
varies; the content of each Type is identical. The Type instance variable for example type2Instance 
is incremented {60} as is the global instanceValue {68}. The instanceValue is used to uniquely 
identify each data object that is created.

21.4	 The Gatherer Process

The Gatherer process, shown in Listing 21-8, simply reads all inputs it receives on its net any2one 
input channel, fromNodes {11}, and then prints out the received data d {15, 16}. It should be noted 
that all data objects that are generated by DataGenerator will not be processed by the Gatherer 
process. If a NodeProcess receives a data object for which it does not have the required data type 
processing process then an agent is created and sent to find the required data processing process from 
another node. At this point the NodeProcess throws away the incoming data object because it does 
not know how to process it. The effect of this is that there is a discontinuity in the sequence of the global 
instanceValues read by the Gatherer process that reflects the amount of time that it takes the agent 
to find the required data processing process and return to the originating node.

10	class Gatherer implements CSProcess{
12	  def ChannelInput fromNodes
12
13	  void run() {
14	  while (true) {
15	  def d = fromNodes.read()
16	  println "Gathered from ${d.toString()}" 
17	  } 
18	  }
19	}

Listing 21-8 The Gatherer Process

21.5	 Definition of the Data Processing Processes

The basic structure of a data Type process is shown in Listing 21-9, which shows the Type1 class definition. 
The only difference between them is the class name and the value in typeName {12}. The modify 
{18–21} method is called in the associated data type processing process. Obviously, this effect could be 
achieved polymorphically using a single data type processing process but that would have meant that 
the need to go and retrieve the required processes over the net would have been removed and that was 
the purpose of the example.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

140 

Mobility: Process Discovery


10	class Type1 implements Serializable {
11
12	  def typeName = "Type1"
13	  def int typeInstance 
14	  def int instanceValue
15	  
16	  def processedNode
17	  
18	  def modify ( nodeId) {
19	  processedNode = nodeId
20	  typeInstance = typeInstance + (nodeId *10000)
21	  }
22	  
23	  def String toString(){
24	  return "Processing Node: $processedNode, Type: $typeName, " +
25	  "TypeInstanceValue: $typeInstance, Sequence: $instanceValue"
26	  }
27	}

Listing 21-9 The Type1 Class Definition

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/gee_change


Using Concurrency and  
Parallelism Effectively – II

141 

Mobility: Process Discovery


The data processing processes implements the abstract class DynamicMobileProcess shown in Listing 
21-10. This itself extends the MobileProcess defined within JCSP by adding two further abstract 
methods connect and disconnect that allow the integration of a mobile process into an existing 
channel structure and, if required, its removal.

10	abstract class DynamicMobileProcess extends MobileProcess 
11							        implements Serializable {
12	  abstract connect(x)
13	  abstract disconnect()
14	}

Listing 21-10 Groovy Mobile Process Abstract Class Definition

Listing 21-11 shows an implementation of DynamicMobileProcess for the Type1 data processing 
process called Type1Process. The String property toGatherer {12} is the location of the network 
channel by which this process can connect itself to the net input channel of the Gatherer process. The 
property inChannel {13} is used to connect this process to the NodeProcess. The property nodeId 
{14} uniquely identifies the node in which this process is executing.

The connect {16–20} method is called by the NodeProcess once the process definition has been 
transferred from a returned agent. The parameter of the method is a list comprising elements containing 
the values of the properties inChannel, nodeId and toGatherName. The disconnect method is 
defined, but never called; it does however implement the only required functionality, which is to make 
any channel reference known to the DynamicMobileProcess null {22–24}.

The run method {26–33} initially creates the connection to the network channel location in toGatherer 
{27} as toGathererChannel. Thereafter the process reads in data from inChannel into a variable of 
defined type {29}, in this case Type1 thereby ensuring that only data of the required type is processed. 
The modify method is then called on the input data {30}, after which the data is written to the Gatherer 
process {31}. By judicious choice of nodeId and typeInstance values it is possible to determine the 
NodeProcess to which a particular instance of a data type was sent and processed.

10	�class Type1Process extends DynamicMobileProcess implements Serializable {
11
12	  def toGatherer
13	  def ChannelInput inChannel
14	  def int nodeId
15	  
16	  def connect (l) {
17	  inChannel = l[0]
18	  nodeId = l[1]
19	  toGatherer = l[2]
20	  }

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

142 

Mobility: Process Discovery


21
22	  def disconnect () {
23	  inChannel = null
24	  }
25
26	  void run() {
27	  def toGathererChannel = NetChannel.any2net(toGatherer)
28	  while (true) {
29	  def Type1 d = inChannel.read()
30	  d.modify(nodeId)
31	  toGathererChannel.write(d)
32	  } 
33	  }
34
35	}

Listing 21-11 The Type1 Process Definition

21.6	 Running the System

Three basic scripts are required to run the system over a network, the first of which shown in Listing 
21-12 will be modified to run each individual NodeProcess as required. The IP-addresses of the Data 
generator and Gatherer node are defined {10, 11}. In this case a process is to be defined that contains 
all the data type processing processes and thus pList and vList are created with instances of these 
processes {13, 14}. An instance of a NodeProcess is now defined with all the required property 
definitions {16–22} and run {24}. If a node was being created that had no data type processes available 
then the lists pList and vList would be empty.

10	def dataGenIP = "127.0.0.1"
11	def gathererIP = "127.0.0.2"
12
13	�def pList = [ new Type1Process(), new Type2Process(), new Type3Process() ] 
14	�def vList = [ new Type1Process(), new Type2Process(), new Type3Process() ]
15
16	def processList = new NodeProcess ( nodeId: 5,
17								        nodeIPFinalPart: 7,
18								        toGathererIP: gathererIP,
19								        toDataGenIP: dataGenIP,
20								        processList: pList,
21								        vanillaList: vList
22								        )
23
24	new PAR ([ processList]).run()

Listing 21-12 The Script to Run a Node

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

143 

Mobility: Process Discovery


Listing 21-13 shows the script that runs an instance of the DataGenerator process. The effect of 
having an interval of 500 milliseconds {16} is that once the system is running normally, that is, after 
all NodeProcesses have acquired all the data type processing processes a data value will be generated 
every half-second. Reducing this value and running the system on a real network gives some indication 
of how long it takes for an agent to travel around the network to find an instance of a particular data 
type processing process. This can be determined by the number of data objects that are missed by a 
particular node as it waits for the return of the required process.

10	def nodeIP = "127.0.0.1"
11	def nodeAddress = new TCPIPNodeAddress(nodeIP, 3000)
12	Node.getInstance().init(nodeAddress)
13	def fromNodesToGen = NetChannel.net2one()	 //cn 50
14
15	println "Data Generator Starting"
16	�def processList = new DataGenerator ( fromNodes: fromNodesToGen, interval: 500 )
17
18	new PAR ([ processList]).run()

Listing 21-13 The Script to Run the Data Generator Process

The Gather process script is shown in Listing 21-14.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Corporate eLibrary
See our Business Solutions for employee learning

Click here

Management

CoachingMotivationGoal setting

Problem solving

Time Management

Project Management

http://s.bookboon.com/bbg-elibrary-2015


Using Concurrency and  
Parallelism Effectively – II

144 

Mobility: Process Discovery


10	def nodeIP = "127.0.0.2"
11	def nodeAddress = new TCPIPNodeAddress(nodeIP, 3000)
12	Node.getInstance().init(nodeAddress)
13	def fromNodesToGatherer = NetChannel.net2one() // cn 50
14
15	println "Gatherer Starting"
16	def processList = new Gatherer ( fromNodes: fromNodesToGatherer )
17
18	new PAR ([ processList]).run()

Listing 21 – 14 The Script to Run The Gatherer Process

21.7	 Typical Output From the Gatherer Process

Output 21-1 shows the output when three nodes with nodeId 1, 2 and 3, have been started where the 
each of these nodes contains the data type processes indicated by their nodeId. It can be observed 
immediately that the data objects with the instanceValues 0, 2, 3, 4, 6 and 8 have been lost. These 
have been lost because they contained data that was sent to a node that did not have the required data 
processing process. The versions of the processes in the accompanying package ChapterExamples/
src/c21/net2 allow printing of created objects which makes it easier to determine exactly what is 
happening. It also possible to observe agent interactions on the console window of the other processes. 
The scripts include nodes that have none and all the required type processes.

Gatherer Starting

Gathered from Processing Node: 2, Type: Type2, TypeInstanceValue: 22001, Sequence: 1

Gathered from Processing Node: 2, Type: Type3, TypeInstanceValue: 23001, Sequence: 5

Gathered from Processing Node: 1, Type: Type2, TypeInstanceValue: 12002, Sequence: 7

Gathered from Processing Node: 3, Type: Type3, TypeInstanceValue: 33003, Sequence: 9

Gathered from Processing Node: 3, Type: Type3, TypeInstanceValue: 33004, Sequence: 10

Gathered from Processing Node: 3, Type: Type2, TypeInstanceValue: 32004, Sequence: 11

Gathered from Processing Node: 2, Type: Type2, TypeInstanceValue: 22005, Sequence: 12

Gathered from Processing Node: 3, Type: Type2, TypeInstanceValue: 32006, Sequence: 13

Gathered from Processing Node: 3, Type: Type1, TypeInstanceValue: 31002, Sequence: 14

Gathered from Processing Node: 2, Type: Type3, TypeInstanceValue: 23005, Sequence: 15

Gathered from Processing Node: 2, Type: Type2, TypeInstanceValue: 22007, Sequence: 16

Output 21-1Typical Output From the Gatherer Process

When the dynamics of the system are observed in real-time we see the interactions as net channels are 
created dynamically to permit the movement of the agent around the system. Furthermore the system 
can cope with the initiation of a node that also has instances of data type processing processes in its 
vanillaList that are already available and, provided all instances are identical, there is no problem. 
The system does not deal with the termination of a NodeProcess.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

145 

Mobility: Process Discovery


21.8	 Summary

The primary goal of this chapter was to demonstrate that a system could be built in which nodes were 
initiated dynamically and that if they did not have all the required data processing processes then they 
could initiate an agent to go and find the required process. Further, that such returned processes could 
be integrated into an existing network of channels and operate as if they had been there from the outset. 

Fundamentally, the system implements a GET operation on a network resource. Thus the nodes 
and any associated net input channels can all be resolved to an IP-address. The location of any data 
processing process can then be referenced relative to that IP address via the normal folder structure. 
Provided the folder and all its precedents are publicly available then the process is publicly available. The 
DataGenerator process in this example acts as a repository of the IP-addresses and resource location of 
the other nodes that are known, because it records the location of the agent channels of all the registered 
nodes. In this manner the DataGenerator acts as a repository of resources that can be interrogated if 
a registered node needs to acquire some data or process from another node without each node having 
to know all possible nodes that are connected. In this example we have distributed this information but 
it was not strictly necessary.

21.9	 Challenge

Modify the example so that when a node discovers that the required data processing process is not 
available the agent is first sent to the DataGenerator process to discover all the nodes to which it can 
go in order to find the resource it requires. In this manner the system does not have to distribute the 
location of all the nodes to every node as currently happens.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

146 

Automatic Class Loading – Process Farms


22	� Automatic Class Loading – 
Process Farms

Process farms are important because they provide an easy way of generically exploiting parallelism for 
a wide variety of problems by

•	 creating Single Instruction Multiple Data (SIMD) data parallel architectures
•	 creating Multiple Instruction Multiple Data (MIMD) task parallel architectures
•	 using the ability to dynamically load data object class definitions over a network and
•	 exploiting the polymorphic capabilities of Java

A common requirement in many parallel processing applications is the need to set up a collection of 
processes that can subdivide a task into a set of common processes so that work can be distributed over 
the network so the processing load is shared and thus the overall processing time can be reduced. Such 
networks are called process farms. Fundamentally, there are two basic forms. 

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://thecvagency.co.uk


Using Concurrency and  
Parallelism Effectively – II

147 

Automatic Class Loading – Process Farms


First, farms where the data can be subdivided into blocks and each block can be independently processed 
without reference to the other blocks. The farm thus comprises a number of processing nodes each of 
which undertakes the same process on the block or blocks it is allocated. This is sometimes called data 
parallelism and yields a processing model referred to as single instruction multiple data (SIMD).

Secondly, farms where the data is subdivided into smaller more manageable blocks but each block has to 
undergo the same sequence of operations. These individual operations can be captured as a node through 
which the data is passed. This is referred to as a pipeline of processes because the data passes from one 
node to the next as if in a pipeline. This is sometimes called task parallelism and yields a processing 
model referred to as multiple instruction multiple data (MIMD).

Building such farms is a relatively easy task from the architectural point of view as there are a few 
commonly used architectures. The complexity lies in the fact that the farm has to be specially constructed 
to deal with the nature of the data being processed. What is required is a mechanism by which the 
architecture can be built in an application independent manner and then the data and necessary 
processing can be fed into the network automatically. The JCSP network framework provides precisely 
this capability. It is possible to load Java classes dynamically over the network of nodes on an as needed 
basis. Thus we can build a generic architecture into which the specific classes of the application are 
loaded at run-time.

We shall first describe some common generic farm architectures and then look at one in depth and show 
how the JCSP class loading capability can be used.

22.1	 Data Parallel Architectures

Figure 22-1 shows a basic data parallel architecture in which the Emitter process splits the data into blocks 
and outputs each block, as a Work Packet, into the stream of Worker processes. Each Worker process 
outputs its Result packets into a separate channel stream to be recombined by the Collector process.

Emitter  

Worker  

 

Worker  

 

Worker  

Collector 
… … 

Work packets Result packets 

Figure 22-1 A Sequence of Similar Worker Processes

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

148 

Automatic Class Loading – Process Farms


The aim of this architecture is to provide a means whereby a busy Worker process can send a Work 
packet on to the next Worker immediately. The separation of the Work packets from the Result packets 
means that the distribution of Work cannot be held up because the Result stream has become blocked 
by activity downstream or by slowness in the Collector process. In order to achieve this, the Worker 
process needs an internal architecture that permits this capability. The architecture also needs to overlap 
Work packet input with task processing and Result packet output. This is a common characteristic of 
such architectures, regardless of the overall architecture.

Figure 22-2 shows a different architecture in which the Worker processes request Work packets from 
the Emitter process before sending the Result packets to the Collector process. This architecture will be 
explored more fully in section 22.3.

Emitter Worker  Collector 

Worker  

Worker  

Get Work Work Result 

Figure 22-2 An Alternative Data Parallel Architecture

22.1.1	 Worker Internal Architecture

The architecture of the Worker process shown in Figure 22-1 is shown in Figure 22-3, which uses the 
same channel diagramming notation as used in Figure 22-2.

SendForTransfer 

getForTransfer 

workIn 

resultsIn 

workOut 

resultsOut 

sendForWork getForWork 

sendResults 

Read 

Work 

Packet 

Send 

Work 

Packet 

Do Work 

Transfer 

Results 

Figure 22-3 Worker Internal Architecture

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

149 

Automatic Class Loading – Process Farms


The processes implement the Client-Server pattern. The process Read Work Packet is a pure server. 
The processes Send Work Packet and Do Work are pure clients. Only Transfer Results acts as both a 
Server and a Client and by inspection it can be seen that the architecture contains no cycles even when 
connected to other Worker processes.

The behaviour of Read Work Packet is shown in Figure 22-4. The process alternates over its two input 
channels, giving priority to the getForWork channel because we want to ensure the Do Work process 
is always processing work packets.

Figure 22-4 Read Work Packet Behaviour

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/elearningforkids


Using Concurrency and  
Parallelism Effectively – II

150 

Automatic Class Loading – Process Farms


The process repeatedly reads in a packet from the workIn channel then depending upon which alternative 
is selected either sends the packet to the Do Work process (case 0) or to the Send Work Packet process 
(case 1). The process essentially provides a one place buffer in which to hold the incoming work packet. 
The Send Work Packet process repeatedly sends a signal on the getForTransfer channel and then reads 
the work packet on the sendForTransfer channel, which it then outputs on the workOut channel. This 
interaction will only take place when the Do Work process is busy and has not sent a signal on the 
getForWork channel.

The behaviour of the Do Work process is shown in Figure 22-5. The process repeatedly sends a signal 
on the getForWork channel. It then reads the work packet from the sendForWork channel. The packet 
is then processed, signified by a call to the manipulate() method, after which the produced result packet 
is written to the sendResults channel.

Figure 22-5 Do Work Behaviour

The behaviour of the Transfer Results process is shown in Figure 22-6. The process alternates over its 
two input channels giving priority to the sendResults channel because we wish to empty the Do Work 
process as quickly as possible so that it can process another work packet immediately.

Figure 22-6 Behaviour of the Transfer Results Process

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

151 

Automatic Class Loading – Process Farms


22.2	 Task Parallel Architectures

The usual architecture adopted by task parallel applications is a pipeline of processes as shown in Figure 
22-7. It is assumed that each data block has to be processed by each of the task processes in sequence.

Emitter Task A Task B Task C Collector 

Figure 22-7 Basic Task Parallel Architecture

The Emitter process outputs blocks of data each of which is processed in sequence by the processes 
Task A, Task B and Task C, finally being output to the Collector process which recombines the data as 
necessary. For this architecture to be effective it is crucial that each Task in the pipeline overlaps input, 
work and output as shown in the previous section. For a pipeline to be effective the time to process each 
task should be similar and there should be no requirement to send any work backwards through the 
pipeline. If this is achieved then it will take 3 task units for the first data to appear at the input of the 
Collector but thereafter subsequent data will appear every task unit.

In the architectures described above performance improvement can only occur if all the processes are 
placed on different cores or nodes in a network of processes. Thus we need to consider how this can be 
achieved. The JCSP net2 architecture provides support that makes this task easier.

22.3	 Generic Architectures

Given the relative simplicity of the architectures previously described it would be beneficial if the designer 
could implement a set of basic architectural patterns. The Java interface mechanism provides a means 
whereby we can make the processing polymorphic. However that only solves part of the problem. If 
each process is placed on a node in a network then each node requires knowledge of both the abstract 
and concrete classes used in the application. Distributing this class information could be problematic 
over a large network, especially if it is constructed using a network of workstations, normally used as 
standalone workstations. 

The JCSP net2 architecture has two additional capabilities over and above the ability to communicate 
serialized objects (Chalmers, 2009). The first is the ability to provide a filter mechanism. This mechanism 
allows the system designer to transform a complex class data structure into a byte array, which can 
then be communicated over a network channel. Two filters are required one at the transmitting end to 
undertake the conversion from structure into byte array. The other at the receiving end converts the byte 
array back into the required structure. The advantage of this filter mechanism is that the serialization of 
a byte array accounts for very little additional overhead in comparison to the built-in Java serialization 
mechanism. Thus if large amounts of complex data are being transferred over a network the use of these 
filters can substantially improve communication performance.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

152 

Automatic Class Loading – Process Farms


The other mechanism is a class loading capability. If one process in a node of a network sends a class to 
another node and the receiving node does not have the class definition, then it can dynamically request the 
class definition from the sending node. If a class references yet other classes within it, then these internal 
classes are obtained on an as needed basis. Once a node has received a class or classes in this manner it 
is able to transmit these class definitions to other nodes that also require the class definitions. A node 
can only obtain a class definition if there is a direct channel connection from the requesting node to a 
previous node that has the class definition, albeit through other intermediary nodes. Implicitly, such class 
loading channels create a reverse channel by which requests for class definitions can be communicated. 
The mechanism fails if the class definition cannot be found on any node for which one of these back 
channels exists. A general search for a class definition is not implemented.

22.4	 Architectural Implementation

The discussion will use the architecture shown in Figure 22-2. In the accompanying project 
ChapterExamples/src/ the code for c22 is split over a number of packages, thereby ensuring that 
classes from one package are not accessible to other packages. One package contains some Universal 
Classes that are needed by all nodes. The package c22.UniversalClasses contains class definitions 
for objects; Sentinel, Signal and InitObject. The InitObject is used to communicate a node 
identity and a net channel address. The description will present the components of the architecture in 
the order Collector, Emitter and finally Worker.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/academictransfer


Using Concurrency and  
Parallelism Effectively – II

153 

Automatic Class Loading – Process Farms


22.4.1	 Collector

The script to run the Collector process is shown in Listing 22-1. The node of the Collector process 
is fixed as 127.0.0.2 and the node listens on port 3000 {10}. A node instance is created {11} and the IP-
address of the node printed using the getIpAddress() method {12}. This value will be needed when 
each of the Worker nodes is created.

The input net channel to the node is then created as the net2one channel fromWorkers {14}. 
The channel is created as a code loading channel by means of the creation of the instance of 
CodeLoadingChannelFilter.FilterRX(), which builds the mechanism by which the Collector 
can dynamically receive class definitions from a previous node. The Collector node only has net 
input channels so does not have the means to communicate back to a previous (Worker) node. The 
CodeLoadingChannelFilter builds the required channel in the reverse direction automatically and 
transparently. The Collector process cannot access this back channel. For information, the location of the 
fromWorkers net channel is printed {16,17}. The number of Worker nodes is then obtained by a console 
interaction as workers {19}. This is required because we are going to make the system terminate once all 
the data has been processed. Finally, an instance of the Collector process is created and run {22–25}.

10	def nodeAddr = new TCPIPNodeAddress("127.0.0.2",3000)
11	Node.getInstance().init (nodeAddr)
12	println "Collector IP address = ${nodeAddr.getIpAddress()}"
13
14	�def fromWorkers = NetChannel.net2one(new CodeLoadingChannelFilter.FilterRX())
15
16	def fromWorkersLoc = fromWorkers.getLocation()
17	�println "Collector: from Workers channel Location – ${fromWorkersLoc.toString()}"
18
19	def workers = Ask.Int ("Number of workers? ", 1, 20)
20
21
22	def collector = new Collector ( fromWorkers: fromWorkers, 
23							       workers: workers)
24
25	new PAR([collector]).run()

Listing 22-1 The Script to Run the Collector Node

The structure of the Collector process is shown in Listing 22-1.

10	class Collector implements CSProcess {
11
12	  def fromWorkers
13	  def workers = 2
14	  
15	  void run(){
16	  def timer = new CSTimer()

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

154 

Automatic Class Loading – Process Farms


17	  def terminated = 0
18	  def stopped = false
19	  def now = 0 
20	  def start 
21	  def first = true
22	  def results = []
23	  while (!stopped) {
24	  def o = fromWorkers.read()
25	  if (first) {
26	  start = timer.read()
27	  first = false
28	  }
29	  if (o instanceof Sentinel) {
30	  terminated = terminated + 1
31	  stopped = terminated == workers
32	  }
33	  else {
34	  now = timer.read()
35	  results << o.display(now)
36	  } 
37	  }
38	  def end = timer.read()
39	  def l = 1
40	  for ( line in results) {
41	  println "line: $l at \t$line"
42	  l = l + 1
43	  }
44	  �println "elapsed time: ${end – start} msecs; processed ${results.

size()} results"
45	  }
46	}

Listing 22-2 The Collector Process Definition

The property fromWorkers {12} is the net input channel to the process and the default number of worker 
nodes is 2 {13}. The process uses a timer {16} to time the arrival of each processed data object and 
also the overall processing time. The variables terminated and stopped are used when determining 
if the process can stop once all the worker nodes have terminated {17, 18}. The list results {22} will 
be used to hold all the processed data objects that are received. The results will only be printed once 
they have all been received otherwise the elapsed processing time will include the printing time, which 
will therefore not truly reflect the change in processing time by adding additional worker nodes.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

155 

Automatic Class Loading – Process Farms


The main loop {23–45} is controlled by the value of stopped. The process reads objects from the 
fromWorkers channel {24}. If this is the first such object the start time is recorded {26}. If the object 
is an instance of Sentinel, then this indicates that the Worker that sent it has terminated. In which 
case the count of terminated workers can be incremented and if the number of terminated workers 
is the same as the number of workers then the value of stopped can be set true {29–32}. This will 
cause the process to enter the terminating phase on the next iteration.

If the object is a data object then the process reads the current time into now {34} and calls the display() 
method of the object {35}. At the creation of this node the process does not have the class definition for 
the data object. Thus it will make a request to the first Worker that sends it a data object for the required 
class definition. It is assumed that the data object implements an interface that has display as one 
of its abstract methods.

Once all the worker nodes have terminated the process reads the end time {38}, prints the results {39–43} 
and the total elapsed time {44} before itself terminating.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

By 2020, wind could provide one-tenth of our planet’s 
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the 
world’s wind turbines. 

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our 
systems for on-line condition monitoring and automatic 
lubrication. We help make it more economical to create 
cleaner, cheaper energy out of thin air. 

By sharing our experience, expertise, and creativity, 
industries can boost performance beyond expectations. 

Therefore we need the best employees who can 
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering. 

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge


Using Concurrency and  
Parallelism Effectively – II

156 

Automatic Class Loading – Process Farms


22.4.2	 Emitter

The script to create the Emitter node is shown in Listing 22-3. The script initially creates a node instance 
and prints out its IP-address, as this will be required when each worker node is created {10–12}. A 
net2one input channel is created, fromWorkers and its location printed for information {14–17}. Both 
the Emitter and Collector nodes behave as pure servers and the worker nodes behave as pure clients. 

10	def nodeAddr = new TCPIPNodeAddress("127.0.0.1",3000)
11	Node.getInstance().init (nodeAddr)
12	println "Emitter IP address = ${nodeAddr.getIpAddress()}"
13
14	def fromWorkers = NetChannel.net2one()
15
16	def fromWorkersLoc = fromWorkers.getLocation()
17	�println "Emitter: from Workers channel Location – ${fromWorkersLoc.toString()}"
18
19	def workers = Ask.Int ("Number of workers? ", 1, 17)
20	def loops = Ask.Int ("Number of data objects to send? ", 1, 1000000)
21	�def elements = Ask.Int ("Number of elements in each TestObject? ", 1, 200)
22
23
24	def emit = new EmitterNet ( fromWorkers: fromWorkers,
25						       loops: loops,
26						       workers: workers,
27						       elements: elements )
28	new PAR([emit]).run()

Listing 22-3 The Emitter Node Creation Script

The number of workers and the parameters used in the creation of the data objects are then obtained by 
user interaction {19–21}. An instance of the Emitter node is then created and run {24–28}.

The data object used in the example is called TestObject and its structure is shown in Listing 22-4. It has 
four properties {12–15}; workerId will indicate the worker node that processed the particular object 
instance. The property sum will be used to add up all the elements in the list data. Finally, dataSize, 
is the number of elements in data. 

The object has an explicit constructor {17–20}, which initialises the list data and the property dataSize.

10	class TestObject implements ManipulateInterface {
11	 
12	  def workerId = -1
13	  def sum = 0
14	  def data = []
15	  def dataSize = 0
16	  

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

157 

Automatic Class Loading – Process Farms


17	  def TestObject (elements, m) {
18	  for ( i in 0..<elements) data[i] = (i * (m+1)) + 1
19	  dataSize = elements
20	  }
21
22	  def manipulate (x){
23	  for ( i in 0..<dataSize) data[i] = data[i] * (x + 1)
24	  for ( i in 0..<dataSize) sum = sum + data[i]
25	  workerId = x
26	  }
27	  
28	  def String display (now){
29	  def s = "$now: from – $workerId data = $data, $sum"
30	  return s
31	  }
32
33	}

Listing 22-4 The TestObject Class Definition

TestObject implements the ManipulateInterface that has two abstract methods, one used to 
manipulate the properties of the object {22–26}, which will be called in a worker node and the other 
display {28–31}, used to print the object to the console window, which we have seen already is called 
in the Collector node. The TestObject has been designed so that it is relatively easy to create data 
objects of different sizes. The manipulate method iterates through the data twice thereby creating a 
significant processing requirement if the object has a large number of elements.

Listing 22-5 gives the definition of the EmitterNet process. The EmitterNet process comprises five 
separate phases as follows.

The first phase creates the data object using the properties loops and elements {23–27}. This will 
result in the data being created before any subsequent processing. This means that we can evaluate the 
effect of adding more worker nodes on the actual processing time without the influence of the time it 
takes to actually create the data objects.

The second phase {29–34} inputs an InitObject from each worker node. The InitObject contains 
the id of the node which is used as the key in the map netLocations {21}. The value stored in 
the map is a one2net channel, which has been created by a worker node, the location of which 
has been sent in the InitObject as the property channelAddress. This must be created as a 
CodeLoadingChannelFilter {32} channel because the Emitter will use this channel to send the 
TestObject class definition to each Worker node.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

158 

Automatic Class Loading – Process Farms


During the third phase the Emitter node sends a synchronisation signal to each worker node informing 
them that they can now start requesting data objects from the emitter node {35–41}. The net output 
channel to be used to access each worker is obtained from the netLocations map {38}.

The fourth phase results in the data objects being sent to the Worker nodes as each makes a request for 
a data object to be sent {42–47}. A Worker requests work by sending a Signal object, which contains 
the identity of the requesting node. The workerId {44} is used to access the netLocations map {45} 
to obtain the required output channel location, which is then used to write the next data object to the 
Worker node {46}.

10	class EmitterNet implements CSProcess {
11
12	  def fromWorkers
13	  def toWorkers
14	  def loops = 10
15	  def workers = 2
16	  def elements = 5
17	  
18	  void run(){
19	  def data = []
20	  def workerId = 0
21	  def netLocations = [:]

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

AXA Global 
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA


Using Concurrency and  
Parallelism Effectively – II

159 

Automatic Class Loading – Process Farms


22	  // create the data
23	  for ( i in 0 ..< loops) {
24	  data[i] = new TestObject (elements, i)
25	  }
26	  println "Emitter: Data Generated, Loops: $loops, " +
27	   "Elements per object: $elements for $workers Workers"
28	  // receive an InitObject from each worker
29	  for ( i in 1..workers) {
30	  def initLoc = (InitObject)fromWorkers.read()
31	  �netLocations.put (initLoc.id, NetChannel.one2net(initLoc.

channelAddress, 50, 
32						       new CodeLoadingChannelFilter.FilterTX()))
33	  }
34	  println "Emitter: $workers Workers have registered"
35	  // send each worker a synchronisation signal
36	  def channelLoc = null
37	  for ( i in 0 ..< workers) {
38	  channelLoc = netLocations.get (i)
39	  channelLoc.write(new Signal())
40	  }
41	  println "Emitter: $workers Workers have synchronised"
42	  // wait for a request from a worker and then send them
43	  for ( i in 0 ..< loops) {
44	  workerId = ((Signal)fromWorkers.read()).signal
45	  channelLoc = netLocations.get (workerId)
46	  channelLoc.write(data[i])
47	  }
48	  // terminate each of the workers
49	  for ( i in 1..workers) {
50	  workerId = ((Signal)fromWorkers.read()).signal
51	  channelLoc = netLocations.get (workerId)
52	  channelLoc.write(new Sentinel())
53	  }
54	  }
55	}

Listing 22–5 The EmitterNet Process Definition

The final phase {49–53} occurs once all the data has been processed. Each worker will send a request 
for another data object but instead a Sentinel object is returned, thereby informing the worker node 
that it should itself terminate.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

160 

Automatic Class Loading – Process Farms


22.4.3	 Worker

The behaviour presented in 22.1.1 would result in the copying of possibly large amounts of data from 
one process to another within a worker node. This could result in an excessive processing overhead for 
large complex data objects. To avoid this we shall adopt a strategy of using three data buffers that are 
shared between the internal processes that make up a worker node. The internal structure of a worker 
node is shown in Figure 22-8.

The sharedData buffers will be accessed in rotation by each of the processes. Thus as SendOutput is 
writing a data object to the toCollector channel from buffer 2, the Worker process will be processing the 
data object in buffer 1 and the GetInput process will be reading a data object into buffer 0. The value that 
will be passed from one process to the next will be the subscript of the shared buffer. As each process 
only has access to one of the shared buffers at any instant it is not possible for two of the processes to 
access the same buffer at the same time.

DoWork GetInput SendOutput 

startWork workFinished 

toEmitter 

fromEmitter 

toCollector 

sharedData 

   

Figure 22-8 The Internal Process Structure of a Worker Node

The script that creates a Worker node is shown in Listing 22-6, which assumes that the Emitter and 
Collector nodes have been previously created.

10	def w = Ask.Int ("Worker Number ( 3 upwards) ? ", 3, 20)
11	def emitterIP = Ask.string("Emitter Process IP? ")
12	def collectorIP = Ask.string("Collector Process IP? ")
13
14	def addr = new TCPIPNodeAddress ("127.0.0." + w,3000)
15	Node.getInstance().init (addr)
16	println "Worker IP address = ${addr.getIpAddress()}"
17
18	�def fromEmitter = NetChannel.net2one(new CodeLoadingChannelFilter.FilterRX())
19	def fromEmitterLoc = fromEmitter.getLocation()
20	�println "Worker: from Emitter channel Location – ${fromEmitterLoc.toString()}"
21
22	def toEmitterAddr = new TCPIPNodeAddress ( emitterIP, 3000)
23	def toEmitter = NetChannel.any2net(toEmitterAddr, 50 )
24
25	def toCollectorAddr = new TCPIPNodeAddress ( collectorIP, 3000)

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

161 

Automatic Class Loading – Process Farms


26	def toCollector = NetChannel.any2net(toCollectorAddr, 50, 
27	 new CodeLoadingChannelFilter.FilterTX())
28
29	def base = new Worker ( toEmitter: toEmitter,
30					       fromEmitterLoc: fromEmitterLoc,
31					       fromEmitter: fromEmitter,
32					       toCollector: toCollector,
33					       baseId: w – 3 )
34	new PAR([base]).run()

Listing 22-6 The Script that Creates a Worker Node

The initial user interaction establishes the identity w of this worker and the IP-addresses of the emitter and 
collector nodes {10–12}. The worker node instance is then created and details printed {14–16}. The script 
then creates a net2one channel, fromEmitter, which has to be a CodeLoadingChannelFilter 
because it is used to send class definitions from the Emitter to the Worker {18}. The location of the 
channel is obtained as this will need to be sent to the Emitter node {19} and this location is printed for 
information {20}. The Worker can now create the output channels to the Emitter and Collector nodes 
{22–27}. The toEmitter channel does not need to be a code loading channel but that to the Collector, 
toCollector, must be {27} because it will be used to transfer the data object class definition to the 
Collector node. The Worker process can now be constructed and run {29–34}.

The definition of the Worker process is shown in Listing 22-7. Initially, the Worker writes an InitObject 
to the Emitter process using the toEmitter channel {19}. It then creates the internal channels 
startWork and workFinished as one2one channels {20, 21} see also Figure 22-8. The sharedData 
buffers are then defined {22}. The process then reads a synchronisation signal from the Emitter process 
{23} and prints an information message {24}. Each of the internal processes are now constructed {25–37} 
and run. Finally, a message is printed to indicate the process has terminated.

10	class Worker implements CSProcess {
11	  
12	  def toEmitter
13	  def fromEmitterLoc
14	  def fromEmitter
15	  def toCollector
16	  def baseId
17	  
18	  void run(){
19	  �toEmitter.write(new InitObject(id: baseId, channelAddress: fromEmitterLoc))
20	  def startWork = Channel.one2one()
21	  def workFinished = Channel.one2one()
22	  def sharedData = []
23	  def sync = (Signal)fromEmitter.read() //synchronisation signal
24	  �println "Worker: $baseId initialised and about to run internal processes"

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

162 

Automatic Class Loading – Process Farms


25	  def getter = new GetInput ( toEmitter: toEmitter,
26							       baseId: baseId,
27							       fromEmitter: fromEmitter,
28							       toWorker: startWork.out(),
29							       sharedData: sharedData )
30	  def worker = new DoWork ( workOn: startWork.in(), 
31							       workCompleted: workFinished.out(),
32							       workerId: baseId, 
33							       sharedData: sharedData )
34	  def putter = new SendOutput ( workerFinished: workFinished.in(), 
35							       toCollector: toCollector,
36							       sharedData: sharedData)
37	  new PAR([getter, worker, putter]).run()
38	  println "Worker: $baseId terminated"
39	  }
40
41	}

Listing 22-7 The Worker Process definition

The GetInput process definition is shown in Listing 22-8. The property sharedData {16} is shared 
between each of the internal processes and if this was not carefully managed then disaster could result. 
The variable index {19} is used to identify which sharedData buffer the process is currently allowed 
to access.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/Subscrybe


Using Concurrency and  
Parallelism Effectively – II

163 

Automatic Class Loading – Process Farms


10	class GetInput implements CSProcess {
11	  
12	  def toEmitter
13	  def baseId
14	  def fromEmitter
15	  def toWorker
16	  def sharedData
17	  
18	  void run(){
19	  def index = 0
20	  def running = true
21	  while (running) {
22	  toEmitter.write(new Signal(signal: baseId))
23	  def o = fromEmitter.read()
24	  if ( o instanceof Sentinel){
25	  running = false
26	  toWorker.write(o)
27	  }
28	  else {
29	  sharedData[index] = o
30	  toWorker.write(index)
31	  index = (index + 1)%3
32	  }
33	  }
34	  }
35	}

Listing 22-8 The GetInput Process Definition

In the loop of the process {21–33} the first action is to send a signal {22} to the Emitter process asking for 
a data object to process, which is then read {23}. Notice that this interaction is typical client behaviour as 
required by the design of the complete process network. If the object is a Sentinel {24} then the Emitter 
has no more data to be processed and thus the Worker can terminate {25} after writing the Sentinel to 
the toWorker channel {26}. If the input object holds data, it can be placed in the sharedData buffer 
subscripted by index {29}. The process then writes the index to the toWorker channel {30}, which 
may be delayed if the DoWork process has not yet completed processing the previous data object. Once 
the channel output has completed the index can be incremented modulo 3 to construct a circular buffer. 
This process is the only one that can modify the value of index; the others just input index and use it.

If the Worker node is executing on a single core node then the input, work and output stages of the 
process cannot be overlapped and thus the processes will be interleaved. If however the Worker node is 
executing on a multicore node then each of the internal processes could be executed at the same time. 
Hence the input, work and output processes will be executed in parallel and thus the input and output 
operations will be overlapped with the work process. It is thus crucial that access to the sharedData 
buffers is managed correctly.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

164 

Automatic Class Loading – Process Farms


The Listing 22-9 shows the structure of the DoWork process. The process inputs either an Integer or 
Sentinel object {21}. If it is a Sentinel object the process terminates having written the Sentinel 
object to the SendOutput process using the workCompleted channel {24}. If the input is an Integer 
object {27} then it is the index of a buffer in sharedData which the process can manipulate{28}. The 
index of the sharedData buffer is then written to the SendOutput process using the workCompleted 
channel {29}.

10	class DoWork implements CSProcess {
11	  
12	  def workOn 
13	  def workCompleted
14	  def workerId
15	  def sharedData
16	  
17	  void run(){
18	  def index = -1
19	  def running = true
20	  while (running) {
21	  def o = workOn.read()
22	  if ( o instanceof Sentinel) {
23	  running = false
24	  workCompleted.write(o)
25	  }
26	  else {
27	  index = (Integer)o.intValue()
28	  sharedData[index].manipulate(workerId)
29	  workCompleted.write(index) 
30	  }
31	  }
32	  }
33	}

Listing 22-9 The DoWork Process Definition

The SendOutput process structure is shown in Listing 22-10. The structure is similar to the DoWork 
process structure in that it processes either Sentinel or Integer objects. In the case of a Sentinel 
it ensures that it is written to the Collector process using the toCollector channel {23} before the 
process terminates.

In the case of an Integer, we know that a buffer in the sharedData has to be written to the Collector 
process as shown in {27} using the index value that has been input {26}.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

165 

Automatic Class Loading – Process Farms


10	class SendOutput implements CSProcess {
11	 
12	  def workerFinished
13	  def toCollector
14	  def sharedData
15	 
16	  void run(){
17	  def index = -1
18	  def running = true
19	  while (running) {
20	  def o = workerFinished.read()
21	  if ( o instanceof Sentinel){
22	  running = false
23	  toCollector.write(o)
24	  }
25	  else {
26	  index = (Integer) o.intValue()
27	  toCollector.write(sharedData[index])
28	  }
29	  }
30	  }
31	 }

Listing 22-10 The SendOuput Process Definition

22.5	 Summary

In this chapter we have constructed a generic architecture that can create a process farm for any data object 
that needs to be processed in a data parallel mode. The application uses the polymorphic capabilities of 
Java. It also uses the JCSP net2 architecture to enable the dynamic loading of class files over the network 
between nodes in a process network.

In addition we have alluded to the fact that if a process node contains multiple processes and the node 
it runs on has multi-core capabilities then, provided the underlying operating system can dynamically 
allocate processes to cores, the application will automatically utilise the many cores.

The next chapter will develop these ideas further by creating a mechanism that loads a network 
of workstations with processes and creates the required application specific communication 
strcture dynamically.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

166 

�Programming  High Performance Cluster 

23	� Programming High 
Performance Clusters

An architecture is developed that permits the loading of processes onto a High Performance Cluster 
regardless of the application and the specific communication channels required by

•	 defining the required input and output channels in specific data structures
•	 defining a Worker Object interface that contains the required process definition and channel 

data needed to create a process in the cluster
•	 using a single process on each worker node that is independent of the application
•	 requiring only the host node to have knowledge of the application
•	 exploiting the ability to transfer class definitions over the network

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Losing track of your leads?
Bookboon leads the way
Get help to increase the lead generation on your own website. Ask the experts.  

Interested in how we can help you? 
email ban@bookboon.com

http://bookboonglobal.com/en/qualities2/content-and-dialogue-marketing-2/


Using Concurrency and  
Parallelism Effectively – II

167 

�Programming  High Performance Cluster 

In this chapter we bring together a number of ideas previously described to show how we can build 
systems using High Performance Clusters (HPC) systems. For this explanation we assume that a HPC 
comprises a collection of processing nodes connected by a high performance interconnect. Typically, the 
interconnect is provided by a high bandwidth Ethernet infrastructure with a dedicated gigabyte switch. 
The network is normally not connected to the wider internet using a private network. There is usually 
one node, called the host, which also has a connection to a wider network enabling users to access 
the cluster over the internet. Each of the nodes is then usually implemented using a high performance 
multi-core processing node.

Such clusters are often provided with an operating environment, such as Condor, that allows users to run 
batch jobs that farm work out to as many nodes as the user requests using a data parallel architecture. 
Such operating environments tend to provide very limited capability for designing the type of parallel 
systems the earlier part of this book has been concerned with.

To make more use of such clusters, with more flexible parallel architectures, we require a mechanism to 
distribute work from the host to all the other, worker, nodes. Ideally, the general cluster nodes should run 
a single process that is able to load the specific work process from the host node. The major challenge 
is to dynamically construct the channel connections between each of the processes.

The effective use of multi-core nodes is achieved very simply by having the process that is run on a node 
itself containing a parallel structure that has as many processes as there are cores.

23.1	 Architectural Overview

We shall assume that the host process is running its process before the other nodes are started. It is also 
assumed the host node has access to all the process and class definitions required by the application. 
The host node needs to know the number of worker nodes that are to be used.

A worker node then can run a process that has the following functionality.

The worker node registers its IP-address with the host node.

The host then constructs a worker object for each worker node that contains the process the node is to 
execute together with data structures that characterise the net channel connections the process requires. 
These connections are separated into input and output connections because we have to build all the input 
channel ends before any of the output ends can be created.

The host then sends each worker its corresponding worker object.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

168 

�Programming  High Performance Cluster 

The workers then read the worker objects and start to process the data structure. The first action is to 
create any net input and output channel ends. Once this is complete the worker node sends a signal 
back to the host.

The host node waits for all the workers to signal that they have created their input channel ends. It 
then creates the processes that run on the host node and creates their input channel ends. Once this is 
complete the host sends a signal to each of the worker nodes enabling them to construct the net output 
channel ends. The host can now start its processes, which typically, emit work to the worker nodes and 
then collect the results once the worker nodes have terminated.

Once the worker nodes have created the net output channel ends they can start the worker process 
they have been allocated. If the process contains a parallel then these processes will be allocated to the 
available cores by the Java Virtual machine and underlying operating system. 

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/EOT


Using Concurrency and  
Parallelism Effectively – II

169 

�Programming  High Performance Cluster 

The allocation of channels is separated so that the channels used to register nodes and to load process are 
separated from and have a specific structure that is not related in any way to the application channels. 
This also means that the process loading channels can be used to transfer class definitions using the code 
loading channel capability described in the previous chapter. The advantage of this separation is that we 
can build the host and worker node scripts in a uniform manner that is independent of the application 
architecture. This means that users only have to become familiar with one architecture, to be able to use 
a HPC system using any style of parallel application.

23.2	 The Host and Node Scripts

These scripts have to be run on the HPC host and worker nodes respectively. In a later section we shall 
show how we can create a means of launching these scripts from a runnable jar using operating system 
batch files. Each worker node has to run the Node script. Figure 23-1 shows the net channel architecture 
to be created amongst a set of host and worker nodes. Each node has an any2net output connection 
to the host. Each node has a one2net input channel from the host. Each input location uses the channel 
number 1 and we assume that a specific port is used for all connections. In this description each node 
and the host will use port 1000. Each node and the host have their own IP-address. The application 
channels will use any channel number other than 1.

/1 

Host

Node 

    /1 

Node 

    /1 

Node 

    /1 

Figure 23-1 Net Channel Infrastructure to Load Worker Processes in a HPC

The application channel structure is shown in Figure 23-2 and as can be observed is completely different. 
The application uses a simple data parallel structure in that the work can be shared among the nodes in 
an equal manner. The host node runs two internal processes called Emitter and Collector. The Emitter 
process sends the work to be undertaken to each of the nodes. Once a worker Node has completed 
the task the results are returned to the Collector process. The input channel to each node is given the 
channel number 100 and the input channels to the Collector process are given the channel numbers 
100, 101 and 102 respectively.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

170 

�Programming  High Performance Cluster 

Host 

Node 

 /100 

 

Emitter 

/100   /101   /102 

       Collector 

Node 

 /100 

Node 

 /100 

Figure 23-2 The Application Channel Structure

Listing 23-1 shows the first part of the host script. The script will be run using command line arguments. 
Thus workers {10} and cores {11} will be passed the number of worker nodes and the number of cores 
to be used at each node. These arguments are independent of the application. The argument iterations 
{12} is application specific and will be discussed later.

A timer is used {15–16} so that analysis of the time taken to complete the application can be reviewed in 
terms of the number of workers and cores used. This means that algorithm speed-up can be determined 
in terms of these values.

The host IP-address is determined as hostAddr, which is listening on port 1000 {17} and which can 
then be used to create a node instance {18}. The IP-address of the host is then obtaind and printed {19} 
together with the number of workers and cores {20}. The hostRequest channel is then created 
{21} as channel number 1. This is the channel used by each of the nodes to communicate information 
about the worker node. 

The ChannelOutputList loadChannels is used to hold the output channels used to send worker 
processes to the nodes {23}. The list nodes {24} is used to hold the IP-address of each of the worker 
nodes. The loop {25–31} is used to iterate over each of the worker nodes to obtain a RequestWorker 
object from each node {26}. One field of the RequestWorker object is the loadLocation, which 
holds the net channel location of the input channel to the Node. This is then used to create the output 
channel end nodeLoadChannel {27–18} as a code loading channel and will be used to send the worker 
process object to the node. The channel is then appended to the loadChannels list {30}. The timer 
is then read again to provide a measure of the time taken to read the initial communication from all of 
the nodes {33}.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

171 

�Programming  High Performance Cluster 

10	def workers = new Integer(args[0]).intValue()
11	def cores = new Integer(args[1]).intValue()
12
13	def iterations = new Integer(args[2]).intValue()
14
15	def timer = new CSTimer()
16	def startTime = timer.read()
17	def hostAddr = new TCPIPNodeAddress(1000)
18	Node.getInstance().init(hostAddr)
19	def hostIP = hostAddr. getIpAddress()
20	�println "Host running on $hostIP for $workers worker nodes with $cores cores"
21	def hostRequest = NetChannel.numberedNet2One(1)
22
23	def loadChannels = new ChannelOutputList()
24	def nodes = []
25	for ( w in 1 .. workers ) {
26	 def workerRequest = (RequestWorker)hostRequest.read()
27	 def nodeLoadChannel = NetChannel.one2net( workerRequest.loadLocation, 
28							        new CodeLoadingChannelFilter.FilterTX())
29	 loadChannels.append(nodeLoadChannel)
30	 nodes << workerRequest.nodeIP
31	}
32	println "Processed $workers worker requests"
33	def requestReadTime = timer.read()

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book  
is made with 
SetaPDF

http://s.bookboon.com/Setasign


Using Concurrency and  
Parallelism Effectively – II

172 

�Programming  High Performance Cluster 

34	def workerObjects = []
35	for ( w in 0..< workers) {
36	� workerObjects << new WorkerObject ( workerProcess: new 

McPiWorker(cores: cores),
37							         inConnections : [100],
38							         outConnections: [[hostIP, 100 + w]])
39	}
40	for ( w in 0 ..< workers ) {
41	 loadChannels[w].write(workerObjects[w])
42	}
43	def workersSentTime = timer.read()
44	println "Sent worker objects to workers"
45	def emitterInConnections = []
46	def emitterOutConnections = []
47	for ( w in 0..< workers) {	
48	 emitterOutConnections << [nodes[w], 100]
49	}
50	def collectorInConnections = []
51	for ( w in 0..< workers) {
52		  collectorInConnections << (100 + w)
53	}
54	def collectorOutConnections = []
55	def emmiterInChannelList = new ChannelInputList()
56	def emitterOutChannelList = new ChannelOutputList()
57	def collectorInChannelList = new ChannelInputList()
58	def collectorOutChannelList = new ChannelOutputList()
59
60	for ( w in 0 ..< workers ) {
61		  hostRequest.read() 
62	}

Listing 23-1 The First part of the Host Script

The list workerObjects {34} is used to hold the objects that will be sent to each of the worker nodes. 
The loop {35–39} is used to iterate over the number of workers to create the objects that will be sent 
to each of the worker nodes. 

A WorkerObject {36–38} comprises three fields. The first is the worker process itself {36}. The next is 
a list of input channel connections, inConnections, {37}, which comprises the input channel numbers 
used by this worker node. Finally, outConnections {38} is a list of two element lists that comprise 
the [IP-address, Channel number] of the node to which the worker node outputs. Both these channel 
connections are relative to the worker node itself. The loop {40–42} then outputs each of the created 
worker objects to each of the worker nodes. After which the timer is read again to provide an indication 
of the time taken to send all the worker objects from the host to the worker nodes.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

173 

�Programming  High Performance Cluster 

The next phase of the script {45–58} is to create the channels that will be used by the Emitter and 
Collector processes that will run in the host node. These are specific to the application. By inspection 
it can be seen that the application structure shown in Figure 23-2 is created.

The loop {60–62} reads a Signal from each of the worker nodes. This Signal is used to indicate that 
each worker node has created its input channels. The worker nodes have to create all the input channels 
before any of the output channels can be created. The Emitter and Collector process input channels 
can now be created as shown in Listing 23-2 {63–68}. Once this is complete, a Signal can be sent to 
each of the worker nodes indicating that the output channels can now be created {69–71} because it 
is known that all input channel ends now exist. The output connections for the Emitter and Collector 
process can be created {73–80}. Each connection comprises a list of two elements, where the first element 
is the IP-address to which the output connection is to be made using port 1000. The second element is 
the channel number to be used. Each of the output channel ends are appended to a channel output list.

63	emitterInConnections.each{ cn ->
64		  emmiterInChannelList.append(NetChannel.numberedNet2One(cn))
65	}
66	collectorInConnections.each{ cn ->
67		  collectorInChannelList.append(NetChannel.numberedNet2One(cn))
68	}
69	for ( w in 0 ..< workers ) {
70		  loadChannels[w].write(new Signal())
71	}
72
73	emitterOutConnections.each{ connection ->
74		  def outNodeAddr = new TCPIPNodeAddress(connection[0], 1000)
75		�  emitterOutChannelList.append(NetChannel.any2net(outNodeAddr, 

connection[1]))
76	}
77	collectorOutConnections.each{ connection ->
78		  def outNodeAddr = new TCPIPNodeAddress(connection[0], 1000)
79		�  collectorOutChannelList.append(NetChannel.any2net(outNodeAddr, 

connection[1]))
80	}
81
82	def emitter = new McPiEmitter(workers: workers, iterations: iterations)
83	emitter.connect(emmiterInChannelList, emitterOutChannelList)
84	�def collector = new McPiCollector(workers: workers, iterations: 

iterations, cores: cores)
85	collector.connect(collectorInChannelList, collectorOutChannelList)
86	 
87	def emitterPM = new ProcessManager( emitter )
88	def collectorPM = new ProcessManager( collector)
89	def hostStartTime = timer.read()
90	emitterPM.start()
91	collectorPM.start()

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

174 

�Programming  High Performance Cluster 

92
93	emitterPM.join()
94	collectorPM.join()
95	def hostEndTime = timer.read()
96	println "Host terminated"
97	def workerTimes = []
98	def hostStartup = requestReadTime – startTime
99	def hostLoad = workersSentTime – requestReadTime
100	def hostInitiate = hostStartTime – workersSentTime
101	def hostElapsed = hostEndTime – hostStartTime
102	 workerTimes << ["Host", hostStartup, hostLoad, hostInitiate, hostElapsed]
103	for ( w in 0 ..< workers){
104		 def workerRawTimes = hostRequest.read()
105		 def startup = workerRawTimes[1] – workerRawTimes[0]
106		 def load = workerRawTimes[2] – workerRawTimes[1]
107		 def initiate = workerRawTimes[3] – workerRawTimes[2]
108		 def elapsed = workerRawTimes[4] – workerRawTimes[3]
109		 workerTimes << ["Wk: " + w, startup, load, initiate, elapsed]	
110	}
111	println "Node\tstart\tload\tinit\telapsed"
112	workerTimes.each { timings ->
113		 timings.each{ print "$it\t"}
114		 println""
115	}

Listing 23-2 The Second part of the Host Script

The next part of the script initiates the Emitter and Collector processes that will be executed in the 
host node. The processes are called McPiEmitter and McPiCollector respectively {82, 84}. The 
actual processes used in these processes are described in 23.3 and implement a parallel solution to the 
calculation of pi using Monte Carlo methods. A worker process implements the WorkerInterface 
which requires the creation of a method called connect. The connect method has two channel list 
parameters; the first for input channel connections and the second for output channel connections as 
can be observed {83, 85}. The emitter and collector instances can now be passed to a ProcessManager 
instance and started {87–91}. 

The script then waits for these processes to terminate {93–94}, after which the timer can be read to 
provide an indication of the time taken for the host to end processing. The remaining part of the script 
{97–115} concerns the input of times from each of the worker nodes so that analysis of the time taken 
in each phase of the script can be undertaken.

The Node script is shown in Listing 23-3. This script is universal in that it is able to load any worker 
process, regardless of the number of cores that will be used and also of the application communication 
structure. The number of cores is encoded in the worker process that will be loaded. The network channel 
connections are encoded in the WorkerObject’s inConnections and outConnections properties.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

175 

�Programming  High Performance Cluster 

10	def timer = new CSTimer()
11	def startTime = timer.read()
12	def nodeAddr = new TCPIPNodeAddress(1000)
13	Node.getInstance().init(nodeAddr)
14	def workerIP = nodeAddr.getIpAddress()
15	println "Worker is located at $workerIP"
16
17	�def loadChannel = NetChannel.numberedNet2One(1, new 

CodeLoadingChannelFilter.FilterRX())
18	def loadChannelLocation = loadChannel.getLocation()
19	def hostIP = args[0]
20	def hostAddr = new TCPIPNodeAddress(hostIP, 1000)
21	def hostRequest = NetChannel.any2net(hostAddr, 1)
22	�def requestWorker = new RequestWorker ( loadLocation: loadChannelLocation, 
23						             nodeIP: workerIP)
24	hostRequest.write(requestWorker)
25	def requestSentTime = timer.read()
26	 
27	def workerObject = (WorkerObject)loadChannel.read()
28	def workerReadTime = timer.read()
29	 
30	def wProcess = (WorkerInterface) workerObject.workerProcess
31	def inConnections = workerObject.inConnections
32	def outConnections = workerObject.outConnections

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

EXPERIENCE THE POWER OF 
FULL ENGAGEMENT…

     RUN FASTER.
          RUN LONGER..
                RUN EASIER…

READ MORE & PRE-ORDER TODAY 
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd   1 22-08-2014   12:56:57

http://s.bookboon.com/Gaiteye


Using Concurrency and  
Parallelism Effectively – II

176 

�Programming  High Performance Cluster 

33	 
34	def inChannels = new ChannelInputList()
35	inConnections.each{ cn ->
36		 inChannels.append(NetChannel.numberedNet2One(cn))
37	}
38	 
39	hostRequest.write(new Signal())
40	loadChannel.read()
41
42	def outChannels = new ChannelOutputList()
43	outConnections.each{ connection ->
44		  def outNodeAddr = new TCPIPNodeAddress(connection[0], 1000)
45		  outChannels.append(NetChannel.any2net(outNodeAddr, connection[1]))
46	}
47	wProcess.connect(inChannels, outChannels)
48	def wPM = new ProcessManager(wProcess)
49	def workerStartTime = timer.read()
50	wPM.start()
51	wPM.join()
52	def workerEndTime = timer.read()
53	println "worker has terminated"
54	hostRequest.write([ startTime, requestSentTime, workerReadTime, 
55				      workerStartTime, workerEndTime])

Listing 23-3 The Node Script

A timer is started {10} and the startTime read {11}. A node address is obtained at the node’s IP-address 
listening on port 1000 {12} after which a node instance can be created {13}. The IP-address of the node 
is then obtained as workerIP {14} as this will be sent to the host node so that the host can create the 
required application net channel connections to the node. A net2one channel is created at the node 
using channel number 1 {17}. This channel is also a code loading receiving channel. The location of this 
channel is then created as loadChannelLocation {18}. The IP-address of the host node is passed to 
the script as args[0] {19}. The address of the host node can then be created {20} and the any2net 
channel connection can be created as shown in Figure 23-1 as the net channel hostRequest {21}.

An instance of the class RequestWorker is created that has two properties. The property loadLocation 
{22} holds the location of the net input channel the host uses to send the WorkerObject to the node 
created as loadChannelLocation. The second property is the nodeIP {23} holding the IP-address 
of the worker node created as workerIP. The new RequestWorker object is then written to the host 
{24}, thereby registering this node with the host node. This means that the host node does not have to 
know in advance the IP addresses of the worker nodes it is to use. Obviously a worker node may have 
to be allocated to a specific node if that node has access to specific hardware resources required by the 
application. The time the request was sent is recorded {25}.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

177 

�Programming  High Performance Cluster 

The node then reads a WorkerObject from the host {27} and the time it was read is also recorded {26}. 
The properties of the WorkerObject are then extracted as wProcess, which holds the workerProcess 
itself {30}, inConnections, which holds the net input channel connections this node is to provide 
{31} and outConnections, which holds the output net channel addresses this node is to communicate 
with {32}.

Each node has to create its net input channel connections before it can create any of its output connections. 
The channel input list inChannels is used to hold each of the net channel inputs {34}. The variable 
inConnections is a list of channel numbers that are to be used as inputs to this node {31}. The script 
iterates through each of the elements, if any, appending a net2one channel to inChannels using the 
element value as the channel number {35–37}. 

The node now writes a Signal object to the host {39}, using the hostRequest net channel, to indicate 
that all the input channels have been created. The node then reads another Signal object from the 
host node, using the loadChannel {40}. This Signal is only sent by the host when it has received 
Signals from all the nodes indicating they have all created their net input channels (Listing 23-2 
{69–70}). In a similar manner the node can now create its net output channels. It iterates through each 
element of the outConnections list {43–46} appending any2net channels to the output channel list 
outChannels {42}. The use of any2net channels means that the node script can be used for one2one 
and any2one connections.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

How to retain your  
top staff

FIND OUT NOW FOR FREE
Get your free trial

Because happy staff get more done

What your staff really want?

The top issues troubling them?

How to make staff assessments 
work for you & them, painlessly?

DO YOU WANT TO KNOW:

http://s.bookboon.com/performancereviewpro


Using Concurrency and  
Parallelism Effectively – II

178 

�Programming  High Performance Cluster 

The object wProcess implements the interface WorkerInterface, which has a single method 
called connect. The parameters of the connect method are a ChannelInputList and a 
ChannelOutputList. These channel lists have been previously created as inChannels and 
outChannels {47}. An instance of ProcessManager, wPM, can now be created with wProcess 
as its parameter {48}. The timer is again read to determine the time it took to initiate the process 
and its channels {49}. The instance wPM can now be started {50} after which the script waits for it to 
terminate {51}. The timer is read once again to determine the processing time {52}. The script finishes 
by writing all the recorded times to the host node so the time taken for each stage in each node can be 
determined {54–55}.

23.3	 An Application – Montecarlo Pi

The calculation of π using statistical methods is a simple and easily understood way of calculating an 
approximate value of the constant. Given a unit square we can determine for each random value of [x, 
y] s.t. 0 <= x < 1.0, 0 <= y < 1.0 whether the point lies inside the quadrant that has a unit radius using 
Pythagoras’ theorem. The ratio of the points within the quadrant to all the generated points is π/4. Thus 
the algorithm is one of simply generating many random points within the unit square and determining 
how many points lie within the unit quadrant; the more random points the greater the accuracy of 
the approximation.

This is a very simple algorithm to parallelise. Each worker node is allocated an equal share of the total 
number of generated points. Each worker then subdivides its allocation equally among the available 
cores on that node.

The structure of the worker processes at each node is shown in Figure 23-3. The number of McPiCore 
processes can be varied dynamically depending on the script argument.

 

McPiManager 

McPiCore 

McPiCore 

McPiCore 

from Emitter 

to Collector 

Figure 23-3 The Internal Structure of A Worker Node, called McPiWorker

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

179 

�Programming  High Performance Cluster 

23.3.1	 The McPiCore Process

Listing 23-4 shows the McPiCore process, which is replicated for as many cores as it is intended to use 
(see McPiWorker 23.3.3). As shown in Figure 23-3 the process has one input channel and one output 
channel {12, 13}

10	class McPiCore implements CSProcess {
11		
12	  def ChannelInput inChannel
13	  def ChannelOutput outChannel
14		
15		  void run() {
16	  def iterations = inChannel.read()
17	  def rng = new Random()
18	  def int inQuadrant = 0
19	  1.upto(iterations) {
20	  def randomX = rng.nextFloat()
21	  def randomY = rng.nextFloat()
22	  �if ( ((randomX * randomX)+(randomY * randomY)) < 1.0) inQuadrant 

= inQuadrant + 1
23	  }
24	  outChannel.write(inQuadrant)		
25		  }
26	}

Listing 23-4 The McPiCore Process

The number of iterations to be determined is read from inChannel {16}. A Random number 
generator is defined as rng {17}. The variable inQuadrant is initialised and will be used to count the 
number of randomly generated points that are within the quadrant {18}. A loop is then formed that 
iterates over the number of iterations {19–23}. Two random values are generated {20, 21} and used 
to determine whether the point thereby represented is within the unit quadrant; if so inQuadrant 
is incremented. Once all the points have been evaluated the value of inQuadrant is written to the 
outChannel {24} and the process terminates. This process is compute bound as it only undertakes 
two communications.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

180 

�Programming  High Performance Cluster 

23.3.2	 The McPiManager Process

Listing 23-5 shows the McPiManager process, which inputs the number of iterations to be undertaken 
by the worker as a whole and then subdivides the work amongst the cores.

10	class McPiManager implements CSProcess {
11		
12	  def ChannelInput inChannel
13	  def ChannelOutput outChannel
14	  def ChannelOutputList toCores
15	  def ChannelInputList fromCores
16		
17	  void run() {
18	  def cores = fromCores.size()
19	  def iterations = inChannel.read()
20	  for ( c in 0..< cores) toCores[c].write(iterations / cores)
21	  def quadSum = 0
22	  �for ( c in 0..< cores) quadSum = quadSum + fromCores[c].read()
23	  outChannel.write(quadSum)
24	  }
25	}

Listing 23-5 The McPiManager Process

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

https://inspiredbusinessmedia.co.uk/conferences/cmo-inspired-oct-2018/


Using Concurrency and  
Parallelism Effectively – II

181 

�Programming  High Performance Cluster 

The channels inChannel and outChannel will eventually be connected to net channels of the 
McPiEmitter and McPiCollector processes respectively {12, 13}. The channel lists toCores and 
fromCores {14, 15} will be created in the McPiWorker process described in the next section. The 
number of cores can be determined from the size of either of the channel lists {18}. The number of 
iterations to be undertaken is read from inChannel {19}. The number of iterations per core is 
written to each core using the toCores ChannelOutputList {20}. The variable quadSum {21} is used 
to tally the total number of points in each quadrant and is incremented by reading a value from each of 
the cores using the ChannelInputList fromCores {22}. Finally, the process writes the value held in 
quadSum to outChannel and thus to the McPiCollector process and then terminates {23}. This process 
is essentially communication bound as the effective work undertaken comprises communication only. 
Hence once the McPiCore processes have started it will not incur any processing overhead.

23.3.3	 The McPiWorker Process

Listing 23-6 shows the McPiWorker process, which is the process that is loaded into each node as 
shown in Figure 23-2. The role of this process is to create the processes required at each node, to read 
the number of iterations the node is to compute from the McPiEmitter process and then to return the 
number of points lying within the unit quadrant to the McPiCollector process. The process thus only 
undertakes communication and does not therefore incur any processing overhead. This means that the 
available processing resource of the node as indicated by the number of cores can be fully utilised by 
the McPiCore processes without any interruption by the McPiManager and McPiWorker processes until 
they terminate.

The McPiWorker process implements the WorkerInterface interface that has one method, connect. 
This method {16-19} expects two channel lists which are then associated with the properties inChannels 
and outChannels {12, 13}. The connect method is called in the script that runs on each node (see 
Listing 23-3 {43}). The property cores {14} can be modified when an instance of the object is created 
in the script that runs on the host node (see Listing 23-1 {35–39}).

10	class McPiWorker implements WorkerInterface {
11		
12	  def ChannelInputList inChannels
13	  def ChannelOutputList outChannels
14	  def cores = 1
15		
16	  def connect(inChannels, outChannels){
17		  this.inChannels = inChannels
18		  this.outChannels = outChannels
19	  }
20		
21	  void run(){
22	  println "running McPiWorker"

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

182 

�Programming  High Performance Cluster 

23	  def M2C = Channel.one2oneArray(cores)
24	  def C2M = Channel.one2oneArray(cores)
25	  def toCores = new ChannelOutputList(M2C)
26	  def fromCores = new ChannelInputList(C2M)
27	  def coreNetwork = (0 ..< cores).collect { c ->
28	  return new McPiCore( inChannel: M2C[c].in(), 
29						       outChannel: C2M[c].out() ) 
30	  }
31	  def manager = new McPiManager ( inChannel: inChannels[0],
32							        outChannel: outChannels[0],
33							        toCores: toCores,
34							        fromCores: fromCores)
35	  new PAR(coreNetwork + [manager]).run()
36	  }
37	}

Listing 23-6 The McPiWorker Process

The process creates the channel arrays used to connect the McPiManager process to the McPiCore 
process {23, 24}, from which the required channel lists can be created {25, 26} see Figure 23-3. The 
network of McPiCore processes uses the Groovy method collect that iterates over a range and returns 
a list of objects. In this case the objects are instances of the McPiCore process with connections to the 
correct channels of the previously created channel arrays, M2C and C2M {27–30}. An instance of the 
McPiManager process is then created as manager. In this case only one channel is used in each of the 
channel lists {31-34}; in more complex node communication structures then more will be used and it is 
the programmer’s responsiblity to check that the correct channels are connected. In the accompanying 
Chapter Examples there is a network that uses a more complex communication structure amongst the 
worker nodes.

Finally, a parallel is constructed from the coreNetwork and the manager process. This terminates when 
all the processes created internally terminate. Thus, provided each internal process terminates, then the 
whole process network will terminate and thus the node will return to an idle state.

23.3.4	 The McPiEmitter Process

Listing 23-7 shows the McPiEmitter process that runs in the host node, see Figure 23-2. This process 
also implements WorkerInterface and thus has a connect method. The connect method is called 
from the host script (see Listing 23-2 {83}).

The properties workers and iterations are initialised when the process is constructed (see Listing 
23-2 {82}) in the host node script.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

183 

�Programming  High Performance Cluster 

The effect of the process is to write {24} to each of the worker nodes, running an instance of McPiWorker, 
the number of iterations to be undertaken by each worker. The process then terminates.

10	class McPiEmitter implements WorkerInterface {
11
12	  def ChannelInputList inChannels 
13	  def ChannelOutputList outChannels 
14	  def workers = 1
15	  def iterations = 192
16
17	  def connect(inChannels, outChannels){
18	  this.inChannels = inChannels
19	  this.outChannels = outChannels
20	  }
21
22	  void run(){
23	  println "running McPiEmitter"
24	  �for ( w in 0 ..< workers) outChannels[w].write(iterations / workers)
25	  }
26	}

Listing 23-7 The McPiEmitter Process

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Free eBook on  
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free


Using Concurrency and  
Parallelism Effectively – II

184 

�Programming  High Performance Cluster 

23.3.5	 The McPiCollector Process

Listing 23-8 shows the McPiCollector process that runs in the host node. This also implements the 
WorkerInterface. The process is constructed in the host node script (see Listing 23-2 {84–85}). This 
initialises the values of the properties workers, iterations and cores {14–16} and then calls the 
connect method {18–21}.

10	class McPiCollector implements WorkerInterface {
11
12	  def ChannelInputList inChannels
13	  def ChannelOutputList outChannels
14	  def workers = 1
15	  def iterations = 192
16	  def cores = 1
17		
18	  def connect(inChannels, outChannels){
19	  this.inChannels = inChannels
20	  this.outChannels = outChannels
21	  }
22		
23	  void run(){
24	  println "running McPiCollector"
25	  def quadSum = 0
26	  for (w in 0 ..< workers) quadSum = quadSum + inChannels[w].read()
27	  def pi = quadSum / iterations * 4
28	  println "The value of pi is $pi"
29	  �println "Workers: $workers, Iterations: $iterations, Cores : 

$cores"
30	  }
31	}

Listing 23-8 The McPiCollector Process

The process initialises a variable quadSum {25} which is then incremented by reading a value from each 
of the worker nodes {26}. The value of π (pi) is then evaluated and printed {27–29}.

23.3.6	 Analysis

The system was run on a network of workstations connected by a gigabit Ethernet. The Ethernet is part 
of a large network and thus there would be other traffic on the network and not just communications 
relating to this application. The Montecarlo π system does not impose a high communication overhead as 
it is mostly compute bound once it is running, however, initially when the processes are being distributed 
from the host to the worker nodes there is a larger communication, but this only occurs once. The class 
file for a McPiWorker process is about 9KB and those of the McPiCore and McPiManager are 7Kb and 
8KB respectively. Thus the total communication overhead is still very small.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

185 

�Programming  High Performance Cluster 

Each workstation was an Intel Core™ i5-2500 CPU running at 3.30GHz with 4GB RAM. One node was 
designated as the host and up to four other nodes were used. Each processor had 4 cores. The system was 
executed with 1 to 4 worker nodes utilising 1 to 4 cores. Thus 16 timings were collected and the process 
was repeated 5 times and the average values were obtained over all the runs for the subsequent analysis.

Typical output from the operation of the system is shown below, all times are in milliseconds. The output 
is from an execution of the system using 4 workers each using 4 cores. The number of iterations was 192 
million. Each core therefore calculated one-sixteenth or 12 million iterations.

The value of pi is 3.1417472500
Workers: 4, Iterations: 192000000, Cores : 4
Host terminated
Node	 start	 load	 init	 elapsed
Host	 9235	 187	 671	 4306
Wk: 0	 358	 6053	 406	 4446
Wk: 1	 359	 4430	 390	 4509
Wk: 2	 327	 1593	 358	 4579
Wk: 3	 432	 190	 335	 4613

The times are obtained from the scripts that run on the host and other nodes. No timing information 
is obtained from the application processes. The start and load times are influenced by the time it takes 
to get round each of the workstations to hit the enter key to start the batch file that runs the host and 
worker node scripts. The init time is the time it takes to set up each of the worker nodes once they have 
received the worker process. The elapsed time is that taken to undertake the computation and return the 
results. In the following analysis the minimum values for start and load was taken to remove operator 
influence. The average value for init and elapsed was taken.

Figure 23-4 shows a graph of the Elapsed times for each of the combinations of workers and cores.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

186 

�Programming  High Performance Cluster 

 

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

1 2 3 4

M
ill

is
ec

on
ds

 

Cores 

Elapsed Time 

1-worker

2-workers

3-workers

4-workers

Figure 23-4 Graph Showing the Performance of the Montecarlo Pi System

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

http://www.deloitte.ca/careers


Using Concurrency and  
Parallelism Effectively – II

187 

�Programming  High Performance Cluster 

The shape of the curves is similar and the initial speedup when the number of workers is increased 
but the number of cores is kept at one is reasonable. It is interesting to note that, for example, using 
two workers with one core is faster than using one worker with two cores. This behaviour is consistent 
over all combinations. The obvious area of interest is the non-linearity of the curves with respect to the 
increase in worker and cores. This is shown in the following table.

workers cores
Total 
Cores Speedup

Ideal / 
Actual

Startup / 
Run

1 1 1 1.00 100% 1%

1 2 2 1.85 93% 2%

1 3 3 2.58 86% 2%

1 4 4 2.65 66% 5%

2 1 2 1.95 97% 3%

2 2 4 3.54 89% 3%

2 3 6 5.05 84% 6%

2 4 8 5.34 67% 5%

3 1 3 2.89 96% 4%

3 2 6 5.12 85% 5%

3 3 9 7.10 79% 7%

3 4 12 7.17 60% 10%

4 1 4 3.80 95% 5%

4 2 8 6.54 82% 7%

4 3 12 8.32 69% 9%

4 4 16 9.43 59% 11%

The Speedup column is based on the elapsed time only. Thus it is immediately obvious that it is better 
to increase the number of workers before increasing the use of cores. The column Ideal / Actual shows 
the relationship between the speedup versus the ideal speedup if the relationship had been linear. Thus 
using 4 workers each with 4 cores only achieves 59% of the ideal 16 it would be hoped for. The Startup 
/ Run column shows the relationship between the sum of the start and load times against the init and 
elapsed times. This column indicates the percentage of time spent loading the system as opposed to 
running the system once the processes have been distributed around the network. As expected, as the 
number of workers and cores increase the amount of time spent in the Startup phase increases. Even in 
the case of 4 workers this is only 11% of the total time. The possibility of course with using 4 workers is 
to increase the number of iterations to obtain a more accurate result. This is typical of many parallelising 
activities that as the available resource increases, the opportunity to improve the size of the data set or 
accuracy is increased, nullifying the improvement in absolute performance.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

188 

�Programming  High Performance Cluster 

23.3.7	 Running the System

Rather than installing Eclipse at each node, a far more satisfactory mechanism would be to create a 
runnable jar file. A method for achieveing this is described elsewhere (Anon., 2009). A method specific 
for this system is contained within the Eclipse package for Chapter Examples. A package called c23.
launcher contains a simple Java class that contains a main method as shown in Listing 23-9. The main 
method is passed command line arguments as the array args {11}. The first argument contains the 
name of the Groovy script that is to be executed by the call to GroovyShell.main() {13}. The first 
argument is removed from the array of args and the remainder are passed to the Groovy script.

10	public class GroovyLauncher {
11	  public static void main(String[] args) {
12	  System.out.println("running script: " + args[0]);
13	  GroovyShell.main(args);
14	  }
15	}

Listing 23-9 The GroovyLauncher main class

The GroovyLauncher class is executed as a Java Application, within Eclipse to create a Launch 
Configuration. The application will fail with errors but that does not matter. Within Eclipse a runnable 
JAR file is exported for the project ChapterExamples. The jar file should be saved in the same folder 
as that containing the folder ChapterExamples, which contains the Groovy source of all the examples. 
Two batch files should now be created similar to those given in the package c23.MontecarloPi.

The content of the batch file to run the host node is:

java -jar ChapterExamples.jar .\ChapterExamples\src\c23\MontecarloPi\RunArgMcPiHost.groovy %1 
%2 %3

where %1 is the number of workers, %2 is the number of cores and %3 is the number of iterations.

The content of the batch file to run a worker node is:

java -jar ChapterExamples.jar .\ChapterExamples\src\c23\MontecarloPi\

RunArgMcPiNode.groovy %1

where %1 is the IP-address of the host node.

The simplest way to use the system is to create a folder containing the ChaperExamples source folder, 
the ChapterExamples.jar file and the two batch files.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

189 

�Programming  High Performance Cluster 

Running the appropriate batch file on the workstation will result in the required script being executed. 
The host node MUST be executed first and it prints out the IP-address of the host node that can then 
be passed as an argument to the nodes.

23.4	 Summary

This chapter has explored ways in which applications can be loaded onto networks of workstations that 
use mutli-core processors. The infrastructure is capable of loading any application regardless of the 
communication links required. It has also been shown how easy it is to exploit multi-core processors, 
simply by creating a parallel structure on each of the nodes. The underlying Java Virtual Machine (JVM) 
and operating system support makes it very easy to exploit such multi-core processors. The ability to 
create the required parallel structure to exploit this ability is much more challenging and this chapter has 
shown that communicating process architectures make it especially easy. The fact that this parallel activity 
is achieved in a manner that is parameterised simply by the number of cores available demonstrates how 
easy it is to exploit parallelism, provided the correct environment and tools are used.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

TMP PRODUCTION NY026057B

PSTANKIE

gl/rv/rv/baf

ACCCTR0005

Bookboon Ad Creative

4

6 x 4

12/13/2013

Bring your talent and passion to a
global organization at the forefront of
business, technology and innovation.
Discover how great you can be. 

Visit accenture.com/bookboon

©
2013 Accenture. 

All rights reserved.

http://s.bookboon.com/accentureCZintl


Using Concurrency and  
Parallelism Effectively – II

190 

Big Data – Solution Scaling


24	 Big Data – Solution Scaling
Using concordance as the basis we explore Big Data problems by:

•	 defining the concordance problem
•	 discussing how it can be subdivided into parallel tasks
•	 instrumenting the algorithms to determine which parts my be amenable to parallelisation
•	 showing how the algorithm can implemented, sequentially, in a single core and also on a 

multi-core processor
•	 describing one way in which the algorithm could be distributed over a network of 

workstations, using the results of the instrumentation
•	 analysing the resulting implementations in terms of their processing times

A key capability of parallel systems is that they can be scaled to deal with data sets of different sizes. 
Typically, as the size of a data set increases more processing resource can be utilised to ensure processing 
time remains within reasonable bounds. The design of the process network has to be scalable in terms of 
at least one of the data set parameters. The key design constraint is to choose such parameters with care. 
The other key aspect of such systems is that it is always possible to read a data structure in parallel but 
writing to a data structure in parallel is not usually feasible unless the programmer takes care to partition 
the data structure so this becomes possible. A general solution to this problem using concurrent reads 
and exclusive writes was discussed in Chapter 13. A more specialised solution, using shared buffers, was 
described in Chapter 22.4.3.

24.1	 Concordance – A Typical Problem

A concordance is a means of determining the places where the same string of words is repeated in a text. 
Usually the concordance is constructed for sequences of words for length 1 up to some defined value 
N. A concordance is constructed for large texts in which such repetitions are indicative of consistency 
or as a means of determining the likelihood of common authorship of a number of different texts. In 
this discussion we are not concerned with such matters but simply in the problem of constructing 
the concordance.

The production of the concordance is mainly limited by file reading and writing. It is difficult to parallelise 
the reading of the file containing the text unless it is provided in separate files. We shall assume the 
initial text is supplied as a single file. Writing the files that make up the concordance can be parallelised 
if the concordance corresponding to each value of N is written to a separate file. For example, the text 
of the Bible is 4.6 Mbytes but generates 26 Mbytes of output for N = 6. The files generated by each of 
the values of N vary from 13 Mbytes (N=1) to 2 Mbytes (N=6). There are many more repetitions of 
single words than there are repetitions of sequences of six words. It seems reasonable to parallelise the 
solution in terms of the value of N.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

191 

Big Data – Solution Scaling


The next aspect of this particular problem is that of processing character strings. String processing is 
typically much less efficient than processing numbers and in particular integer values. The approach 
adopted is to extract each word from the text removing extraneous punctuation and convert the word 
to an integer value based on the sum of the character values for each character in the word. Each word 
is thus represented by an integer value which will be the same for every instance of the word. Obviously 
different words may generate the same integer value. The processing of word sequences of length greater 
than 1 can be achieved by adding up the sums of the word values for each word in the sequence. Thus 
word sequences can only possibly be equal if they generate the same value, which will speed up processing 
of multi-word sequences. Yet again some sequences will generate the same value even though the words 
making up the sequence are not the same. 

24.2	 Concordance Data Structures

Initially, the file is read, line-by-line, and the words extracted and extraneous punctuation removed and 
stored in a list, called word-List. At the same time the integer value of the word is stored in another list. 
This list will also contain the values for word sequences of length 1.

Each value of N will have its own data structure, stored in a list of such data structures. The next stage 
is to determine the sequence values of length 2 to N, simply by summing the values from the initial 
length 1 sequence in sets of the desired length. These values are saved in a list, one for each value of N, 
called a sequence-List.

The next stage is to process each of these lists to find the index or location in the text of each sequence 
value that has the same value. These are held in a map with the key entry given by the sequence value 
and the entry value comprising a list of the index values where that sequence value is found in the 
sequence-List. This is referred to as an equal-Key-Map.

The final stage is to process each of the N equal-Key-Maps to extract the concordance and write it to a 
file. The problem is that the sequence values held in the map may refer to different word sequences. Thus 
for each sequence value we can extract the index values and for each determine from the initial word 
list the words that make up the sequence. We can thus build up a map comprising the word sequence 
as key and a list containing the index values where that specific word sequence is found. Once the map 
has been constructed it can be written to a file corresponding to that part of the concordance related to 
word sequences of length N.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

192 

Big Data – Solution Scaling


The data structures have been designed so that only the ones that are empty are written to in parallel, 
with each element indexed by the value of N. Such structures are subsequently read in parallel but that 
does not cause a problem. Thus initially, the word-List and the sequence-List for N=1 are the only ones 
that are written. In the next stage, only the sequence-List for N= 1 is read and the sequence-List for the 
remaining values up to N are written in parallel. In the next stage each of the sequence-Lists can be read 
in parallel as each of the equal-Key-Maps is written in parallel. Finally, each of the equal-Key-Maps can 
be read in parallel as the concordance is extracted and written to different files in parallel.

24.3	 The Algorithm

The coding of the parallel version of the system is shown in Listing 24-1. A timer is defined {10}, 
which will be used to time the various phases of the processing. The file path for input text files and 
the location of output files are defined {11–13}. N, the sequence length is defined {14} as 6. The variable 
minSeqLen {15} specifies the minimum number of occurrences in a sequence for it to be printed; the 
value 2 means that a sequence will be printed provided there are two or more occurrences of a sequence 
in the file. The timesFile is a file to which times for each phase of the algorithm are written {17–22}.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

 

 
                . 

http://s.bookboon.com/AlcatelLucent


Using Concurrency and  
Parallelism Effectively – II

193 

Big Data – Solution Scaling


In this example, six source texts are used, which will be processed one after the other {24} and fileName 
{25} gives the full path name of the required text file. The texts are ACM – A Changed Man by Thomas 
Hardy, TMM – The Manchester Marriage by Elizabeth Gaskell, WAD – Wives and Daughters by Elizabeth 
Gaskell, bible – the complete bible, 2bibles – two copies of the bible and 4bibles – four copies of the 
bible (Project Gutenberg, 2014). Lines {26-36} create a collection of print writers, parPrintWriter 
{28} that can be accessed in parallel during the last phase of the algorithm. This coding makes extensive 
use of the Groovy IO file methods.

The algorithm is run 8 times so that processing times can be averaged over a number of runs {37}. 
The first phase of the process is to create the wordBuffer {40}, which holds the words from the input 
file. The variable NSequenceLists {41} holds each of the sequence lists for each of the values of N. A 
fileReader is created for the input file {43, 44}. The reader will have to copy the source files from the 
ChapterExamples folders into an appropriate location on their computer system as indicated by and 
modified as necessary in lines {11-13}.

10	def timer = new CSTimer()
11	def drive = "D"
12	def inRoot = drive + ":\\Concordance\\SourceFiles\\"
13	def outRoot = drive + ":\\Concordance\\OutputFiles\\"
14	def N = 6
15	def minSeqLen = 2
16
17	def timesFileName = outRoot + "Times" + N + minSeqLen + "_Par.txt"
18	def timesFile = new File(timesFileName)
19	if (timesFile.exists()) timesFile.delete()
20	def timesWriter = timesFile.newPrintWriter()
21	timesWriter.print "Par\tSource\tN\tminSeqLen\t"
22	�timesWriter.println "Read\tGenerate\tEqualKeys\tConcordance\tTotal\tWords"
23
24	for (source in ["ACM", "TMM", "WAD", "bible"", "2bibles"", "4bibles"]){
25	  def fileName = inRoot + source + ".txt"
26	  def parOutFileName = []
27	  def parOutFile = []
28	  def parPrintWriter = []
29	  for ( n in 1..N){
30	  �def parFileName = outRoot + source + N + minSeqLen + "_N_" + n + 

"_Par.txt"
31	  parOutFileName << parFileName
32	  def parFile = new File(parFileName)
33	  parOutFile << parFile
34	  if (parFile.exists()) parFile.delete()
35	  parPrintWriter << parFile.newPrintWriter()
36	  }	
37	  for (run in 1..8){

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

194 

Big Data – Solution Scaling


38	  �println "Processing: $fileName, N: $N, minSequenceLength: $minSeqLen"
39	  def startTime = timer.read()
40	  def wordBuffer = new ArrayList(10000)
41	  def NSequenceLists = []
42	  for ( n in 1..N) NSequenceLists[n] = new ArrayList(10000)
43	  def fileHandle = new File (fileName)
44	  def fileReader = new FileReader(fileHandle)
45	  def wordCount = 0	
46	  fileReader.eachLine { line ->
47	  def words = defs.processLine(line)
48	  for ( w in words) {
49	  wordBuffer << defs.removePunctuation(w)
50	  NSequenceLists[1] << defs.charSum (wordBuffer[wordCount])
51	  wordCount = wordCount + 1
52	  }
53	  }
54	  def endRead = timer.read()
55	  def procList1 = (2..N).collect {n -> 
56	  return new parSequencer( n:n, inList: NSequenceLists[1], 
57						       outList: NSequenceLists[n])}			
58	  new PAR(procList1).run()
59	  def endGenSeq = timer.read()
60	  def equalKeyMapList = []
61	  for ( n in 1..N) equalKeyMapList[n] = [:]		
62	  def procList2 = (1..N).collect { n -> 
63	  �return new parFindEqualKeys ( words: (wordCount – 1), 

startIndex: 0, 
64							        inList: NSequenceLists[n], 
65							        outMap: equalKeyMapList[n])}
66	  new PAR(procList2).run()
67	  def endFindEqualKeys = timer.read()
68	  def procList3 = (1..N).collect { n -> 
69	  �return new parExtractConcordance ( equalMap: equalKeyMapList[n], n: n, 
70							        startIndex: 0, words: wordBuffer, 
71							        minSeqLen: minSeqLen,
72							        printWriter: parPrintWriter[n-1])}	
73	  new PAR(procList3).run()	
74	  def endConcordance = timer.read()
75	  def readTime = endRead – startTime
76	  def genTime = endGenSeq – endRead
77	  def equalKeysTime = endFindEqualKeys – endGenSeq
78	  def concordanceTime = endConcordance – endFindEqualKeys
79	  def totalTime = endConcordance – startTime		
80	  timesWriter.print "$run\t$source\t$N\t$minSeqLen\t\t"
81	  timesWriter.println "$readTime\t$genTime\t\t$equalKeysTime" + 
82					       "\t\t$concordanceTime\t\t$totalTime\t$wordCount"
83	  print "Par\tSource\tN\tminSeqLen\t"

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

195 

Big Data – Solution Scaling


84	  println "Read\tGenerate\tEqualKeys\tConcordance\tTotal\tWords"
85	  print "$run\t$source\t$N\t$minSeqLen\t\t"
86	  println"$readTime\t$genTime\t\t$equalKeysTime" + 
87		   "\t\t$concordanceTime\t\t$totalTime\t$wordCount"
88	  }
89	  println ""
90	  timesWriter.println "\n\n\n"
91	  timesWriter.flush()
92	}
93	timesWriter.close()

Listing 24-1 Parallel Version of the Concordance Algorithm for a Multi-core Processor

The class defs defines a number of static methods that are used during the algorithm. The file is read 
in a line at a time and the words extracted using the processLine method {47}. 

Punctuation is removed from the word {49}, which is then appended to the wordBuffer. The method 
charSum {50} is used to calculate the integer value corresponding to the word and this value is appended 
to the List NSequenceLists[1].

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

��������	
�����
������
��������
���������
�����������
��������
�����
��
���������������������������

������
������

������������������������������ �����	�����
	�
�����	������!���"�
	������������

�
	�

�����#$%����&'())%�*+������
	�
���,���������
�-

.�
��������������������
������������
��

��������	
��
����


��	��������	
��
����


���������
���


����������


����������
�����
��


���������

 The Wake
the only emission we want to leave behind

http://www.mandieselturbo.com


Using Concurrency and  
Parallelism Effectively – II

196 

Big Data – Solution Scaling


The next phase of the algorithm is to create a set of parallels {55-58} that determines the sequence values 
for each of the values 2 to N. The process parSequencer accesses the inList parameter for reading. 
The outList parameter is written to and will contain the sequence list for the value of the parameter n.

The next phase of the algorithm populates equalKeyMapList {60} by means of a parallel of 
parFindEqualKeys processes {63–65}. The parameter words indicates the number of words in the 
input file. The parameter startIndex indicates the subscript of the first word in the word buffer, 
which in this case is 0. The parameter inList is a read parameter and refers to the nth sequence list 
created in the previous phase. The process creates the nth equal-Key-Map as described previously as 
the parameter outMap.

The final phase of the algorithm is to write the concordance to the output files. This is achieved by means of 
a collection of parallel instances of parExtractConcordance processes {68–72}. The process reads the 
nth equalMapListMap parameter which is used as the basis of the concordance. The words parameter 
is the wordBuffer created during the first phase of the algorithm. The printWriter parameter is 
passed the nth parPrinterWriter which is used to print the concordance to file.

Finally, the times for each of the phases are calculated {74–87} and printed to the timesWriter file after 
each run. Once all the runs for a particular input file are completed then the next input file is processed.

A sequential version of the algorithm is easily achieved by replacing each of the parallel constructs by 
a for loop that iterates over the values of n. For example, the process parSequencer shown in Listing 
24-2 simply invokes the method sequencer, defined in defs, within a process’ run method.

10	class parSequencer implements CSProcess {
11		  def n
12		  def inList
13		  def outList
14		
15		  void run(){	
16		  defs.sequencer(n, inList, outList)
17		  }
18	}

Listing 24-2 The parSequencer Process

The sequential version simply invokes the method sequencer directly in a for loop that iterates over the 
data structures one after the other. The same mechanism is used for each of the phases of the algorithm. 
In the sequential version only one core is used in effect, even though the processing is moved between 
cores to improve heat dissipation.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

197 

Big Data – Solution Scaling


24.4	 Analysis of Total Time Results

The data for the six input files is presented in Table 24-1. The Source File size in Kbytes gives the size of 
the input file. The output file size is the size of the single output file produced by the sequential algorithm. 
The sum of the output files produced by the parallelised version is very similar. These two values are 
then added together to show the total input / output generated by the specific text. The words row gives 
the number of words found in each source file. There are two times, in seconds, presented which are 
derived from the averaging of the algorithm’s execution over 8 runs. The Seq Time is the time taken 
to execute the sequential version of the algorithm. The Par Time is the time taken to run the parallel 
version on a quad core processor. It can be noted that even though the parallel multi-core algorithm 
used four cores the best Speed-up was only 2.51, where the ideal would be close to 4. Speed-up is given 
by the Sequential time divided by the Parallel time. Efficiency is given by the Speed-up divided by the 
number of available processors, which in this case is 4. The closer the Efficiency is to 1.0 the better. For 
this example we see that the Efficiency reaches a peak of 0.63 for the bible text. We can surmise that 
the drop in performance on either side of the peak is due to the amount of input and output associated 
with this application.

In all executions of the algorithm the value of N was 6 and only sequences that had two or more 
occurrences were output, except for 2bibles and 4bibles where the number of repetitions had to be at 
least 3 and 5 respectively.

Values ACM TMM WAD bible 2bibles 4bibles

Input File KB 37 62 1,458 4,681 9,362 18,723

Output File KB 65 134 5,487 26,107 45,464 85,364

Total I/O KB 102 196 6,945 30,788 54,826 104,087

Words 6,418 11,354 268,429 802,317 1,604,634 3,209,268

Seq Time secs 0.14 0.12 3.15 9.94 20.42 46.46

Par Time secs 0.10 0.05 1.31 3.96 12.41 26.70

Speed-up 1.42 2.43 2.41 2.51 1.65 1.74

Efficiency 0.36 0.61 0.60 0.63 0.41 0.43

Table 24-1Base data

In order to evaluate the above data we can calculate the ratio of each value relative to the ACM data. 
This leads to the representation shown in Figure 24-1.

With small texts no effect can be observed but as we move to larger texts we see that the sequential 
time closely follows the increase in the number of words, even though the amount of file input/output is 
increasing faster. More importantly the increase in the parallel version shows a slower rate of increase than 
the sequential version and thus there is some benefit resulting from the parallelisation of the algorithm.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

198 

Big Data – Solution Scaling


 

ACM TMM WAD bible 2bibles 4bibles
Total I/O  KB 1 2 68 302 538 1020
Words 1 2 42 125 250 500
Seq Time ms 1 1 23 72 148 336
Par Time ms 1 1 13 41 127 274

0

200

400

600

800

1000

1200

Ra
tio

 
Performance Relative to ACM 

Figure 24-1 Performance Relative to ACM

24.5	 Analysis of Algorithm Phases

The coding shown in Listing 24-1 determined the time taken for each of the phases of the algorithm. 
These times are summarised in Table 24-2, as before the times are averaged over 8 runs. The algorithms 
were run on a quad core machine so that the maximum attainable speedup is 4.0.

In general, we observe that the Read phase shows no speedup of the parallel solution over the sequential 
solution. This is not surprising as this phase is limited by the ability to read the source file. The amount 
of speedup for the Generate phase varies, with a maximum speed-up of 4.81. Of more interest is that 
for the short text (ACM) both the Read and Generate phases run slower in the parallel version than the 
sequential version. This may be accounted for by the time taken to set up the parallel.

The Equal Keys phase is the longest phase in terms of processing time and is the one which should 
result in the greatest parallel speed-up. This can in fact be observed with speedup of nearly 4.0 in two 
cases. The variation can be accounted for by the proportion of sequences of various lengths that occur 
in the different texts.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

199 

Big Data – Solution Scaling


The final Concordance phase is the one that creates the output files. This phase is thus governed more 
by the ability of the underlying file system to manage multiple file handles rather than raw processing 
ability. Perhaps the most important conclusion to take from this exercise is that instrumenting the 
algorithm is crucial so as to be able to observe which parts are the slowest and which ones may benefit 
from parallelisation efforts. Thus there is little point in expending effort on further parallelisation of the 
Read phase but efforts to improve the Concordance phase may be beneficial, especially for larger texts. 
This will be explored in a more detail in the next section where the scaling of the solution is discussed. 
In particular, further improvement may be achieved if the file output for each value of N takes place on 
a different processor.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/gee_change


Using Concurrency and  
Parallelism Effectively – II

200 

Big Data – Solution Scaling


Text Words Style  Read Generate Equal Keys Concordance

ACM Seq 31 10 23 74

Par 35 10 6 47

6418 Speed Up 0.89 1.00 3.98 1.58

TMM Seq 8 10 27 74

Par 12 2 12 23

11354 Speed Up 0.66 4.81 2.33 3.17

WAD Seq 171 322 534 2127

Par 176 121 134 878

268429 Speed Up 0.97 2.66 3.98 2.42

Bible Seq 484 854 1601 7004

Par 477 482 416 2586

802317 Speed Up 1.02 1.77 3.85 2.71

2Bibles Seq 1284 1808 3379 13946

Par 1276 1031 1039 9059

1604634 Speed Up 1.01 1.75 3.25 1.54

4Bibles Seq 2296 5050 7667 31449

Par 2228 3907 4495 16075

3209268 Speed Up 1.03 1.29 1.71 1.96

Table 24-2 Times (milliseconds) for Each Phase of the Algorithm

24.6	 Dealing with Larger Data Sets

Say we had a much larger text to process that could not fit into the memory of the system being used. The 
solution then might be to distribute the algorithm over a number of network connected workstations. A 
possible architecture is shown in Figure 24-2, where the value of N is 5. It is assumed that all processes 
are executed on their own workstation. All the connections are assumed to be network channels; not 
all of the connections are shown.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

201 

Big Data – Solution Scaling


The Reader process will process the input file, a line at a time, extracting words. It will place these words 
into a fixed length array, word-buffer. The content will be adjusted so that the last N-1 words of one 
word-buffer are the same as the first in the next word-buffer. This means that we can deal with the start 
and end of each word-buffer without swapping words between processing Nodes. The Reader process 
will send each word-buffer in turn to a different processing Node. The processing Node will then remove 
punctuation and also calculate the integer sum of each word in the word-buffer. The processing Node 
will also need to be informed of the start index of the word-buffer relative to the start of the input file. 
The size of the word-buffer should be optimised so that a processing Node is ready to receive the next 
word-buffer, having just completed the above processing. This will be a function of the speed of the 
processors and of the network and will have to be found by experiment.

Reader 

Node 

Node 

Node 

Node 
Merger - 1 

Merger - 2 

Merger - 3 

Merger - 4 

Merger - 5 

Figure 24-2 Architecture of a Scalable Networked Solution to the Concordance Problem

Once the Reader process has read the complete input file and distributed it to the processing Nodes 
it can inform the Nodes, which can now start to process each word buffer in a manner similar to that 
described in section 24.3. In this case, however, instead of outputting the concordance directly to a file, 
the processing Node will need to save a partial concordance for each word-buffer in its local memory for 
each value of 1 to N. Once this phase is completed the next sort-merge phase can begin. Each processing 
Node will comprise a Concordance Producer Process (Worker) together with a number of Output or 
Sorter processes; one for each value from 1 to N as shown in Figure 24-3, where N = 5 is assumed.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

202 

Big Data – Solution Scaling


Worker 

Partial 

Concordance 

Producer 

Process 

Partial 

Concordance 

Data 

Structures 

( N per word- 

buffer) 

Sorter – 

Output N = 1  

Sorter – 

Sorter – 

Output N = 3  

Sorter – 

Output N = 4  

Sorter – 

Output N = 5  

Output N = 2

Figure 24-3 The Internal Architecture of a Processing Node

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Corporate eLibrary
See our Business Solutions for employee learning

Click here

Management

CoachingMotivationGoal setting

Problem solving

Time Management

Project Management

http://s.bookboon.com/bbg-elibrary-2015


Using Concurrency and  
Parallelism Effectively – II

203 

Big Data – Solution Scaling


The Worker – Partial Concordance Producer Process writes the partial concordances into the shared 
data area shown. The partial concordance for each value of N is held in a map data structure where 
the key is the sequence value, as previously described and the entry is the concordance entries for that 
sequence value. Each word-buffer has its own partial concordance for each value of N. The last part 
of the Worker – Partial Concordance Producer Process is to determine the ascending sorted order of 
sequence value for each partial concordance. Once it has completed, it sends a signal to each of the 
Sorter – Output processes indicating they can now start to read the Partial Concordance Data Structures. 

Each Sorter – Output process accesses the partial concordances in sequence value order. It is thus able 
to create a complete concordance for all the word-buffers held by the Processing node. This can be 
undertaken in parallel for each value from 1 to N. The Sorter – Output process then sends a complete 
Concordance entry for its word-buffers to the Merger process shown in Figure 24-2. Each concordance 
entry will be preceded by its sequence value, which will be created in sorted order.

The Merger process can now merge the concordances from each Processing node. The Merger reads 
concordance entries from each processing Node using the sequence value to ensure that the concordance 
entries from the different processing Nodes are merged correctly. The Merger process can write the file 
associated with that value of N as it processes each partial concordance. The processing Node sends a 
special sentinel value to indicate that all the partial concordances for that node have been communicated. 
Once a Merger process receives all the sentinel values it can complete the writing of the output file 
and terminate. This architecture results in each of the N concordance files being written to a different 
workstation. However, if there is a network accessible storage facility these files can be written to that 
device, and each file will still be written in parallel provided the network storage capability has the ability 
to process multiple files at the same time.

An analysis of the architecture indicates that the reading of the input file is undertaken by one node. This 
could be seen as a bottle-neck, but because we output the word-buffers to other nodes for subsequent 
processing, this means that most of the file input is undertaken in parallel with some of the subsequent 
processing. Once the word-buffers have been created at each processing Node the available cores can be 
set to the task of creating the Partial Concordance Data Structures. Further, this activity is undertaken at 
each such node in parallel. The Merge phase also involves many parallel nodes; namely all the processing 
Nodes and Merger nodes. In addition the available cores on the Processing node can be utilised by the 
Sorter – Output processes.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

204 

Big Data – Solution Scaling


24.7	 Implementation of the Scalable Architecture

The architecture uses two capabilities previously described in Chapter 23. First, the use of a Java main() 
called Launcher to enable the required code to be executed at each node in the distributed system. 
Secondly, the use of the process loading architecture to distribute processes from a single host to all 
the nodes used in the distributed system. This makes use of the system much simpler. These aspects 
are not discussed further but the required code is available in the folders ChapterExamples/c24.*, 
including the batch files required to invoke the host and node processes. In this section we shall discuss 
the processes that are run on each of the nodes in the distributed system. It will not discuss the way 
in which the processes are communicated from the host to the other nodes, nor the specific detail of 
creating the net channel connections between the nodes.

24.7.1	 The Reader Process

The Reader process, Listing 24-3, has a number of properties {12–19}, the majority of which deal 
with the operating environment. The only property associated with the parallel operation is the 
ChannelOutputList outChannels {12}, which contains the channels used to connect the Reader 
process to the Node processes. The property inRoot {13} provides the path to the source files. The value 
of N {14} is specified. The property blockLength {15} indicates the number of words in each block. 
This value can be varied depending on the number of processing Nodes and the speed of the distributed 
system’s interconnect and has to be found by experiment. The value of runs {16} is the number of the 
times the algorithm will be run, over which an average time can be found. The property sourceList 
{17} is a list of files that are to be processed. The property timeRoot {18} gives the path to the folder 
into which the timing output files will be written. Each execution of the system will be identified by a 
different runId {19} so that the various versions of the system can be easily identified. This property 
is used when forming file names.

The first part {22–25} of the process deals with the creation of timeWriter, a PrintWriter to which 
the various times associated with the processing phases can be written. A timer is then created {26}. The 
number of nodes in the system is determined from the size of outChannels {27}. Finally the effective 
length of each block is determined as blockStride {28}. This is less than the length of a block because 
the N-1 words at the end of one block are repeated at the start of the next block.

The process iterates through each source in the sourceList {29}. The fileName containing the source 
is created {30} and some timing information is written both to the console and the timeWriter. The 
process then repeats the processing for each run {35}. 

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

205 

Big Data – Solution Scaling


At the start of each run a number of variables are defined together with a FileReader for the source 
file {39}. The array wordBuffer {37} is used to hold the words that are extracted from the source file. 
The variable globalIndex {40} is used to hold the start index of each wordBuffer within the whole 
file, while localIndex {41} maintains the subscript of each word within wordBuffer and is reset to 
zero once a wordBuffer has been written to a Node. The variable currentNode {42} keeps track of 
the next Node to which a wordBuffer should be written.

Each line of the file is read {45} and processed to extract the words {46} in the line. The words are 
then appended, in turn, to the wordBuffer until it contains blockLength entries {50}. At this point a 
WordBlock is created from the wordBuffer and globalIndex {51–52}. After which, globalIndex is 
incremented {53} and the wordBlock is written to the currentNode {54}. If this is the first block to be 
written we note the time this takes place {55–58}. The value of currentNode is then incremented {59}.

The next phase of processing deals with the initial filling of the next wordBuffer with the last few 
words of the previous one {60–69}. An overlapBuffer is created {60} into which the last few words 
of wordBuffer are copied {61–63}. The wordBuffer is then emptied {64} and the overlapBuffer 
copied into it {66–69} modifying the value of localIndex accordingly {65, 68}.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://thecvagency.co.uk


Using Concurrency and  
Parallelism Effectively – II

206 

Big Data – Solution Scaling


Once the end of the source file is reached there may be some words remaining in the wordBuffer and 
so the next phase is to send the remaining words to the next node {74–77}. Finally, a Sentinel is sent 
to each of the Nodes {78} informing them that the complete file has been processed and they can then 
start the next phase of processing.

Finally, salient times are written to the console and to the file of times. The difference between the 
startTime and the beginTime is that the former records when the run starts and the latter when the 
first block of the run has been written. The difference between these times will be the time it takes for 
the rest of the processing in the Nodes and Mergers to take place from the previous run.

10	class Reader implements CSProcess {
11	  
12	  def ChannelOutputList outChannels
13	  def inRoot 
14	  def N = 6
15	  def blockLength = 5000
16	  def runs = 8
17	  def sourceList
18	  def timeRoot
19	  def runId
20
21	  void run(){
22	  def timeFileName = timeRoot + runId + "_R_" + "_times.txt"
23	  def timeHandle = new File(timeFileName)
24	  if (timeHandle.exists()) timeHandle.delete()
25	  def timeWriter = timeHandle.newPrintWriter()
26	  def timer = new CSTimer()
27	  def int nodes = outChannels.size()
28	  def int blockStride = blockLength – N + 1
29	  for (source in sourceList){
30	  def fileName = inRoot + source + ".txt"
31	  println "READER – Processing: $fileName, N: $N," + 
32		   "block length: $blockLength, nodes: $nodes, runs: $runs"
33	  timeWriter.println "READER – Processing: $fileName, N: $N, " +
34		   "block length: $blockLength, nodes: $nodes, runs: $runs"
35	  for (run in 1..runs){
36	  def startTime = timer.read()
37	  def wordBuffer = new ArrayList(blockLength)
38	  def fileHandle = new File (fileName)
39	  def fileReader = new FileReader(fileHandle)
40	  def globalIndex = 0
41	  def localIndex = 0
42	  def int currentNode = 0
43	  def firstWrite = true
44	  def beginTime

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

207 

Big Data – Solution Scaling


45	  fileReader.eachLine { line ->
46	  def words = defs.processLine(line)
47	  for ( w in words) {
48		   wordBuffer << w
49		   localIndex = localIndex + 1
50		   if (localIndex == blockLength) {
51			    �def wordBlock = new WordBlock( startSubscript: globalIndex,
52									          words: wordBuffer)
53			    globalIndex = globalIndex + blockStride
54			    outChannels[currentNode].write(wordBlock)
55			    if (firstWrite) {
56				     beginTime = timer.read()
57				     firstWrite = false
58			    }
59			    currentNode = (currentNode + 1) % nodes
60			    def overlapBuffer = []
61			    for (overlap in blockStride..(blockLength – 1)) {
62				     overlapBuffer << wordBuffer[overlap]
63			    }
64			    wordBuffer = []
65			    localIndex = 0
66			    for (ow in overlapBuffer) {
67				     wordBuffer << ow
68				     localIndex = localIndex + 1
69			    } // end for ow
70		   } // end if 
71	  } // end for words
72	 
73	  } // end eachLine
74	  def wordBlock = new WordBlock( startSubscript: globalIndex,
75								         last: true,
76								         words: wordBuffer)
77	  outChannels[currentNode].write(wordBlock) 
78	  for ( n in 0..< nodes) outChannels[n].write(new Sentinel()) 
79	  def endTime = timer.read() 
80	  def words = localIndex + globalIndex
81	  println "READER, $source, $run, ${endTime – startTime}, " + 
82			    "${endTime – beginTime}, $words"
83	  �timeWriter.println "READER, $source, $run, ${endTime – startTime}, " + 
84			    "${endTime – beginTime}, $words"
85	  } // end for run 
86	  } // end for source
87	  timeWriter.flush()
88	  timeWriter.close()
89	  } // end void run 
90	}

Listing 24-3 The Reader Process

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

208 

Big Data – Solution Scaling


24.7.2	 The Node Process 

Listing 24-4 shows the Node process which is itself a parallel formed from one Worker process and N 
Sorter processes. A Node has an input channel from the Reader process referred to as nodeInChannel 
{12}. Each Node is connected to each of the Merger processes and this set of output channels are held in 
the ChannelOutputList toMergers {13}. A channel called startSortPhase is created {22}, which 
will be used to signal that the Sorter processes can begin once the Worker process has completed 
its processing. 

The process iterates through the sourceList {15, 23} and the runs {16, 24} The variable 
sequenceBlockList {26} is used to hold the shared data that is accessed initially by the Worker 
process to write to the required data structures into the shared data and subsequently by the Sorter 
processes to read from those data structures in parallel. For each run a new network of processes is 
created comprising the single Worker process and the N Sorter processes {27–43}. Once the network 
terminates the processing times for the Node are determined and written to the console and the time 
file {44–46}.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/elearningforkids


Using Concurrency and  
Parallelism Effectively – II

209 

Big Data – Solution Scaling


10	class Node implements CSProcess {
11	  
12	  def ChannelInput nodeInChannel
13	  def ChannelOutputList toMergers // N of these
14	  def N = 0
15	  def sourceList
16	  def runs
17	  def node
18	  def timeWriter
19
20	  void run(){ 
21	  def timer = new CSTimer()
22	  def startSortPhase = Channel.one2any()
23	  for ( s in sourceList){
24	  for ( r in 1 .. runs){
25	  def startTime = timer.read()
26	  �def sequenceBlockList = [] // holds each of the sequence blocks
27	  def worker = new Worker( N: N, inChannel: nodeInChannel, 
28							        ssp: startSortPhase.out(),
29							        sbl: sequenceBlockList, source: s, 
30							        run: r, node:node,
31							        timeWriter: timeWriter )
32	  def sorters = (1..N).collect{sn ->
33		   new Sorter(Nvalue: sn,
34					      startChannel: startSortPhase.in(),
35					      toMerger: toMergers[sn-1],
36					      sbl: sequenceBlockList,
37					      source: s,
38					      run: r,
39					      node: node,
40					      timeWriter: timeWriter )
41	  }
42	  def network = sorters + worker
43	  new PAR(network).run()
44	  def endTime = timer.read()
45	  println "NODE, $node, $s, $r, ${endTime – startTime}"
46	  �timeWriter.println "NODE, $node, $s, $r, ${endTime – startTime}"
47	  } // end runs
48	  } // end sources
49	  timeWriter.flush()
50	  timeWriter.close()
51	  } // end run()
52	}

Listing 24-4 The Node Process

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

210 

Big Data – Solution Scaling


24.7.3	 The Worker Process

The Worker process is shown in Listing 24-5 and has a very close relationship to the single machine 
algorithm discussed in section 24.3. It can be seen that similar or identical processes are called as in the 
single machine version. The differences arise due to the way the data is stored in the shared data area in 
the Node process. In the single machine version the words are stored in a single data structure. In the 
distributed version each block of words is going to be stored in its own data structure. In addition, each 
block of words will also have all the associated maps and indexes stored for that block with that block. 
The list of such data structures is referred to as the property sbl {13}.

The processes iterates over incoming messages from the reader process until it reads a Sentinel object 
{26, 28}. The words are processed to remove punctuation and to calculate the integer value corresponding 
to the word {37–41}. A new version of the Sequencer process has been created {45–48} which deals with 
the fact that there are individual word blocks with different starting subscripts relative to the whole 
file and that the last block of words will probably not be full. Its function however remains the same, 
which is to calculate the sequence value for the words in the block for each value of N. This operation 
is undertaken in parallel for each value of N. 

The next phase uses the same process as in the single machine version to create the equalKeyMaps 
{55–61}. Yet again this can be undertaken in parallel for each value of N. 

The final phase, {66–72} is similar to the single machine version in that it generates concordance 
but instead of writing them to file directly stores the part concordances in a data structure called 
equalWordMapList. This change is required because we are creating partial concordance for each 
block of words on each node. Once the data structures have been created they can be appended as a 
new SequenceBlock to the shared data structure sbl {73–77}. During the processing various times 
are calculated and added together to determine how long each phase of the algorithm takes in total for 
all the input word blocks. Finally, once all the words sent to this Node have been processed, the relevant 
times can be written to the console and the time file {82–87}. The last action of the process is to send a 
Sentinel to each of the Sorter processes so they can commence processing {88}.

10	class Worker implements CSProcess {
11	  
12	  def N = 0
13	  def sbl // the reference to the sequenceBlockList
14	  def source
15	  def run
16	  def ChannelInput inChannel
17	  def ChannelOutput ssp // connection to startSortPhase
18	  def node
19	  def timeWriter
20

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

211 

Big Data – Solution Scaling


21	  void run(){
22	  def timer = new CSTimer()
23	  def endTime
24	  def timesList = []
25	  for (t in 0..< 4) timesList[t] = 0
26	  def o = inChannel.read()
27	  def beginTime = timer.read()
28	  while ( ! (o instanceof Sentinel)) {
29	  def startTime = timer.read()
30	  def startSub = o.startSubscript
31	  def punctuatedWords = o.words
32	  def lastBlock = o.last
33	  def NSequenceLists = []
34	  def wordCount = 0
35	  for ( n in 0..N) NSequenceLists[n] = new ArrayList(1000)
36	  def wordBuffer = new ArrayList(punctuatedWords.size())
37	  for ( w in punctuatedWords){
38	  wordBuffer << defs.removePunctuation(w)
39	  NSequenceLists[0] << defs.charSum (wordBuffer[wordCount])
40	  wordCount = wordCount + 1
41	  } // end for punctuatedWords
42	  def endRemove = timer.read()
43	  timesList[0] = timesList[0] + endRemove – startTime 
44	  def procList1 = (1..N).collect {n ->

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/academictransfer


Using Concurrency and  
Parallelism Effectively – II

212 

Big Data – Solution Scaling


45	  return new parMultiSequencer( Nmax: N, n:n, 
46								         baseList: NSequenceLists[0],
47								         outList: NSequenceLists[n], 
48								         lastBlock: lastBlock)
49	  }
50	  new PAR(procList1).run()
51	  def endSequencer = timer.read()
52	  timesList[1] = timesList[1] + endSequencer – endRemove 
53	  def equalKeyMapList = []
54	  for ( n in 1..N) equalKeyMapList[n] = [:] 
55	  def procList2 = (1..N).collect { n ->
56	  return new parFindEqualKeys ( words: (wordCount – 1), 
57								         startIndex: startSub,
58								         inList: NSequenceLists[n],
59								         outMap: equalKeyMapList[n])
60	  }
61	  new PAR(procList2).run()
62	  def endEqualKeys = timer.read()
63	  timesList[2] = timesList[2] + endEqualKeys – endSequencer 
64	  def equalWordMapList = []
65	  for ( n in 1..N) equalWordMapList[n] = [:]
66	  def procList3 = (1..N).collect { n -> 
67	  return new parExtractUniqueSequences ( 
68			    equalMap: equalKeyMapList[n], n: n, 
69		   startIndex: startSub, words: wordBuffer, 
70		   equalWordMap: equalWordMapList[n] )
71	  } 
72	  new PAR(procList3).run() 
73	  sbl << new SequenceBlock (startSubscript: startSub,
74							        words: wordBuffer,
75							        NSequenceLists: NSequenceLists,
76							        equalKeyMapList: equalKeyMapList,
77							        equalWordMapList: equalWordMapList)
78	  o = inChannel.read()
79	  endTime = timer.read()
80	  timesList[3] = timesList[3] + endTime – endEqualKeys 
81	  } // end while not Sentinel
82	  println "WORKER, $source, $run, ${timesList[0]}, " +
83		   "${timesList[1]}, ${timesList[2]}, ${timesList[3]}, "+
84		   "${endTime – beginTime}"
85	  timeWriter.println "WORKER, $source, $run, ${timesList[0]}, "+
86		   "${timesList[1]}, ${timesList[2]}, ${timesList[3]}, "+
87		   "${endTime – beginTime}"
88	  for ( n in 1..N) ssp.write(new Sentinel())
89	  } // end run()
90	}

Listing 24-5 The Worker Process

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

213 

Big Data – Solution Scaling


24.7.4	 The Sorter Process

The Sorter process is shown in Listing 24-6.

10	class Sorter implements CSProcess {
11	  
12	  def Nvalue = 0
13	  def ChannelInput startChannel
14	  def ChannelOutput toMerger
15	  def sbl // the reference to the shared sequenceBlockList
16	  def source
17	  def run
18	  def node 
19	  def timeWriter
20
21	  void run(){ 
22	  
23	  def union = {s1, s2 ->
24	  s2.each{v ->
25	  if ( !(s1.contains(v))) s1 << v
26	  }
27	  } // end union
28	  
29	  def timer = new CSTimer()
30	  def sbKeys = []
31	  startChannel.read()
32	  def startTime = timer.read()
33	  sbl.each{ sb ->
34	  def ewmN = sb.equalWordMapList[Nvalue]
35	  def mapKeys = ewmN.keySet()
36	  mapKeys.each { mk ->
37	  union (sbKeys, mk)
38	  }
39	  }
40	  def sortedKeys = sbKeys.sort()
41	  def sortedTime = timer.read()
42	  sortedKeys.each { keySV ->
43	  def compositeWordSSMap = [:]
44	  sbl.each { sb -> 
45	  def wmEntry = sb.equalWordMapList[Nvalue].get(keySV, [] )
46	  wmEntry.each { 
47	  def wordKey = it.key
48	  def subScripts = it.value
49	  def existingSS = compositeWordSSMap.get(wordKey, [])
50	  existingSS << subScripts
51	  compositeWordSSMap.put(wordKey, existingSS) 
52	  } // end of each wmEntry

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

214 

Big Data – Solution Scaling


53	  }// end of each sbl
54	  def partConcordance = new PartConcordance( seqVal: keySV,
55								         entryMap: compositeWordSSMap)
56	  toMerger.write(partConcordance)
57	  } // end of each sbKeys
58	  def endTime = timer.read()
59	  toMerger.write(new Sentinel())
60	  �println "SORTER, $source, $run, $node, $Nvalue, ${sortedTime – startTime}, " +
61		   "${endTime – sortedTime}, ${endTime – startTime}"
62	  timeWriter.println "SORTER, $source, $run, $node, $Nvalue, " +
63					      �"${sortedTime – startTime}, ${endTime – sortedTime}, " +
64					      "${endTime – startTime}"
65	  } // end of run()
66	}

Listing 24-6 The Sorter Process

The input channel startChannel {13} is the channel upon which the signal to start processing is 
received from the Worker process. The output channel toMerger {14} is the channel used by Sorter 
to write information to the Merger that is collecting data for NValue {12}. A method, called union 
{23–27}, is defined that undertakes the set union operation.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

By 2020, wind could provide one-tenth of our planet’s 
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the 
world’s wind turbines. 

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our 
systems for on-line condition monitoring and automatic 
lubrication. We help make it more economical to create 
cleaner, cheaper energy out of thin air. 

By sharing our experience, expertise, and creativity, 
industries can boost performance beyond expectations. 

Therefore we need the best employees who can 
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering. 

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge


Using Concurrency and  
Parallelism Effectively – II

215 

Big Data – Solution Scaling


The process waits until it receives an input on its startChannel {31}. The process then iterates through 
all the shared sequence blocks obtaining the equalWordMapList elements for NValue {34} to form the 
union of all the key sets present on this Node {33–39}. The key set is then sorted into ascending order 
{40}. The keys are the sequence values that were previously created. The sorting of the keys is crucial 
because this will be used by the subsequent Merger process to determine whether or not it is going to 
receive specific word strings from a Node.

The next phase {42–57} of the algorithm is to take each key value in turn and then to iterate through 
the shared sequence block lists to create a composite entry for each sequence value. A sequence value 
probably relates to more than one string of words so each word map entry corresponding to a sequence 
value is itself a map of a word string as key together with a list of subscripts where the word string is 
found. Thus this phase combines data from all the shared sequence blocks to create a composite word 
map entry that indicates the subscript where each word string corresponding to the sequence value is 
found in all the blocks stored at this node. This data structure is formed into a new PartConcordance 
{54–55} and then written to the Merger process associated with this node’s NValue.

24.7.5	 The Merger Process

The coding for the Merger Process is shown in Listing 24-7.

10	class Merger implements CSProcess {
11	  
12	  def ChannelInputList fromWorkers
13	  def sourceList
14	  def runs
15	  def N
16	  def minSeqLen
17	  def outRoot 
18	  def timeRoot
19	  def runId
20	  
21
22	  void run(){
23	  
24	  def allSentinels = { b ->
25	  def finished = false
26	  def ss = 0
27	  def len = b.size()
28	  while ( !finished && (b[ss] instanceof Sentinel ) ) {
29	  ss = ss + 1
30	  if ( ss == len) finished = true
31	  }
32	  return finished
33	  } // end allSentinels
34	  
35	  def minKey = { buffers ->

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

216 

Big Data – Solution Scaling


36	  def buffIds = []
37	  def minKey = Integer.MAX_VALUE
38	  buffers.each { b ->
39	  �if ((b instanceof PartConcordance) && (b.seqVal < minKey)) 

minKey = b.seqVal
40	  }
41	  def buffId = 0
42	  buffers.each { b ->
43	  �if ( (b instanceof PartConcordance) && (b.seqVal == minKey) ) 

buffIds << buffId
44	  buffId = buffId + 1
45	  } 
46	  return buffIds 
47	  } // end minKey
48	 
49	
50	  def timer = new CSTimer()
51	  def concordanceEntry = " "
52	  def nodes = fromWorkers.size()
53	  def timeFileName = timeRoot + runId + "_M_" + N + "_times.txt"
54	  def timeHandle = new File(timeFileName)
55	  if (timeHandle.exists()) timeHandle.delete()
56	  def timeWriter = timeHandle.newPrintWriter()
57	  for ( s in sourceList){
58	  for ( r in 1..runs){
59	  def startTime = timer.read()
60	  �def fileName = outRoot + s + "_L_" + minSeqLen + "_N_" + n +"_Dist.txt"
61	  def fileHandle = new File (fileName)
62	  if (fileHandle.exists()) fileHandle.delete()
63	  def fileWriter = fileHandle.newPrintWriter()
64	  def inputBuffers = []
65	  for ( n in 0..< nodes){
66	  inputBuffers << fromWorkers[n].read()
67	  }
68	  while ( ! allSentinels(inputBuffers)){
69	  def minBuffers = minKey(inputBuffers)
70	  def wordMap = [:]
71	  minBuffers.each{ minId ->
72	  def em = inputBuffers[minId].entryMap
73	  em.each {
74		   def key = it.key
75		   def value = it.value
76		   def currentEntry = wordMap.get(key, [])
77		   wordMap.put(key, (currentEntry + value).sort())
78	  }
79	  } // end of each minBuffers
80	  wordMap.each { concordanceEntry = " "
81	  def keyWords = it.key
82	  def indexes = it.value

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

217 

Big Data – Solution Scaling


83	  def flatIndex = indexes.flatten()
84	  if (flatIndex.size() >= minSeqLen) {
85		   concordanceEntry = concordanceEntry + keyWords + ", "
86		   concordanceEntry = concordanceEntry + flatIndex.size() + ", "
87		   concordanceEntry = concordanceEntry + flatIndex.sort()
88		   fileWriter.println "$concordanceEntry"
89	  }
90	  } // end each wordMap entry
91	  minBuffers.each { minId ->
92	  inputBuffers[minId] = fromWorkers[minId].read()
93	  } 
94	  } // end while not all sentinels
95	  fileWriter.flush()
96	  fileWriter.close()
97	  def endTime = timer.read()
98	  println "MERGER, $s, $N, ${endTime – startTime} "
99	  timeWriter.println "MERGER, $s, $N, ${endTime – startTime} "
100	  } // end of for r
101	  } // end of for s
102	  timeWriter.flush()
103	  timeWriter.close()
104	 } // end run()
105	}

Listing 24-7 The Merger Process

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

AXA Global 
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA


Using Concurrency and  
Parallelism Effectively – II

218 

Big Data – Solution Scaling


Each Merger corresponds to a single value for N {15} and expects to receive inputs from each of the 
Worker processes using the ChannelInputList fromWorkers {12}. Two methods are defined that will 
be used subsequently. The method allSentinels {24–33} returns true if the inputs from all of the 
workers are the terminating Sentinel and false otherwise. The method minKey {35–47} determines 
the minimum key value that is currently available in the input buffers of the process. It returns the 
subscript of the one or more buffers that have the current minimum key value.

After some preliminaries to define a PrintWriter for the file that will hold the timing data and the 
number of nodes {50–56}, the process iterates through each of the sources and runs {57, 58} receiving 
PartConcordance objects from the Sorter processes in each of the Nodes. At the start of each loop 
the process creates a PrintWriter for the file that will hold the concordance for the value N {60–63}. 
Initially an object is read from each of the Nodes and placed in inputBuffers {64–67}.

The main loop of the process is a while loop {68–94} that terminates when allSentinels() returns 
true {68}. The process then calls minKey() to determine which buffers are to be processed {69}. The 
aim of the next phase is to create a single wordMap {70} that contains entries from each of the nodes for 
each word string corresponding to the sequence value that is the key of each of the active buffers. Each 
of the active inputBuffers is processed in turn to obtain its entryMap {72}. The entryMap is then 
processed to obtain each word string key and to add its value to wordMap {73–78}. The value of an 
entry is a list of subscripts where that string is found in the input file. These are sorted to ensure that the 
subscripts appear in numerical order. Once all the inputBuffers have been processed the wordMap 
contains the concordance details that can be transformed into a string and written to file {80–90}. The 
last part of the main loop is to read in new values to each of the buffers that have just been processed 
{91–93}. Once all the inputs have been processed times can be written to the time output file {97–99}.

24.8	 Performance Analysis of the Distributed System

The system was evaluated using three different source files comprising the text of bible, 2bibles made 
by concatenating two copies of bible and 4bibles made by concatenating four copies of the bible. The 
corresponding output file sizes are shown Table 24-3, which are all in Kbytes.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

219 

Big Data – Solution Scaling


MinSeqLen 2 3 5

N bible 2bibles 4bibles

1 6,359 13,102 27,069

2 6,359 11,917 23,353

3 5,291 8,731 15,831

4 3,678 5,521 9,341

5 2,557 3,609 5,792

6 1,915 2,587 3,981

Total 26,159 45,467 85,367

ratio to bible   1.74 3.26

ratio to 2bibles     1.88

Table 24-3 Comparative Output File Sizes for Different Input Sources

The minimum sequence length for each of the source files was adjusted so that the difference between the 
sizes of the output files generated was not too large. This length is the minimum number of occurrences 
of the word string in the file. If this had not been done the output size for 4bibles would have been 
263,321 Kbytes. As can be seen the ratio of the sizes is in proportion to the size of the input files which 
are in the ratio 1:2:4.

The times in milliseconds for each of the processes on a system comprising 1 Reader process, 6 Merger 
processes (for N = 6) and 4, 8 and 12 Nodes is given in Table 24-4. The times were averaged over 8 runs.

The Table is subdivided horizontally into three parts corresponding to the number of Node processes (4, 
8 and 12). The table is subdivided vertically into two parts the first showing the times for each processor 
for the source,; bible, 2bibles and 4bibles and the ratio relative to the number of bibles in the source 
text. In order to show improvement due to the number of processes the ratio should be less than 2 in 
the column 1 to 2 and less than 4 in column 1 to 4. Using this as a basis for comparison it can be seen 
that the version using 4 Nodes does not perform as well as the other versions.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

220 

Big Data – Solution Scaling


Process Times   bible 2bibles 4bibles   Ratio  

  Nodes 4 4 4   1 to 2 1 to 4

Reader   9,750 21,123 44,585   2.17 4.57

Node   103,580 156,686 271,222   1.51 2.62

Merge   103,669 156,722 271,265   1.51 2.62

               

  Nodes 8 8 8      

Reader   6,349 12,432 23,758   1.96 3.74

Node   128,355 171,378 229,194   1.34 1.79

Merge   127,903 171,060 228,582   1.34 1.79

               

  Nodes 12 12 12      

Reader   5,662 8,970 19,110   1.58 3.38

Node   145,906 186,436 286,397   1.28 1.96

Merge   145,450 186,400 285,910   1.28 1.97

Table 24-4 Process Times (milliseconds) for various Combinations of Sources and Nodes Processes

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/Subscrybe


Using Concurrency and  
Parallelism Effectively – II

221 

Big Data – Solution Scaling


In terms of the actual times it can be seen that bible and 2bibles runs quickest on 4 Nodes and that 
4bibles run fastest on 8 Nodes. The use of 12 Nodes cannot be justified for these data sets for any of 
the sources. In all cases the process that shows most improvement is the Reader process. It has to be 
recalled that the single machine parallel version of the algorithm completed the whole task for bible in 
3,961 milliseconds and thus none of these solutions is better than this.

The problem with the application is that it is I/O bound. The main effect is that as we add more Node 
processes the number of data records that are transmitted over the interconnect increases and this has a 
detrimental effect on overall processing time. This can be seen more clearly in Table 24-5, which shows 
the speed up achieved using the various numbers of Node processes and sources.

Speedup Nodes bible 2bibles 4bibles   Ideal

Reader 4 to 8 1.54 1.70 1.88   2

  4 to 12 1.72 2.35 2.33   3

             

Node 4 to 8 0.81 0.91 1.18   2

  4 to 12 0.71 0.84 0.95   3

             

Merge 4 to 8 0.81 0.92 1.19   2

  4 to 12 0.71 0.84 0.95   3

Table 24-5 Speedup: Based on Times in Table 24-4

The Ideal column shows the value if optimum speedup were to be achieved. The reader process consistently 
shows the closest approach to the optimum, ideal, value. The other processes often show speedups that 
are less than 1.0 which means that the overall processing time gets longer with more processors.

24.8.1	 Analysis of Overall Processing Times

Once the algorithm has been distributed over a network, rather than running in a single multi-core 
processor, it is vital to consider the amount of data communication that result from the parallelisation 
on a distributed system. In the Concordance example data is communicated from the Reader process 
to each of the Processing Nodes and then from each of these Processing Nodes to each of the Merger 
Nodes. This data is transferred as a Serializable object and as such incurs a cost in terms of the 
amount of storage required to hold such a serialized object. A method was created defs.sizeof() 
which attempts to estimate the size of each object that is transferred across the network. This can then 
be used to determine the total amount of data sent between each of the nodes. Table 24-6 shows the 
number of bytes that were communicated for each text for the various numbers of nodes.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

222 

Big Data – Solution Scaling


Nodes Bible 2Bibles 4Bibles

4 343,262,248 580,965,093 1,046,447,697

8 366,888,432 611,272,041 1,090,260,161

12 385,214,256 711,856,998 1,342,869,549

Table 24-6 Number of Bytes Generated by Object Serialization

Perhaps of more interest is the time, in seconds, it takes to transfer this number of bytes over the 100mbit/
sec Ethernet connection that was used to connect the processing nodes, as shown in Table 24-7.

Nodes Bible 2Bibles 4Bibles

4 26.2 44.3 79.8

8 28.0 46.6 83.2

12 29.4 54.3 102.5

Table 24-7 Time to Transfer Serialized Objects in Seconds

We can thus observe that a substantial proportion of the overall processing time is taken up with 
the transfer of data between the nodes. The times shown in Table 24-7 do not include the processing 
time required to both serialize and de-serialize the objects once they have been transferred. A further 
contribution to the overall time is the time it takes to actually write the out files to disc and even though 
these are on separate Merger processes this still takes time.

24.9	 Summary

This chapter has explored the manner in which large data sets can be processed. Initially it demonstrated 
how multiple cores could be utilised once the design had been finalised ensuring that some parameter 
was chosen upon which the algorithm can be scaled. This was followed by a discussion of the techniques 
that can be used to scale the algorithm to a network of workstations.

Necessarily, such designs are very dependent upon the specifics of the data being processed. There is 
no specific proforma that can be followed to achieve such a parallelisation. It has to be undertaken on 
a case by case basis. They crucial aspect of such a design is that data structures have to be found which 
can be separated into a writing and then a reading phase. At all costs it is advisable to avoid creating 
data structures that mix writing and reading in some random order as this is very difficult to parallelise.

In many situations it is better to return to first principles for an algorithm rather than to try to parallelise 
a highly tuned sequential algorithm. Over the years much effort has been expended many people to 
improve sequential algorithms to run on single processor machines. Many of these optimisations are 
inherently hard to run in a parallel mode. Therefore it is often much easier to start afresh if it is desired 
to produce a scalable parallel solution.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

223 

Big Data – Solution Scaling


If an algorithm is to be distributed over a number of workstations or nodes within a cluster then a balance 
has to be achieved between the amount of computation and communication. Various communication 
infrastructures are available from a basic Ethernet to specially designed networks for High Performance 
Computer Clusters. The choice of distribution mechanism will depend on the available network capability 
and thus no hard and fast rule can be provided. In the example described above, distribution actually 
caused the application to run more slowly but did mean that we had a means of dealing with any size of 
data set. It is a trade-off that each developer will have to consider for each application that they choose 
to distribute over a cluster of workstations.

A final optimisation would be to transform the data objects that are transmitted over the network using 
the net2 filter capability. This would then yield a simpler and small data structure that should be 
quicker to serialise. That is left as an exercise for the interested reader!

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Losing track of your leads?
Bookboon leads the way
Get help to increase the lead generation on your own website. Ask the experts.  

Interested in how we can help you? 
email ban@bookboon.com

http://bookboonglobal.com/en/qualities2/content-and-dialogue-marketing-2/


Using Concurrency and  
Parallelism Effectively – II

224 

Concluding Remarks


25	 Concluding Remarks
At the end of this journey we are able to reflect on the capabilities that have been described and considered. 
We started with four very simple concepts; process, channel, alternative and timer and from these we 
have been able to construct a wide variety of systems with very different operational requirements and 
functionality. In general, this has been achieved with one fundamental design pattern, the client-server, 
together with a small number of programming idioms that facilitate its use, such as the prompted 
buffer. The intellectual challenge is realised by understanding how to use this pattern and idioms in an 
effective manner.

In this book I have purposely avoided the use of any formal representation of the process and how 
networks of such processes can be analysed using formal tools. I believe that the engineering approach 
based upon the reuse of a single design pattern, which has its basis in the underlying formalism, is the 
best way of making software engineers appreciate what can be achieved provided the capability we are 
using has a formal basis. The real world is not populated with sufficient software engineers who have 
the mathematical skill to be able to undertake the formal analysis of their systems, even with the tools 
currently available (Formal Systems Europe Ltd, 2013) (Holzmann G.J., 2013).

The increasing availability of multi-core processor based systems is inevitable and the desire to make more 
effective use of this technology will be an increasing challenge. If the engineers use currently available 
models and methods then this technology will be increasingly difficult to use. Software engineers therefore 
require a better model with which they can program such systems. But why leave it to just multi-core 
systems? Why not better and more effective use of network based workstation systems? We might then 
be able to move to processing systems that make more effective use of grid-computing because we have 
a viable model that allows us to interact over any size of network.

The content of this book started at a basic undergraduate level and ended with examples of mobile systems 
that are still the subject of intense research activity (Welch & Barnes, 2013). All the examples presented 
are demonstrable and where necessary operate over a network and employ aspects of mobility. Yet this 
is achieved in a manner that does not require a detailed understanding of the operation of networked 
systems and in which the definition of a process is not reliant upon whether it is to execute as one among 
many on a single processor or over a network.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

225 

Concluding Remarks


The underlying support is provided by JCSP and it has been made easier to assimilate by use of Groovy 
because it helps to reduce the amount of code that needs writing. These are of relatively little importance 
of themselves but it is important that they both utilise the underlying JVM. What is really crucial is 
that JCSP provides an implementation of CSP. CSP provides the formal framework upon which JCSP is 
implemented and thereby the engineering support for programmers. The programmers are not concerned 
with the inner workings of the underlying JCSP package because they can reason about their systems at 
a much higher level. The system designer is no longer concerned with the detailed workings of a poorly 
implemented underlying thread model, in effect writing machine code. They can now concentrate on 
high-level design of the processes at the application layer; confident, that if they use the building blocks 
correctly and apply one pattern effectively then the resulting system will operate as expected.

This does not remove the need for testing, which exposes the frailties of a system when exposed to a real 
operating environment. In this book we have shown how systems can be tested, albeit in a cumbersome 
manner but which with further research and the development of support tools will make it easier 
to achieve.

The final chapters have shown how we can exploit the process concept in a more up-to-date setting and 
how it may address the problems that the software industry is starting to deal with in terms of how to 
exploit mobility, network connectivity and parallelism effectively. Previously, parallelism has been thought 
of as providing a solution to the needs of high performance computing, where ultimate speed was the 
only driving force. Hopefully, with some of the later examples in particular, the reader will have been 
convinced that approaching a solution to a problem from the parallel point of view actually makes it 
easier to achieve a working and effective solution. 

25.1	 The Initial Challenge – A Review

In Chapter 1 the ideas of parallel system design were introduced by means of a simple game. The 
description of the game stopped at the point where we needed to introduce some basic concepts. We 
now return to the game with the knowledge gained as a result of assimilating the presented material. 
The key to designing parallel systems has been the use of the client-server design pattern. We therefore 
return to the original process design and present the interactions undertaken between the processes to 
see that they obey the client-server design pattern. Figure 24-1 shows the process architecture with the 
channels named and the client-server interactions labelled. The Mouse Buffer is a pure server, which 
makes it much easier to undertake the deadlock analysis.

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

226 

Concluding Remarks


s 

c 

 

Player Interface 

 

Player Manager 

 

Matcher 

 

Mouse Buffer   

getPoint 

sendPoint 

getValidPoint validPoint mouseEvent 

Interface Channels 

    Controller   

from to 

c 

s 

c 

s 

c                                      s 

Figure 25-1 The Player Process Network

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/EOT


Using Concurrency and  
Parallelism Effectively – II

227 

Concluding Remarks


There is still a problem with the interaction between the Player Manager and the Player Interface, which is 
bi-directional. It is thus necessary to understand these interactions to ensure that deadlock cannot occur.

Figure 24-2 shows the actual messages and how they are sent and received by the processes. The crucial 
interactions are those within the Player Manager. In all cases, the Player Manager acts as the client apart 
from the ‘withdraw from game’ button press. In order to deal with this, a non-deterministic choice is 
required in the main loop of the process to ensure that this input can be processed.

Get Point 

Claim Pair 

Change display to highlight Chosen Square 

Square Coords 

Get Point 

Change board display, player names and pairs won 

Game Details 

Get Game  

Details 

Withdraw 

Withdraw from Game button pressed 

Enrol Details 

Enrol Player 

Mouse 

Event

Controller Player 

Manager 
Matcher Mouse 

Buffer

Player 

Interface

 
  

  

  

  

  

While enroled 

Mouse Point 

Highlight SELECT NEXT PAIR button 

SELECT NEXT PAIR button pressed 

Change display to grey-out Chosen Squares 

Figure 25-2 Communication Interactions

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

228 

Concluding Remarks


The implementation has some limitations, in particular, that the players do not have to take turns and 
they cannot see the cards other players have turned over. This implementation is provided as a working 
system in the accompanying software. 

The challenge is to modify the game implementation so that players have to take it in turn to reveal 
squares and all players can see the squares that have been revealed. If a player reveals a pair they can 
continue with their turn by revealing more squares. A player’s turn ceases as soon as they reveal two 
squares that do not match. 

There are many ways of solving this challenge and it is left to the interested reader to solve the challenge 
in one or more ways!

25.2	 Final Thoughts

The book ends at the point where the examples have to become real problems and which of course tend 
to be too large to explain within the confines of such a book. Hopefully, however, the book contains 
sufficient ideas, concepts and capabilities that the solution to larger problems can be broken down into 
sufficiently small processes that it becomes manageable.

As a final design consideration I offer the advice that if you are having problems with a design and cannot 
get it right then the solution is usually to add one or more processes. If a designer tries to restrict the 
number of processes then that is usually followed by problems. In the future perhaps we will get to the 
situation where team leaders will ask why a serial solution has been adopted rather than one that relies 
on parallel design methods!

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

229 

References


26	 References
Anon., 2009. Writing Portable Groovy Scripts with A Magic Runnable Jar. [Online] Available at: http://
www.weheartcode.com/2009/01/14/writing-portable-groovy-scripts-with-a-magic-runnable-jar/
[Accessed 30 May 2013].

Barclay, K. & Savage, J., 2006. Groovy Programming: An Introduction for Java Developers. San Francisco: 
Morgan Kaufmann.

Belapurkar, A., 2013. IBM DeveloperWorks Technical Library. [Online]
Available at: http://www.ibm.com/developerworks/java/library/j-csp2/ 
[Accessed 22 3 2013].

Brinch Hansen, P., 1973. Operating System Principles. s.l.: Prentice Hall.

Chalmers , K., 2008. Introducing JCSP Networking 2.0. In: Communicating Process Architecture 2008. 
s.l.:IOS Press Amsterdam.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book  
is made with 
SetaPDF

http://www.weheartcode.com/2009/01/14/writing-portable-groovy-scripts-with-a-magic-runnable-jar/
http://www.weheartcode.com/2009/01/14/writing-portable-groovy-scripts-with-a-magic-runnable-jar/
http://www.ibm.com/developerworks/java/library/j-csp2/%20
http://s.bookboon.com/Setasign


Using Concurrency and  
Parallelism Effectively – II

230 

References


Chalmers, K., 2009. Investigating communicating sequential processes for Java to support ubiquitous 
computing (PhD thesis), Edinburgh: Edinburgh Napier University.

Chalmers, K. & Kerridge, J., 2005. jcsp.mobile: A Package Enabling Mobile Processes and Channels. In: 
Communicating Process Architectures 2005. s.l.:IOS Press, Amsterdam.

Chalmers, K., Kerridge, J. & Romdhani, I., 2007. Mobility in JCSP: New Mobile Channel and Mobile 
Process Models. In: Communicating Process Architectures 2007. s.l.:IOS Press Amsterdam.

Formal Systems Europe Ltd, 2013. Formal Systems. [Online] 
Available at: http://www.fsel.com/software.html
[Accessed 22 3 2013].

Hoare, C., 1978. Communicating Sequential Processes. Communications of the ACM, 17(10).

Hoare, C., 1985. Communicating Sequential Processes. available from http://www.usingcsp.com/ ed. 
s.l.:Prentice Hall.

Holzmann G. J., 2013. ON-THE-FLY, LTL MODEL CHECKING with SPIN. [Online] 
Available at: http://spinroot.com/spin/whatispin.html
[Accessed 22 3 2013].

Inmos Ltd, 1988. occam programming refence manual. s.l.:Prentice Hall.

JUnit, 2013. JUnit. [Online] 
Available at: http://junit.org/
[Accessed 22 3 2013].

Kerridge, J., 2007. Testing and Sampling Parallel Systems. In: Communicating Process Architectures 2007. 
s.l.:IOS Press Amsterdam.

Kerridge, J., Barclay, K. & Savage, J., 2005. Groovy Parallel! A Return to the Spirit of occam?. In: 
Communicating Process Architectures 2005. s.l.:IOS Press 2005, Amsterdam.

Kerridge, J. & Chalmers, K., 2006. Ubiquitous Access to Site Specific Services by Mobile Devices: the 
Process View.. In: Communicating Process Architectures 2006. s.l.:IOS Press Amsterdam.

Kerridge, J., Haschke, J.-O. & Chalmers, K., 2008. Mobile Agents and Processes using Communicating 
Process Architectures. In: Communicating Process Architectures 2008. s.l.:IOS Press Amsterdam.

Download free eBooks at bookboon.com

http://www.fsel.com/software.html
http://www.usingcsp.com/%20ed
http://spinroot.com/spin/whatispin.html
http://junit.org/


Using Concurrency and  
Parallelism Effectively – II

231 

References


Kerridge, J., Welch, P. & Wood, D., 1999. Synchronisation Primitives for Highly Parallel Discrete Event 
Simulations.. In: In: 32nd Hawaii International Conference on Systems Science – HICSS-32. s.l.:IEEE 
Computer Society Press..

Kosek, A., Kerridge, J., Syed, A. & Armitage, A., 2009. JCSP Agents-Based Service Discovery for Pervasive 
Computing. In: Communicating Process Architectures 2009. s.l.:IOS Press Amsterdam.

Lea, D., 2003. Concurrent Programming in Java: Design Principles and Pattern (2nd Edition). s.l.:Addison-
Wesley.

Magedanz, T., Rothermel, K. & Krause, S., n.d. Intelligent agents: An emerging technology for next 
generation telecommunications?. In: 9. INFOCOM’96. Fifteenth Annual Joint Conference of the IEEE 
Computer Societies. Networking the Next Generation. s.l.:IEEE, pp. 464–472.

Martin, J. & Welch, P., 1997. A Design Strategy for Deadlock-Free Concurrent Systems. Transputer 
Communications, 3(4), pp. 215–232.

Nwana, H., 1996. Software Agents: An Overview. Knowledge Engineering Review, 11(3), pp. 205–244.

Pham, V. & Karmouch, A., 1998. Mobile Software Agents: An Overview. IEEE Communication Magazine, 
Issue July, pp. 26–37.

Project Gutenberg, 2014. Free ebooks – Project Gutenberg. [Online] 
Available at: http://www.gutenberg.org/
[Accessed 9 June 2014].

Ritson, C. & Welch, P., 2007. A Process-Oriented Architecture for Complex System Modelling. In: 
Communicating Process Architectures 2007. s.l.:IOS Press, Amsterdam, pp. 249–266.

Welch, P., 2002. Concurrency For All. In: Lecture Notes in Computer Science – 2330. s.l.:Springer-Verlag, 
pp. 678–687.

Welch, P., 2013. Communicating Sequential Processes for Java (JCSP). [Online] 
Available at: http://www.cs.kent.ac.uk/projects/ofa/jcsp/
[Accessed 22 3 2013].

Welch, P. & Barnes, F., 2013. occam-pi: blending the best of CSP and the pi-calculus. [Online] 
Available at: http://www.cs.kent.ac.uk/projects/ofa/kroc/
[Accessed 22 3 2013].

Download free eBooks at bookboon.com

http://www.gutenberg.org/
http://www.cs.kent.ac.uk/projects/ofa/jcsp/%0D
http://www.cs.kent.ac.uk/projects/ofa/kroc/


Using Concurrency and  
Parallelism Effectively – II

232 

References


Welch, P. et al., 2007. Integrating and Extending JCSP. In: Communicating Process Architectures 2007. 
s.l.:IOS Press Amsterdam, pp. 349–369.

Welch, P., Brown, N., Moores, J. & et al, 2010. Alting Barriers: Synchronisation with Choice in Java using 
JCSP., 22. pp. 182–196. Concurrency and Computation: Practice and Experience, Volume 22, pp. 182–196.

Welch, P., Justo, G. & Willcock, C., 1993. High-level paradigms for deadlock-free high-performance 
systems. In: Proceedings of the 1993 World Transputer Congress on Transputer Applications and Systems. 
s.l.:IOS Press, Amsterdam.

Wikipedia, 2013. Transputer. [Online] 
Available at: http://en.wikipedia.org/wiki/Transputer
[Accessed May 2013].

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

EXPERIENCE THE POWER OF 
FULL ENGAGEMENT…

     RUN FASTER.
          RUN LONGER..
                RUN EASIER…

READ MORE & PRE-ORDER TODAY 
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd   1 22-08-2014   12:56:57

http://en.wikipedia.org/wiki/Transputer
http://s.bookboon.com/Gaiteye


Using Concurrency and  
Parallelism Effectively – II

233 

Index

Index
A
Access Server, 86
AccessProcess, 88
Active Network, 95
Adaptive Agent, 123
ALT, 20, 40, 66, 90, 97, 98, 100, 107, 130, 137, 138
alternative, 20, 41, 44, 65, 97, 107, 108, 115, 132, 137, 

151, 218
any2net, 16, 17, 19, 20, 27, 36, 45, 77, 78, 82, 85, 90, 92, 

111, 113, 117, 126, 128, 129, 143, 161, 162, 170, 174, 
176, 177, 178

any2one, 72, 78, 120, 140, 178
Automatic Class Loading, 147

B
BackAgent, 63
BackRoot, 64
Big Data, 191

C
Canteen, 24, 25, 26, 28
channel, 218
ChannelInputList, 31, 33, 173, 177, 179, 181, 182, 183, 

184, 185, 212, 213
ChannelOutputList, 31, 33, 137, 138, 171, 172, 173, 177, 

179, 181, 182, 183, 184, 185, 205, 207, 208
Chef, 26
Collector, 154, 175
concordance, 191
CREW, 15, 28, 29, 31, 33
CSTimer, 18, 22, 39, 50, 137, 138, 154, 172, 176, 194, 

207, 208, 210, 211, 213

D
data parallel architecture, 148
DataGenerator, 120
DataGenerator process, 136
deadlock, 63, 65, 104, 105, 112, 113, 114, 115, 118, 219, 

223, 224

Dining Philosophers, 15, 24, 25

DoWork, 165

E

Emitter, 157, 175

EmitterNet, 158

F

Forward and Back Agent, 69

G

Gatherer, 121

Gatherer process, 140

GConsole, 29, 31, 97, 101

Get, 22

GetInput, 163

GroovyLauncher, 189

GroovyTestCase, 46, 48, 49, 53

Group Location Service, 90

guard, 97, 132, 137

H

High Performance Cluster, 167

HPC. See High Performance Clusters

K

Kitchen, 24, 26

M

McPiCollector, 185

McPiCore, 180

McPiEmitter, 183

McPiManager, 181

McPiWorker, 182

Merger, 204, 212

mobile agent, 54, 79, 95, 120

MobileAgent, 54, 55, 56, 64, 73, 103, 104, 123

Montecarlo Pi, 179

Multiple Instruction Multiple Data (MIMD), 147

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

234 

Index

N
net channel, 15, 16, 23, 28, 31, 35, 36, 41, 45, 63, 64, 65, 

69, 70, 72, 73, 74, 75, 76, 78, 82, 85, 93, 95, 102, 124, 
127, 128, 137, 153, 154, 168, 170, 171, 177, 178, 205

net channels, 15, 16, 17, 35, 70, 105, 145, 182
net2any, 16, 22, 23, 27, 28
net2one, 16, 17, 20, 25, 36, 38, 39, 40, 44, 48, 53, 61, 62, 

67, 69, 75, 78, 92, 117, 128, 129, 144, 145, 154, 157, 
161, 162, 177, 178

NetChannelLocation, 37, 41, 64, 89, 90, 92, 103, 107, 111
node, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 28, 29, 30, 31, 

33, 36, 39, 44, 45, 48, 53, 54, 55, 57, 58, 60, 61, 62, 
63, 64, 65, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 79, 
80, 82, 84, 85, 88, 91, 94, 95, 96, 101, 102, 103, 104, 
105, 107, 108, 110, 111, 112, 113, 114, 115, 116, 117, 
118, 119, 120, 121, 123, 124, 125, 126, 127, 128, 131, 
132, 134, 135, 136, 137, 140, 142, 143, 144, 145, 146, 
148, 152, 153, 154, 156, 157, 158, 159, 160, 161, 162, 
164, 166, 167, 168, 169, 170, 171, 173, 174, 175, 177, 
178, 179, 182, 183, 185, 186, 189, 190, 204, 205, 206, 
208, 209, 210, 211, 212

NodeProcess, 128
numberedNet2One, 19, 28, 29, 31, 32, 85, 86, 90, 172, 

174, 176, 177

O
one2any, 208
one2net, 16, 23, 25, 26, 28, 31, 32, 33, 38, 39, 42, 43, 48, 

53, 61, 62, 64, 67, 69, 70, 73, 74, 76, 87, 90, 91, 138, 
158, 160, 170, 172

P
PAR, 19, 20, 22, 23, 25, 26, 27, 29, 31, 33, 44, 45, 46, 47, 

48, 49, 52, 53, 61, 63, 67, 78, 83, 84, 89, 117, 143, 144, 
145, 154, 157, 162, 163, 183, 195, 208, 210

Philosopher, 24, 26, 27, 28
Player Interface, 219
Player Manager, 219
PrintSpooler, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45
PrintUser, 36, 37, 38, 39, 43, 44, 45, 81
priSelect, 98, 100
process, 218
Process discovery, 119
Process Farms, 147

process mobility, 80
process network under test (PNUT), 46
ProcessManager, 54, 57, 59, 66, 70, 75, 76, 85, 86, 110, 

113, 122, 129, 130, 131, 132, 133, 134, 135, 136, 174, 
175, 177, 179

ProcessNode, 58
Prompter, 98
pure clients, 150, 157
pure server, 150, 219
Put, 21

Q
Queue, 96, 99

R
Reader, 205
Receiver, 17
Redirecting Channels, 95
RestartAgent, 104
RestartAgent processing, 112
Ring Element, 101, 103, 107
RingAgentElement, 105
Root, 56

S
Scalable Architecture, 205
Self-Monitoring Process Ring, 95
Sender, 17
SendOutput, 165
Service Architecture, 82
sharedData, 161
Single Instruction Multiple Data (SIMD), 147
Sorter, 211
Sorter - Output, 204
StateManager, 100
StateManager processing, 115
StopAgent, 101
StopAgent processing, 110

T
task parallel architecture, 152
TCP/IP, 15, 16, 19, 28, 34, 46, 47, 60, 88
Test-Network, 46, 47, 48, 49

Download free eBooks at bookboon.com



Using Concurrency and  
Parallelism Effectively – II

235 

Index

timer, 18, 22, 39, 42, 50, 137, 138, 154, 155, 171, 172, 
173, 174, 175, 176, 177, 179, 193, 194, 195, 205, 207, 
208, 210, 211, 213, 218

Travellers’ Meeting System, 81
TripAgent, 72
TripNode, 74
TripRoot, 75

U
Universal Client, 83

W
Worker, 208
Worker Object interface, 167
Worker process, 149, 161
WorkerObject, 173

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

How to retain your  
top staff

FIND OUT NOW FOR FREE
Get your free trial

Because happy staff get more done

What your staff really want?

The top issues troubling them?

How to make staff assessments 
work for you & them, painlessly?

DO YOU WANT TO KNOW:

http://s.bookboon.com/performancereviewpro

	OLE_LINK1
	OLE_LINK2
	Preface
	Organisation of the Book
	Supporting Materials

	15	�Communication over Networks: Process Parallelism
	15.1	Network Nodes and Channel Numbers
	15.2	Multiple Writers to One Reader
	15.3	A Single Writer Connected to Multiple Readers
	15.4	Networked Dining Philosophers
	15.5	Running the CREW Database in a Network
	15.6	Summary

	16	�Dynamic Process Networks: A Print Server
	16.1	Print Spooler Data Objects
	16.2	The PrintUser Process
	16.3	The PrintSpooler Process
	16.4	Invoking The PrintSpooler Node
	16.5	Invoking A PrintUser Node
	16.6	Summary

	17	�More Testing: Non-terminating Processes
	17.1	The Test-Network
	17.2	The Process Network Under Test
	17.3	Running The Test
	17.4	Summary

	18	Mobile Agents: Going for a Trip
	18.1	Mobile Agent Interface
	18.2	A First Parallel Agent System
	18.3	Running the Agent on a Network of Nodes
	18.4	Result Returning Agent
	18.5	An Agent with Forward and Back Channels
	18.6	Let’s Go On A trip
	18.7	Summary

	19	�Mobile Processes: Ubiquitous Access
	19.1	The Travellers’ Meeting System
	19.2	The Service Architecture
	19.3	Universal Client
	19.4	The Access Server
	19.5	Group Location Service
	19.6	Running the System
	19.7	Commentary

	20	�Redirecting Channels: A Self-Monitoring Process Ring
	20.1	Architectural Overview
	20.2	The Receiver process
	20.3	The Prompter Process
	20.4	The Queue Process
	20.5	The State Manager Process
	20.6	The Stop Agent
	20.7	The Restart Agent
	20.8	The Ring Agent Element Process
	20.9	Running A Node
	20.10	 Observing The System’s Operation
	20.11	Summary
	20.12	Challenges

	21	Mobility: Process Discovery
	21.1	The Adaptive Agent 
	21.2	The Node Process
	21.3	The Data Generator Process
	21.4	The Gatherer Process
	21.5	Definition of the Data Processing Processes
	21.6	Running the System
	21.7	Typical Output From the Gatherer Process
	21.8	Summary
	21.9	Challenge

	22	�Automatic Class Loading – Process Farms
	22.1	Data Parallel Architectures
	22.2	Task Parallel Architectures
	22.3	Generic Architectures
	22.4	Architectural Implementation
	22.5	Summary

	23	�Programming High Performance Clusters
	23.1	Architectural Overview
	23.2	The Host and Node Scripts
	23.3	An Application – Montecarlo Pi
	23.4	Summary

	24	Big Data – Solution Scaling
	24.1	Concordance – A Typical Problem
	24.2	Concordance Data Structures
	24.3	The Algorithm
	24.4	Analysis of Total Time Results
	24.5	Analysis of Algorithm Phases
	24.6	Dealing with Larger Data Sets
	24.7	Implementation of the Scalable Architecture
	24.8	Performance Analysis of the Distributed System
	24.9	Summary

	25	Concluding Remarks
	25.1	The Initial Challenge – A Review
	25.2	Final Thoughts

	26	References
	Index

