<u>Protocole : identification d'espèces par analyse de séquences d'ADN</u> <u>environnemental (ADNe)</u>

	Matériels d'expérience	Mes copnsignes de travail :
_	- 1 ordinatuer - 1 navigateur internet	- Réaliser un travail propre, sérieux et appliqué / Respecter le protocole / Travailler en équipe. - Rédiger régulièrement le compte -rendu

Protocole Etape par Etape

- > Allumer l'ordinateur.
- > Ouvrir un navigateur internet.
- Rechercher l'url : https://blast.ncbi.nlm.nih.gov/Blast.cgi
- Accéder au site.

Logiciel BLAST

BLAST est un logiciel qui permet de comparer une séquence d'un ADN récolté dans un échantillon à une banque mondiale de données et d'identifier éventuellement l'espèce associée à l'échantillon.

L'ADN, support de l'information génétique, correspond à l'assemblage dans un ordre précis d'un grand nombre de nucléotides (A - T - C - G).

Rédiger le compte-rendu (Q1, Q2 et Q3).

(2)

Cliquer sur « Nucleotide BLAST »

- (3)
- Renseigner la séquence à déterminer de nucléotides issue d'un ADN inconnu, à identifier Dans le section Enter Query Sequence,
- Voir les séquences à déterminer en fin de protocole.

- Dans le section Choose search set, pour Database, Vérifier que Standard Database (nr etc.) est sélectionné.
- Dans le section Programm Selection, Sélectionner Somewhat similar sequences (blastn).

- Cliquer sur le signe + pour développer l'onglet Algorythm parameters.
- > Dans le section General Parameters,

Pour Max matches in a query range Renseigner: 5.

(BLAST affichera ainsi seulement les 5 meilleures correspondances par rapport à la séquence de nucléotides à identifier).

5) [>

Lancer BLAST.

BLAST

Search database nt using Megablast (Optimize for highly similar sequences)

Show results in a new window

> Lecture des Résultats.

Les résultats correspondent aux noms des séquences trouvées dans la banque de données qui ressemblent à la séquence à déterminer.

- Les résultats sont classés du plus grand au plus petit pourcentage d'identité (ressemblance) entre la séquence inconnue et les séquences de la banque de données.
- Si le pourcentage d'identité est de :
 - o 100 %, on peut confirmer l'identité de la séquence à déterminer.
 - o Entre 85 et 100 %, on peut estimer avoir de forte ressemblances
 - o Inférieure à 85 %, il ne peut être établi de ressemblance.

Séquences de nucléotides inconnues à déterminer :

√ Séquence 1 :

√ Séquence 2 :

GAGCAGTGCGCTCTCCTGGTGGACGGTTTCGTGGCTGGCCCCACGGCCGTGGCGACAGCG CGCCGCAACTTCCCC

7

Rédiger le compte-rendu (Q4).

Compte-rendu

<u>Identification d'espèces par analyse de</u> séquences d'ADN environnemental (ADNe)

- Apporter les informations suivantes :
- 1. Indiquer quelle méthode applique le logiciel BLAST.
- Préciser l'utilité d'utiliser ce logiciel et comment il procède.
- 3. Rappeler la composition d'une molécule d'ADN.
- 4. Indiquer pour chaque séquence à déterminer :
 - Le nom scientifique (Scientific name) de l'espèce ayant le plus de ressemblance avec la séquence à déterminer,
 - Le pourcentage d'identité.