C- La traduction de l'ARNm en protéines : un assemblage d'acides aminés

TP 3 traduction.

La traduction a lieu dans le cytoplasme et obéit au code génétique

Doc3 a et 3b Le code génétique est totalement élucidé en 1966, c'est un système de correspondance entre les nucléotides et les acides aminés.

Document 3a: le code génétique et 3b

Le système de correspondance entre les séquences de nucléotides de l'ARNm (et donc de l'ADN) et la séquence d'acides aminés des protéines s'appelle **LE CODE GENETIQUE**

Ce code fait donc le lien entre d'une part un ou plusieurs codons, qui sont une suite de trois

le code génétique											
		Deuxième lettre									ijk
		U		C		Α		G			
Première lettre (côté 5')	U	UUU UUC UUA UUG	Phe Phe Leu Leu	UCU UCC UCA UCG	Ser Ser Ser	UAU UAC UAA UAG	Tyr Tyr Stop Stop	UGU UGC UGA UGG	Cys Cys Stop Trp	U C A G	
	С	CUU CUC CUA CUG	Leu Leu Leu Leu	CCU CCC CCA CCG	Pro Pro Pro Pro	CAU CAC CAA CAG	His His Gln Gln	CGU CGC CGA CGG	Arg Arg Arg Arg	U C A G	Troisième le
	Α	AUU AUC AUA AUG	Ile Ile Ile Met	ACU ACC ACA ACG	Thr Thr Thr Thr	AAU AAC AAA AAG	Asn Asn Lys Lys	AGU AGC AGA AGG	Ser Ser Arg Arg	U C A G	cô:
	G	GUU GUC GUA GUG	Val Val Val Val	GCU GCC GCA GCG	Ala Ala Ala Ala	GAU GAC GAA GAG	Asp Asp Glu Glu	GGU GGC GGA GGG	Gly Gly Gly Gly	U C A G	(
codon d'initiation codon de terminaison											

bases nucléiques d'un ARN messager (lui-même issue de la transcription fidèle de l'ADN), et d'autre part entre chaque acide aminé constitutif des protéines.

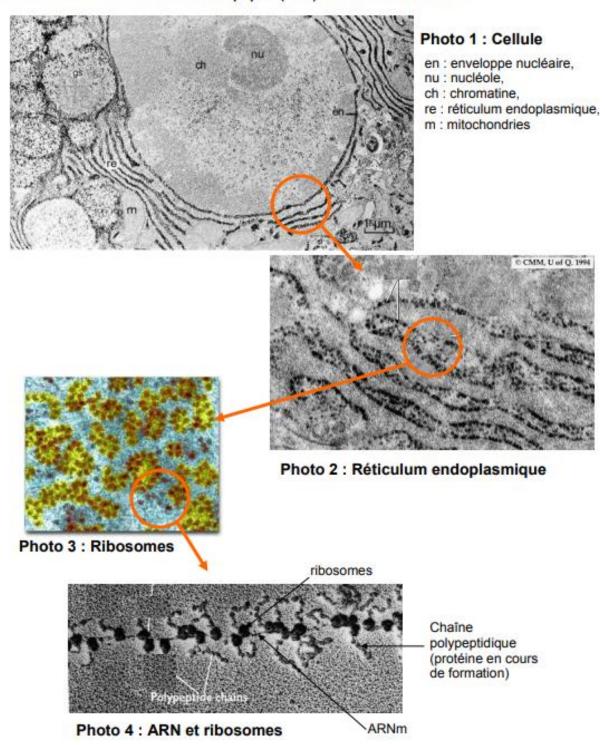
Document 3b: la liste alphabétique des acides aminés

Nom	Symbole	Nom	Symbole	
Acide aspartique	Asp	Leucine	Leu	
Acide glutamique	Glu	Lysine	Lys	
Alanine	Ala	Méthionine	Met	
Arginine	Arg	Phény la lan i ne	Phe	
Asparagine	Asn	Proline	Pro	
Cystéine	Cys	Sérine	Ser	
Glutamine	Gln	Thréonine	Thr	
Glycine ou glycocolle	Gly	Tryptophane	Trp	
Histidine	His	Tyrosine	Tyr	
Isoleucine	Ile	Valine	Val	

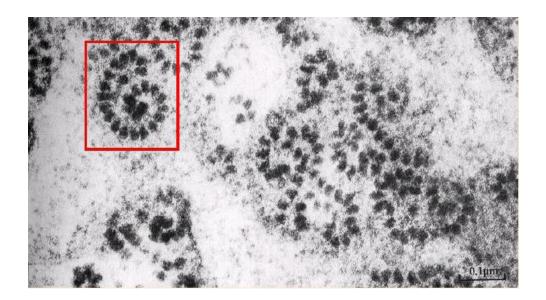
a) Le code génétique et ses propriétés

Le <u>code génétique</u> est le système de <u>correspondance</u> entre <u>les <u>nucléotides</u> (A,U,G,C) et les <u>acides aminés</u>.</u>

Pour coder 1 acide aminé il faut un 3 nucléotides c'est un triplet ou codon.


Le code génétique à plusieurs propriétés essentielles :

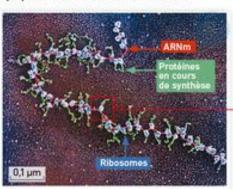
- Plusieurs triplets codent pour le même acide aminé : c'est la redondance du code génétique.
- Un codon désigne un seul acide aminé : le code génétique est non-ambigu.
- <u>Certains codons ne désignent pas d'acides aminés</u> : ce sont des codons-stop qui désignent la fin de la séquence codant la protéine.
- Le code génétique est universel. La signification des codons est la même chez tous les êtres vivants.


b) L'assemblage des acides aminés

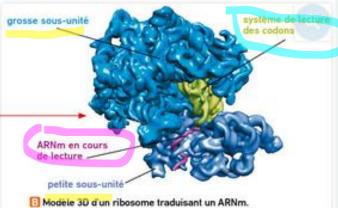
Document 5: la traduction

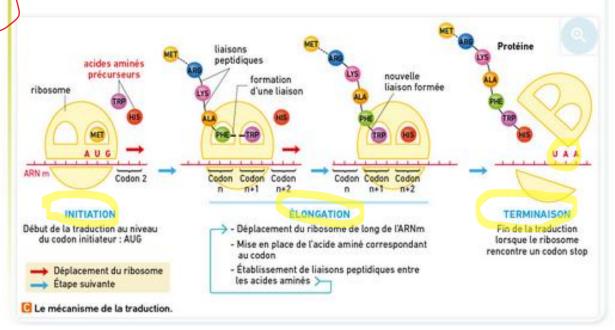
Document A: Observation microscopiques (MET) concernant la traduction.

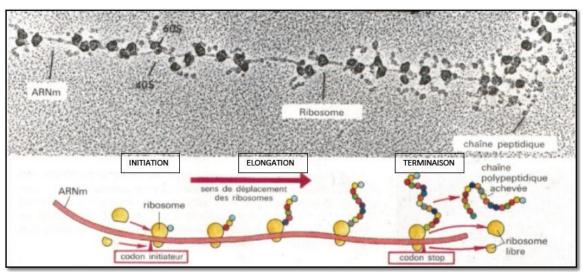
Les expériences de marquage radioactif réalisées montrent que les protéines sont synthétisées dans le <u>réticulum endoplasmique</u> <u>granulaire</u>.



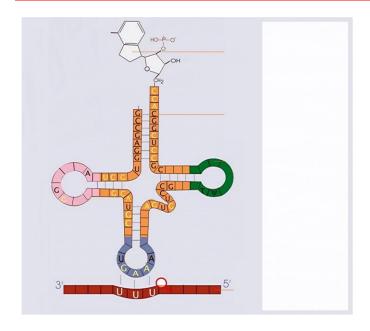
2 La traduction : acteurs et mécanismes


Dans le cytoplasme des cellules, les acides aminés s'assemblent pour former des protéines au niveau de minuscules structures, les ribosomes*.


Chaque ribosome est constitué d'une petite sous-unité capable de se lier à l'ARNm et d'une grosse sous-unité qui peut abriter deux acides aminés. Un ribosome parcourt l'ARNm et assemble au fur et à mesure les acides aminés en suivant les règles de correspondance du code génétique.


Plusieurs ribosomes se succèdent sur le même ARNm, effectuant chacun une traduction.

La traduction d'un ARNm (microscopie électronique, fausses couleurs).

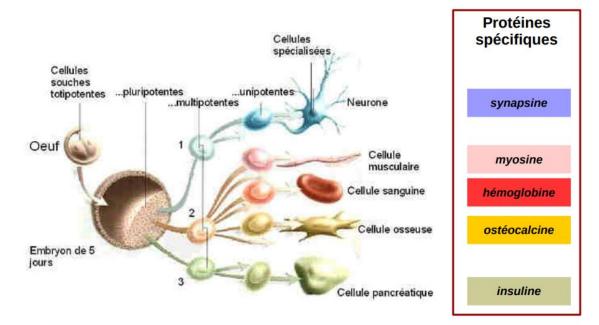

L'assemblage des acides aminés nécessite des ribosomes qui « lisent » l'ARNm et qui assurent l'enchainement des acides aminés. Ces organites sont présents dans le cytoplasme au niveau du réticulum endoplasmique granuleux (REG)

Un ribosome se fixe au début de la molécule d'ARNm sur le premier codon (AUG) : c'est l'<u>initiation</u> de la traduction.

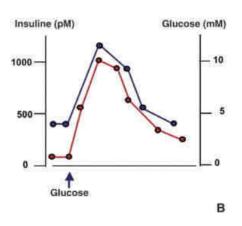
Puis il se déplace le long de l'ARNm et en assure la lecture en assemblant les acides aminés correspondant aux codons successifs : c'est la phase d'élongation.

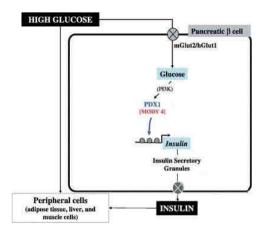
Lors de la <u>terminaison</u> de la traduction, la lecture se termine par un <u>codon-stop</u>, le ribosome se détache, <mark>la protéine est libérée.</mark>

[La correspondance entre le codon et l'acide aminé correspondant se fait grâce à l'ARNt contenu dans le ribosome]

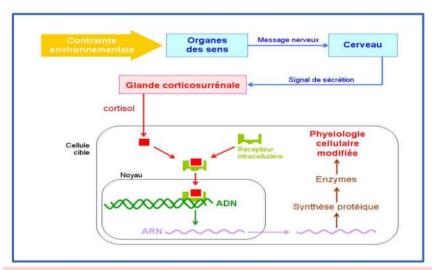


https://www.youtube.com/watch?v=TfYf_rPWUdY


https://www.youtube.com/watch?v=5REsGZQGEZ4


III. La régulation de l'expression du patrimoine génétique.

L'expression génétique peut être modifiée par des facteurs internes (hormones, chronologie du développement...) et externes : le stress, uv...


Des cellules génétiquement identiques produisent des protéines différentes donc tous les gènes d'une cellule ne s'expriment pas !!!

La production de l'insuline, donc l'expression du gène de l'insuline, est contrôlée par le taux de glucose : un taux élevé, stimule l'expression du gène de l'insuline donc l'expression d'un gène peut-être régulée par des facteurs internes

En conditions de stress, l'organisme répond par des adaptations physiologiques favorables à une activité physique plus intense (augmentation du rythme cardiaque, de la pression artérielle ...). Ces modifications résultent d'une augmentation de l'activité de certaines enzymes.

La production de différentes enzymes du stress est contrôlée par le taux de cortisol, luimême dépendant d'un facteur externe, perçu par les organes des sens.

.... donc l'expression d'un gène peut-être régulée par des facteurs externes

BILAN

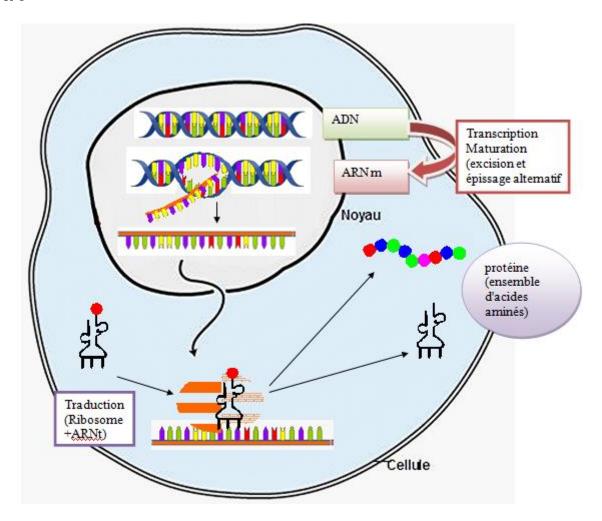
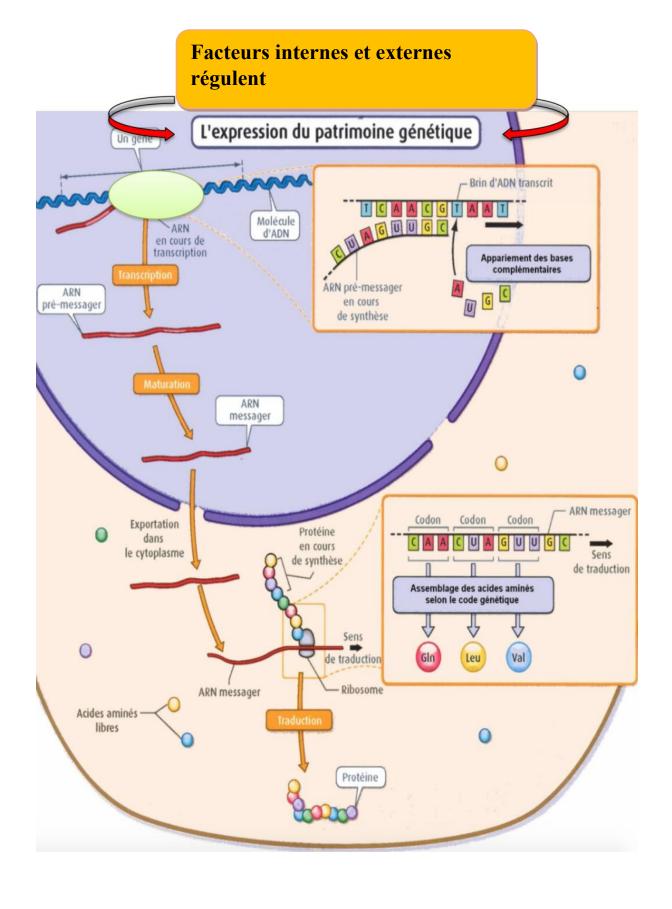



Schéma des étapes de la synthèse d'une protéine

La synthèse des protéines est un phénomène complexe qui se déroule en trois étapes :

- La transcription de l'ADN en ARN pré-messager
- La maturation / épissage alternatif de l'ARN pré-messager en ARN messager
- La traduction de l'ARN messager en protéine

La <u>fabrication des protéines</u> est sous le contrôle du génotype, elle définit le <u>phénotype à l'échelle moléculaire</u>, cellulaire, <u>induisant le phénotype macroscopique de l'individu</u>.

