Eléments de correction

a) Doc. 1b & c - Identifier le mécanisme responsable de la libération d'O₂ par les stromatolithes.

Les stromatolites réalisent la photosynthèse et libèrent ainsi du dioxygène.

b) Doc. 1a & b - Déterminer la date d'apparition du dioxygène sur Terre et montrer qu'elle est liée à l'apparition de la vie.

En datant les plus vieux fossiles à 3,5 Ga, ce qui en fait les plus anciennes formes de vie terrestres, on peut donc conclure qu'à partir de cette date, il y a eu **production de dioxygène dans les océans**. Cette production est donc corrélée à l'apparition de la vie.

- c) Doc. 2a & b Expliquer les résultats de l'expérience présentée dans la vidéo.
 - <u>Cyanobactéries dans l'obscurité</u> => <u>respiration</u> (très faible consommation donc diminution de la concentration de dioxygène)
 - <u>Cyanobactéries à la lumière</u> => <u>photosynthèse</u> (forte libération donc augmentation de la concentration de dioxygène)
 - <u>Cyanobactéries à la lumière + fer soluble</u> => <u>oxydation du fer</u> (tout le dioxygène produit par la photosynthèse est piégé pour former des oxydes de fer)
- d) Doc. 2b & c Identifier le lieu de formation (océan ou continent) de chacune de ces roches.

 Déterminer les conditions nécessaires (fer, O₂) à la formation de ces roches.
- Entre -3,8 et -2 Ga : <u>fers rubanés</u> : formations sédimentaires marines ; nécessitent la présence de fer et de dioxygène dans les océans.
 On suppose donc que le dioxygène est apparu dans l'océan à cette période, car il est inhérent à la mise en
- place de ces structures.
 A partir de 2,2 Ga : paléosols rouges : roches sédimentaires continentales ; nécessitent la présence de fer

et de dioxygène sur les continents.

e) Doc. 2d - Expliquez pourquoi les paléosols rouges ne se forment pas en même temps que les fers

rubanés.

Les paléosols rouges d'hydroxyde de fer se forment sur les continents quand il commence à y avoir du dioxygène dans l'atmosphère qui réagit avec le Fe²⁺ d'origine continental. **Ce n'est qu'après saturation de l'eau que le O₂ est passé dans l'atmosphère**. A partir de ce moment-là, les ions solubles Fe²⁺ n'arrivent plus dans les océans et il n'y a donc plus formation de fers rubanés.

Période	Dioxygène présent dans les océans	Dioxygène présent dans l'atmosphère	Indices géologiques et mécanismes chimiques ou biochimiques impliqués
4,6 - 3,5 Ga	oui / non	oui / non	Aucun indice ne témoigne de la moindre présence de dioxygène sur Terre, que ce soit dans l'atmosphère ou dans les océans. Présence de fer dissous dans les océans (doc 1b).
3,5 - 2,2 Ga	oui / non	oui / non	L'O ₂ est apparu dans les océans vers – 3,5 Ga, fabriqué par des cyanobactéries photosynthétiques vivant en milieu peu profond, anoxique (sans ou avec très peu d'O ₂). On en trouve la trace dans les stromatolites , formées d'une alternance de carbonate de calcium CaCO ₃ (bandes claires) et de matière organique (bandes noires) correspondant à des restes de cyanobactéries.
			Dans les conditions de la Terre primitive, le fer provenant de l'érosion des continents est accumulé sous forme soluble Fe^{2+} dans les océans. En présence d' O_2 ils s'oxydent en ions Fe^{3+} et peuvent alors précipiter sous forme, essentiellement, d'hématite : $4Fe^{2+} + O_2 + 4 H_2O \rightarrow 2 Fe^{3+}O_3 \text{ (hématite)} + 8 H^+.$ Les fers rubanés contiennent des couches siliceuses alternant avec des couches rouge riches en hématite.
2,2 - 0 Ga	oui / non	oui / non	Ainsi dans les premiers temps, tous l'O ₂ a été piégé dans les fers rubanés. Une fois tout le Fe ²⁺ oxydé sous forme de Fe ₂ O ₃ , il y a 2,2 Ga, l'O ₂ présent dans l'hydrosphère passe dans l'atmosphère. Il réagit alors avec le Fe ²⁺ continental des roches riches en Fe ²⁺ , formant les paléosols rouges . La quantité d'O ₂ augmentant, l'excès d'O ₂ reste ensuite sous forme de gaz dans l'atmosphère. Après une augmentation progressive, sa concentration reste stable aujourd'hui.