Raisonnement par récurrence. Limite d'une suite

Raisonnement par récurrence

EXERCICE 1

Soit la suite (u_n) définie sur $\mathbb N$ par : $\begin{cases} u_0 = 14 \\ u_{n+1} = 2u_n - 5 \end{cases}$

Montrer par récurrence que : $\forall n \in \mathbb{N}, \ u_n = 9 \times 2^n + 5$.

EXERCICE 2

La suite (u_n) est définie par : $u_1 = 0$ et $u_{n+1} = \frac{1}{2 - u_n}$

- 1) Calculer u_2 , u_3 , u_4 .
- 2) Que peut-on faire comme conjecture sur l'expression de u_n en fonction de n?
- 3) Démontrer cette conjecture par récurrence et donner la valeur exacte de u_{2021} .

EXERCICE 3

Soit la suite (u_n) définie pour $n \ge 1$ par : $u_n = 1 \times 2 + 2 \times 3 + 3 \times 4 + \cdots + n(n+1)$.

- 1) Déterminer u_1 , u_2 , u_3 puis déterminer une relation entre u_{n+1} et u_n .
- 2) Montrer par récurrence que : $\forall n \in \mathbb{N}^*$, $u_n = \frac{n(n+1)(n+2)}{3}$.

EXERCICE 4

Somme des carrés

On pose pour $n \ge 1$, $S_n = 1^2 + 2^2 + 3^2 + \cdots + n^2$.

- 1) Calculer S_1 , S_2 , S_3 et S_4 . Exprimer S_{n+1} en fonction de S_n .
- 2) Démontrer par récurrence que : $\forall n \geqslant 1$, $S_n = \frac{n(n+1)(2n+1)}{6}$

EXERCICE 5

Somme des cubes

On pose pour $n \ge 1$, $S_n = 1^3 + 2^3 + 3^3 + \cdots + n^3$.

- 1) Calculer S_1 , S_2 , S_3 et S_4 . Exprimer S_{n+1} en fonction de S_n .
- 2) Démontrer par récurrence que : $\forall n \geqslant 1$, $S_n = \frac{n^2(n+1)^2}{4}$

EXERCICE 6

Soit la suite (v_n) définie sur $\mathbb N$ par : $egin{cases} v_0 = 10 \\ v_{n+1} = \sqrt{v_n + 6} \end{cases}$

Montrer par récurrence que : $\forall n \in \mathbb{N}, \ 3 \leqslant v_n \leqslant 10$

La suite (u_n) est la suite définie sur \mathbb{N} par : $\begin{cases} u_0 \in]0; \ 1[\\ u_{n+1} = u_n(2 - u_n) \end{cases}$

- 1) Montrer que la fonction f définie par f(x) = x(2-x) est croissante sur [0; 1].
- 2) Démontrer par récurrence que : $\forall n \in \mathbb{N}, \ 0 < u_n < 1$
- 3) En déduire que la suite (u_n) est croissante.

EXERCICE 8

La suite (u_n) est définie par : $u_0 = 1$ et $u_{n+1} = \sqrt{2 + u_n}$.

Démontrer par récurrence que : $\forall n \in \mathbb{N}, \ 0 < u_n < 2$ et (u_n) croissante.

EXERCICE 9

Pour $n \ge 1$, on rappelle que : $n! = n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1$.

Démontrer, par récurrence que : $\forall n \ge 1, n! \ge 2^{n-1}$.

EXERCICE 10

Démontrer par récurrence que :

- 1) $\forall n \in \mathbb{N}, \ 4^n + 5$ est un multiple de 3.
- 2) $\forall n \in \mathbb{N}$, $3^{2n} 1$ est un multiple de 8.
- 3) $\forall n \in \mathbb{N}$, $3^{2n+1} + 2^{n+2}$ est un multiple de 7.
- 4) $\forall n \ge 1$, $n^3 + 2n$ est un multiple de 3.

EXERCICE 11

Soit la suite (u_n) , définie pour tout $n \in \mathbb{N}$ par : $\begin{cases} u_0 = 1, u_1 = 2 \\ u_{n+2} = 5u_{n+1} - 6u_n \end{cases}$

Démontrer par récurrence double que : $\forall n \in \mathbb{N}: u_n = 2^n$

EXERCICE 12

On considère la suite (u_n) définie par : $\begin{cases} u_0 = 5 \\ u_{n+1} = \left(1 + \frac{2}{n+1}\right)u_n + \frac{6}{n+1} \end{cases}$

- 1) a) Calculer u_1 ; u_2 et u_3
 - b) Soit la suite (d_n) définie par : $d_n = u_{n+1} u_n$.

Écrire une fonction p(n) en Python donnant tous les termes :

- de 1 à n pour (u_n)
- de 0 à (n-1) pour (d_n)

Conjecturer la nature de la suite (d_n) .

- 2) Démontrer par récurrence que : $\forall n \in \mathbb{N}, \ u_n = 4n^2 + 12n + 5.$
- 3) Valider la conjecture émise à la question 1c).

Limite d'une suite

EXERCICE 13

Déterminer la limite de la suite (u_n) dans les cas suivants :

1)
$$u_n = \frac{2n+5}{3n-2}$$

$$2) \ u_n = \frac{n}{4} - 2 + \frac{2n}{n^2 + 5}$$

2)
$$u_n = \frac{n}{4} - 2 + \frac{2n}{n^2 + 5}$$
 3) $u_n = \frac{-3n^2 + 2n + 1}{2(n+1)^2}$

EXERCICE 14

Déterminer la limite de la suite (u_n) dans les cas suivants :

1)
$$u_n = \frac{10n - 3}{n^2 - 2}$$

2)
$$u_n = \frac{2n^2 - 1}{3n + 2}$$

1)
$$u_n = \frac{10n-3}{n^2-2}$$
 2) $u_n = \frac{2n^2-1}{3n+2}$ 3) $u_n = \frac{3n^2-4}{n+1} - 3n$

EXERCICE 15

Déterminer la limite de la suite (u_n) à l'aide du théorème des gendarmes ou de comparaison dans les cas suivants :

1)
$$u_n = \frac{\cos(2n)}{\sqrt{n}}, n \in \mathbb{N}^*$$

$$3) \ u_n = n + 1 - \cos n$$

2)
$$u_n = n^2 - 4(-1)^n$$

4)
$$u_n = \frac{n + (-1)^n}{n^2 - 1} - 2$$
 , $n \ge 2$.

EXERCICE 16

La suite (u_n) est définie pour $n \ge 1$ par : $u_n = \frac{n}{n^2+1} + \frac{n}{n^2+2} + \cdots + \frac{n}{n^2+n}$

- 1) Calculer u_1 , u_2 et u_3
- 2) Écrire une fonction u(n) en Python qui retourne u_n pour $n \ge 1$. Donner alors u_{10} , u_{20} , u_{50} puis conjecturer la limite de (u_n) ?

3) Démontrer que pour
$$n \geqslant 1$$
: $\frac{n^2}{n^2 + n} \leqslant u_n \leqslant \frac{n^2}{n^2 + 1}$

4) En déduire la convergence et la limite de la suite (u_n) .

Limite d'une suite géométrique

EXERCICE 17

Déterminer la limite de la suite (u_n) tel que : $u_n = 1 + \frac{1}{2} + \frac{1}{2^2} + \cdots + \frac{1}{2^n}$

EXERCICE 18

Soit la suite (u_n) définie sur \mathbb{N} par : $u_0 = 3$ et $u_{n+1} = \frac{1}{3}u_n - 2$ On pose pour $n \in \mathbb{N}$: $v_n = u_n + 3$.

- 1) a) Démontrer que la suite (v_n) est géométrique.
 - b) Calculer v_n puis u_n en fonction de n

2) On note $S_n = v_0 + v_1 + \cdots + v_n$ et $T_n = u_0 + u_1 + \cdots + u_n$

a) Calculer S_n en fonction de n puis en déduire $\lim_{n \to +\infty} S_n$.

b) Déterminer T_n en fonction de S_n et n puis en déduire $\lim_{n \to +\infty} T_n$.

EXERCICE 19

Soit la suite (u_n) définie sur \mathbb{N}^* par $u_1 = \frac{3}{2}$ et $u_{n+1} = \frac{nu_n + 1}{2(n+1)}$. On pose, pour $n \in \mathbb{N}^*$, $v_n = nu_n - 1$.

1) Montrer que (v_n) est géométrique; préciser sa raison et son premier terme.

2) En déduire que, pour tout $n \in \mathbb{N}^*$: $u_n = \frac{1+0.5^n}{n}$.

3) Déterminer la limite de la suite (u_n) .

4) Justifier que, pour tout $n \in \mathbb{N}^*$: $u_{n+1} - u_n = -\frac{1 + 0, 5^n(1 + 0, 5n)}{n(n+1)}$. En déduire le sens de variation de la suite (u_n) .

Suite monotone

EXERCICE 20

Pour les cas suivants, justifier si la suite (u_n) est majorée, minorée, bornée.

1)
$$u_n = \sin n - 3$$

2)
$$u_n = n + \cos n$$

2)
$$u_n = n + \cos n$$
 3) $u_n = 2^n + 3n - 1$

4)
$$u_n = \frac{1}{1+n^2}$$

5)
$$u_n = 5(-3)^n + 2$$

4)
$$u_n = \frac{1}{1+n^2}$$
 5) $u_n = 5(-3)^n + 2$ 6) $u_n = 2-n + (-1)^n$

EXERCICE 21

La suite (u_n) est définie par : $u_0 = 1$ et $u_{n+1} = u_n + 2n + 3$.

- 1) Étudier la monotonie de la suite (u_n) .
- 2) Démontrer par récurrence que, pour tout entier naturel n, $u_n > n^2$.
- 3) Que peut-on dire sur la convergence de la suite (u_n) .

EXERCICE 22

Vrai-Faux

- 1) **Proposition 1:** « Si une suite n'est pas majorée alors elle tend vers $+\infty$. »
- 2) **Proposition 2:** « Si une suite est croissante alors elle tend vers $+\infty$. »
- 3) **Proposition 3 :** « Si une suite tend vers $+\infty$ alors elle n'est pas majorée. »
- 4) **Proposition 4:** « Si une suite tend vers $+\infty$ alors elle est croissante.»

Deux méthodes pour déterminer la limite d'une suite

La suite (u_n) est définie sur \mathbb{N} par : $u_0 = 0$ et $u_{n+1} = \frac{2u_n + 1}{u_n + 2}$

Partie A: première méthode

- 1) Montrer que : $\forall n \in \mathbb{N}, \ u_{n+1} = 2 \frac{3}{u_n + 2}$.
- 2) a) Démontrer par récurrence que : $\forall n \in \mathbb{N}, \ 0 \leq u_n < 1$
 - b) Vérifier que $u_{n+1} u_n = \frac{1 u_n^2}{u_n + 2}$ puis montrer que (u_n) est croissante.
- 3) En déduire que la suite (u_n) est convergente vers une limite ℓ
- 4) On admet que ℓ vérifie $f(\ell) = \ell$ avec f définie sur [0;1] par $f(x) = \frac{2x+1}{x+2}$
 - a) Déterminer la valeur de ℓ
 - b) Écrire un algorithme déterminant la valeur N tel que : $\forall n > N$, $|u_n \ell| < 10^{-3}$. Donner la valeur de N à l'aide de la calculatrice.

Partie B: deuxième méthode

1) La suite (v_n) est définie pour tout entier n par : $v_n = \frac{u_n - 1}{u_n + 1}$

Démontrer que (v_n) est géométrique. Préciser la raison et le premier terme.

- 2) Exprimer v_n , puis u_n en fonction de n.
- 3) En déduire que la suite (u_n) est convergente et donner sa limite.

EXERCICE 24

On considère la suite (u_n) définie sur \mathbb{N} par : $u_0 = 1$ et $u_{n+1} = \sqrt{2u_n}$.

- 1) On considère l'algorithme en pseudo-code suivant :
 - a) Donner une valeur approchée à 10^{-3} près du résultat qu'affiche cet algorithme lorsque l'on choisit n = 3.
 - b) Que permet de calculer cet algorithme?

Lire n
$u \leftarrow 1$
pour <i>i</i> variant de 1 à <i>n</i> faire $u \leftarrow \sqrt{2u}$
fin Afficher <i>u</i>
Amener u

c) Remplir le tableau ci-dessous. On donnera les valeurs approchées à 10^{-3}

п	1	5	10	20
Valeur affichée				

Quelles conjectures peut-on émettre concernant la suite (u_n) ?

- 2) a) Démontrer que, pour tout entier naturel n, $0 < u_n \le 2$.
 - b) Déterminer le sens de variation de la suite (u_n) .
 - c) Démontrer que (u_n) est convergente. On ne demande pas sa limite.

Vrai-Faux

Soit (u_n) la suite définie pour tout $n \in \mathbb{N}^*$ par $u_n = (-1)^n$.

- 1) **Proposition 1:** « La suite (u_n) est bornée. »
- 2) **Proposition 2 :** « La suite (u_n) converge. »
- 3) **Proposition 3 :** « La suite de terme général $\frac{u_n}{n}$ converge. »
- 4) Proposition 4:

« Toute suite (v_n) à termes strictement positifs et décroissante converge vers 0. »

EXERCICE 26

Soit la suite (u_n) définie sur \mathbb{N}^* par :

$$u_n = \frac{1}{n+\sqrt{1}} + \frac{1}{n+\sqrt{2}} + \frac{1}{n+\sqrt{3}} + \dots + \frac{1}{n+\sqrt{n}}$$

- 1) Calculer les termes u_1 , u_2 , u_3 . Pour les termes u_2 et u_3 , on donnera une valeur approchée à 10^{-3} près.
- 2) Montrer que : $\forall n \in \mathbb{N}^*, \ \frac{n}{n+\sqrt{n}} \leqslant u_n \leqslant \frac{n}{n+1}$
- 3) En déduire que la suite converge et calculer sa limite.

EXERCICE 27

Soit la suite (u_n) définie sur $\mathbb N$ par : $\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{2}{3}u_n + \frac{1}{3}n + 1 \end{cases}$

- 1) a) Calculer u_1 , u_2 , u_3 et u_4 (arrondir à 10^{-2} près).
 - b) Formuler une conjecture sur le sens de variation de cette suite.
- 2) a) Démontrer que pour tout entier naturel $n: u_n \le n+3$
 - b) Démontrer que pour tout entier naturel n: $u_{n+1} u_n = \frac{1}{3}(n+3-u_n)$
 - c) En déduire une validation de la conjecture précédente.
- 3) On désigne par (v_n) la suite définie sur $\mathbb N$ par : $v_n=u_n-n$.
 - a) Démontrer que la suite (v_n) est une suite géométrique de raison $\frac{2}{3}$.
 - b) En déduire que pour tout entier naturel n, $u_n = 2\left(\frac{2}{3}\right)^n + n$
 - c) Déterminer la limite de la suite (u_n) .
- 4) Pour tout n non nul, on pose : $S_n = \sum_{k=0}^n u_k = u_0 + u_1 + \dots + u_n$ et $T_n = \frac{S_n}{n^2}$.
 - a) Exprimer S_n en fonction de n.
 - b) Déterminer la limite de la suite (T_n) .

On considère la suite
$$(v_n)$$
 définie par : $\begin{cases} v_0 = 1 \\ v_{n+1} = \frac{9}{6 - v_n} \end{cases}$

Partie A

- 1) Écrire une fonction v(n) en Python affichant les termes du rang 0 au rang n.
- 2) Compléter le tableau suivant pour n = 8

п	0	1	2	3	4	5	6	7	8
u_n	1	1,800	2,143						

Pour n = 100, les derniers termes affichés sont :

2,967	2,968	2,968	2,968	2,969	2,969	2,969	2,970	2,970	2,970

Quelles conjectures peut-on émettre concernant la suite (v_n) ?

- 3) a) Démontrer par récurrence que, pour tout entier naturel $n: 0 < v_n < 3$.
 - b) Démontrer que, pour tout entier naturel $n: v_{n+1} v_n = \frac{(3 v_n)^2}{6 v_n}$. La suite (v_n) est-elle monotone?
 - c) Démontrer que la suite (v_n) est convergente.

Partie B Recherche de la limite de la suite v_n .

On considère la suite (w_n) définie par : $w_n = \frac{1}{v_n - 3}$

- 1) Démontrer que (w_n) est une suite arithmétique de raison $-\frac{1}{3}$
- 2) En déduire l'expression de (w_n) , puis celle de (v_n) en fonction de n.
- 3) Déterminer la limite de la suite (v_n) .

EXERCICE 29

Soit (u_n) la suite définie par : $\begin{cases} u_1 = \frac{1}{2} \\ u_{n+1} = \frac{n+1}{2n} u_n \end{cases}$

- 1) Calculer u_2 , u_3 , u_4 et u_5 .
- 2) a) Démontrer que, pour tout entier naturel n non nul, u_n est strictement positif.
 - b) Démontrer que la suite (u_n) est décroissante.
 - c) Que peut-on en déduire pour la suite (u_n) ?

EXERCICE 30

Partie A

On considère la suite (u_n) définie sur \mathbb{N} par : $u_0 = 2$ et $u_{n+1} = \frac{1 + 3u_n}{3 + u_n}$

On admet que tous les termes de cette suite sont définis et strictement positifs.

- 1) Démontrer par récurrence que : $\forall n \in \mathbb{N}, \ u_n > 1$.
- 2) a) Établir que, pour tout entier naturel n, on a : $u_{n+1} u_n = \frac{(1 u_n)(1 + u_n)}{3 + u_n}$.

b) Déterminer la monotonie de la suite (u_n) . En déduire que (u_n) converge.

Partie B

On considère la suite (u_n) définie sur \mathbb{N} par : $u_0 = 2$ et $u_{n+1} = \frac{1+0,5u_n}{0,5+u_n}$

On admet que tous les termes de cette suite sont définis et strictement positifs.

1) On considère l'algorithme suivant :

Reproduire et compléter le tableau suivant, en faisant fonctionner cet algorithme pour n=9. Les valeurs de u seront arrondies à 10^{-4} . Conjecturer le comportement de (u_n) à l'infini.

i	1	2	3	4	5	6	7	8	9
и									

Lire
$$n$$
 $u \leftarrow 2$
pour i variant de 1 à n **faire**

$$u \leftarrow \frac{1+0.5u}{0.5+u}$$
Afficher u
fin

- 2) Soit la suite (v_n) définie sur \mathbb{N} par : $v_n = \frac{u_n 1}{u_n + 1}$.
 - a) Démontrer que la suite (v_n) est géométrique de raison $-\frac{1}{3}$.
 - b) Calculer v_0 puis écrire v_n en fonction de n.
- 3) a) Montrer que, pour tout entier naturel n, on a : $v_n \neq 1$.
 - b) montrer que, pour tout entier naturel n, on a : $u_n = \frac{1 + v_n}{1 v_n}$.
 - c) Déterminer la limite de la suite (u_n) .

EXERCICE 31

Soit u la suite définie sur \mathbb{N} par : $u_0 = 2$ et $u_{n+1} = 2u_n + 2n^2 - n$.

On pose la suite v définie sur $\mathbb N$ par : $v_n = u_n + 2n^2 + 3n + 5$.

1) Voici un extrait de feuille de tableur :

	A	В	С
1	n	и	v
2	0	2	7
3	1	4	14
4	2	9	28
5	3	24	56
6	4	63	
7			
8			
9			
10			

Quelles formules a-t-on écrites dans les cellules C2 et B3 et copiées vers le bas pour afficher les termes des suites u et v?

2) Déterminer une expression de v_n et de u_n en fonction de n uniquement.

On veut étudier les suites de termes positifs telles que $u_0 > 1$ et possédant la propriété suivante : pour tout n > 0, la somme des n premiers termes est égale au produit de ces termes.

On admet qu'une telle suite (u_n) existe. Elle vérifie donc trois propriétés :

- $u_0 > 1$,
- pour tout $n \ge 0$, $u_n \ge 0$,
- pour tout n > 0, $u_0 + u_1 + \cdots + u_{n-1} = u_0 \times u_1 \times \cdots \times u_{n-1}$.
- 1) On choisit $u_0 = 3$. Déterminer u_1 et u_2 .
- 2) Pour n > 0, on note $s_n = u_0 + u_1 + \cdots + u_{n-1} = u_0 \times u_1 \times \cdots \times u_{n-1}$. On a en particulier $s_1 = u_0$.
 - a) Vérifier que pour tout entier n > 0, $s_{n+1} = s_n + u_n$ et $s_n > 1$.
 - b) En déduire que pour tout entier n > 0, $u_n = \frac{s_n}{s_n 1}$.
 - c) Montrer que pour tout $n \ge 0$, $u_n > 1$.
- 3) L'algorithme suivant calcule le terme u_n pour une valeur de n donnée.
 - a) Compléter l'algorithme.
 - b) Le tableau ci-dessous donne des valeurs arrondies au millième de u_n pour différentes valeurs de l'entier n:

п	0	5	10	20	30	40
u_n	3	1,140	1,079	1,043	1,030	1,023

```
Saisir n, u
s prend la valeur u

pour i allant de 1 à n faire

| u prend la valeur .....
| s prend la valeur .....

fin

Afficher u
```

Quelle conjecture peut-on faire sur la convergence de la suite (u_n) ?

- 4) a) Justifier que pour tout entier n > 0, $s_n > n$.
 - b) En déduire la limite de la suite (s_n) puis celle de la suite (u_n) .