

Mathématiques

T^{ale} Bac Pro

Exercices

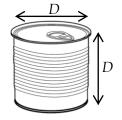
Les fonctions polynômiales de degré 3

CORRECTION EXERCICES

Entrainement 1

Exercice 1.1: La fonction cube

Certaines boites de conserve de forme cylindrique ont un diamètre D identique à leur hauteur. Leur volume est alors donné par la relation : $V=\frac{\pi\times D^3}{4}$



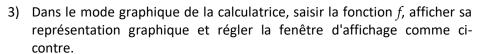
1) Calculer, en cm^3 , le volume V de la boite de conserve de diamètre D=6.5~cm. Arrondir à l'unité. $\pi=3.14$

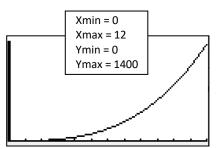
$$V = 3.14 \times 6.5^3 / 4$$
 soit $V \approx 215$ cm³

2) Soit la fonction f telle que $f(x) = \frac{\pi \times x^3}{4}$ définie sur l'intervalle [0; 12]. x est le diamètre de la boite en cm et f(x) son volume en cm^3 .

En prenant $\pi = 3.14$, montrer que f(x) peut s'écrire $f(x) = 0.785 \times x^3$.

$$f(x) = \frac{3{,}14 \times x^3}{4} = 0{,}785x^3$$





4) A l'aide de la lecture graphique de la calculatrice, déterminer les diamètres des boites de conserve du commerce dont les volumes sont donnés ci-dessous. Arrondir à 0,1 cm.

$$1 \text{ cm}^3 = 1 \text{ mL}$$

Volume (mL)	425	850
Diamètre (cm)	≈8,1	≈10,3

Exercice 1.2 : La dérivée

Donner les fonctions dérivées des fonctions suivantes :

$$f(x) = x^{3}$$

$$g(x) = 4x^{3}$$

$$h(x) = -3x^{3}$$

$$k(x) = \frac{2x^{3}}{3}$$

$$m(x) = \frac{5x^{3}}{6}$$

$$f'(x) = 3x^{2}$$

$$g'(x) = 4 \times 3x^{2}$$

$$g'(x) = 12x^{2}$$

$$h'(x) = -9x^{2}$$

$$k'(x) = \frac{2 \times 3x^{2}}{3}$$

$$h'(x) = \frac{5 \times 3x^{2}}{6} = \frac{5x^{2}}{2}$$

$$h'(x) = -9x^{2}$$

$$h'(x) = 2x^{2}$$

$$m'(x) = 2,5x^{2}$$

Exercice 1.3 : Dérivée et variations

Soit la fonction g telle que $g(x) = 0.6x^3$ définie sur l'intervalle [-3; 3].

1) Déterminer l'expression de la fonction dérivée g'(x).

$$g'(x) = 0.6 \times 3x^2 = 1.8x^2$$

2) Donner le signe de g'(x) sur l'intervalle [-3; 3]. Justifier.

 x^2 est toujours positif quelque soit la valeur de x donc g'(x) est positive sur l'intervalle [-3; 3].

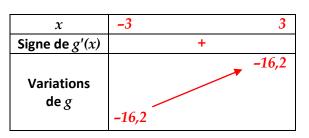
3) Compléter le tableau de variation ci-contre.

$$g(-3) = 0.6 \times (-3)^3 = -16.2$$

 $g(3) = 0.6 \times 3^3 = 16.2$

4) La fonction dérivée g'(x) = 0 pour x = 0. Pourquoi n'y a t-il pas d'extremum en ce point ?

Car la fonction dérivée g'(x) est nulle mais elle <u>ne</u> <u>change pas</u> de signe, elle reste positive.



Entrainement 2

Exercice 2.1: Dérivées

Donner les dérivées des fonctions suivantes :

Fonction	χ^3	χ^2	ax + b
Dérivée	$3x^2$	2 <i>x</i>	а

$f(x) = x^3 + 7x^2 + 2x + 13$	$g(x) = 3x^3 - 5x^2 + 8x - 10$	$h(x) = -7x^3 - 5x + 6$	
$f'(x) = 3x^2 + 14x + 2$	$g'(x) = 9x^2 - 10x + 8$	$f'(x) = -21x^2 - 5$	

Exercice 2.2 : Racines d'un polynôme du 2nd degré

A l'aide de la calculatrice, donner les racines x_1 et x_2 pour les quelles f(x) = 0 si elles existent :

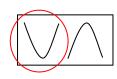
$f(x) = x^2 - 5x - 14$	$f(x) = x^2 + 2x + 7$	$f(x) = x^2 - 2x + 1$	
2 racines: $x_1 = -2 et x_2 = 7$	Pas de racine	1 seule racine: $x_1 = 1$	

Exercice 2.3 : Signes d'un polynôme du 2nd degré

Une fonction polynôme du second est de la forme $ax^2 + bx + c$.

Soit la fonction polynôme du second degré f telle que $f(x) = x^2 - 2x - 15$ définie sur l'intervalle [-5; 7].

- 1) Donner les valeurs des coefficients : a = 1
- h = -2
- c = -15
- 2) Selon le signe de *a*, entourer ci-contre la forme de la représentation graphique de la parabole.



a est positif

3) A l'aide des fonctionnalités de la calculatrice, déterminer, si elles existent les racines x_1 et x_2 du polynôme du 2^{nd} degré f, valeurs pour lesquelles f(x) = 0. Voir **Activité 2**. Les donner de telle manière que $x_1 < x_2$.

$$x_1 = -3$$

$$x_2 = 5$$

4) En déduire le signe du polynôme f dans le tableau.

x	- 5	-3		5	7
f(x)	+	0	-	0	+