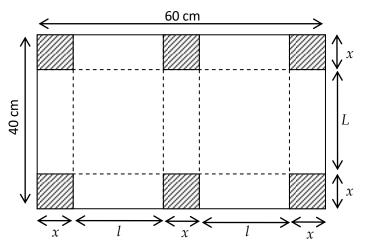
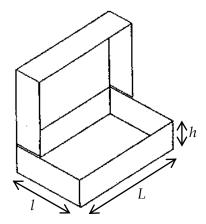
| ļ |
|---|
| 6 |

## Mathématiques

T<sup>ale</sup> Bac Pro

**Devoir** 


Les fonctions polynômiales de degré 3


| Nom :    |  |
|----------|--|
| Classe : |  |

| Compétence           | 1 | 2 | 3 | 4 |  |
|----------------------|---|---|---|---|--|
| S'approprier         |   |   |   |   |  |
| Analyser / Raisonner |   |   |   |   |  |
| Réaliser             |   |   |   |   |  |
| Valider              |   |   |   |   |  |
| Communiquer          |   |   |   |   |  |

A partir d'une feuille cartonnée rectangulaire de dimensions  $40\times60$  cm, on souhaite construire une boite comme le montrent les schémas ci-dessous en découpant des carrés de côté x et en pliant la feuille selon les pointillés.

<u>Problème</u>: Quelle doit être la valeur de x pour que la boite ait le volume le plus grand possible ? Quelles seront alors les dimensions de la boite et son volume ?





## Partie 1 Expression du volume

1) S'approprier En observant le schéma, compléter les pointillés :

$$x + L + x = \dots (1)$$

$$x + l + x + \dots = 90$$
 (2)

2) Analyser/Raisonner A partir de (1), **exprimer** la longueur L de la boite <u>en fonction de</u> x.

A partir de (2), **exprimer** la largeur l de la boite <u>en fonction de</u> x.

.....

**Exprimer** la hauteur h de la boite <u>en fonction de</u> x.

3) Sachant que  $V = h \times L \times l$  Donner l'expression du volume V(x) de la boite <u>en fonction de</u> x:

.....

**Donner** cette expression sous la forme développée :  $V(x) = ax^3 + bx^2 + cx$ 

## Partie 2 Etude de la fonction V(x)

Le volume V de la boite en fonction de x est donnée par la fonction :  $V(x) = 3x^3 - 120x^2 + 1200x$  L'étude se fera sur l'intervalle [0; 20].

1) Réaliser Déterminer la fonction dérivée V'(x) de la fonction V qui doit se présenter sous la forme :

 $V'(x) = ax^2 + bx + c$ 

- 2) Réaliser A l'aide des fonctionnalités de la calculatrice, **résoudre** l'équation du second degré V'(x) = 0 et **donner** les solutions  $x_1$  et  $x_2$  de cette équation. Arrondir à 0,1 si besoin.

Analyser/Raisonner Etudier le signe de V'(x) sur l'intervalle [0; 20].

| $f(x) = \frac{\text{Aide}}{ax^2 + bx + c}$ |                                                                |  |  |
|--------------------------------------------|----------------------------------------------------------------|--|--|
| +                                          | $ \begin{array}{c} + \\ x_1 \\ \hline - \\ a < 0 \end{array} $ |  |  |

4) Réaliser Calculer les valeurs demandées puis construire le tableau de variation de la fonction V sur son

intervalle [0 ; 20].

3)

| V(0) = | • |
|--------|---|
| V() =  |   |

| •••••   | • • • • • • • • • • • • • • • • • • • • | ••••• |  |
|---------|-----------------------------------------|-------|--|
| V(20) = | ·                                       |       |  |

| х                       | 0 | 20 |
|-------------------------|---|----|
| Signe de $V'(x)$        |   |    |
| Variation de ${\cal V}$ |   |    |

5) Valider En **déduire** les dimensions longueur L, largeur l et hauteur h de la boîte.

**Répondre** à la question du problème.

## Partie 3 Vérification calculatrice

- 1) Dans le mode graphique de la calculatrice, saisir la fonction  $3x^3 120x^2 + 1200x$
- 2) **Afficher** la représentation graphique en réglant la fenêtre d'affichage de la manière ci-dessous. Donner proprement l'allure de la représentation graphique.



Xmin: 0 max: 20 Ymin: 0 max: 4000

3) **Déterminer** les coordonnées du point maximum de la courbe en utilisant les fonctionnalités de la calculatrice.

.....

