

Mathématiques

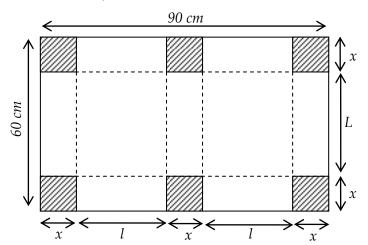
2^{nde} Bac Pro

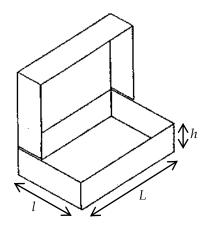
7	8	9	
4	5	6	
	2	3	
S			

Devoir B

Les fonctions - La boîte

lom :	
0111 1	••


Classe :


Date :

Compétence	1	2	3	4	
S'approprier					
Analyser / Raisonner					
Réaliser					
Valider					
Communiquer					

A partir d'une feuille cartonnée rectangulaire de dimensions 60×90 cm, on souhaite construire une boite comme le montrent les schémas ci-dessous en découpant des carrés de côté x et en pliant la feuille selon les pointillés.

<u>Problème</u>: Quelle doit être la valeur de x pour que la boite ait le volume le plus grand possible ? Quelles seront alors les dimensions de la boite et son volume ?

Partie 1 La fonction donnant le volume V

1) S'approprier En observant le schéma, compléter les pointillés :

..... +
$$L$$
 + = 40 (1)

$$\dots + l + \dots + l + \dots = 60$$
 (2)

Analyser/Raisonner A partir de (1), compléter et exprimer la longueur L de la boite en fonction de x.

$$L+2\times=40$$

A partir de (2), **compléter** et **exprimer** la largeur l de la boite <u>en fonction de</u> x.

....×
$$l + 3 \times$$
 = 60

Exprimer la hauteur h de la boite <u>en fonction de</u> x.

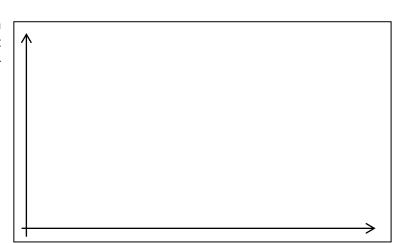
Exprimer le volume $V(x) = L \times l \times h$ de la boite <u>en fonction de</u> x.

$$V(x) = \dots$$

Partie B Réaliser Volume le plus grand

Le volume V est donné en fonction de x par la fonction : V(x) = x(60-2x)(45-1,5x)

1) Effectuer les réglages nécessaires afin de compléter le tableau de valeurs suivant (Arrondir à l'unité) :


x	0	5	10	15	20	25	30
V(x)		•••	•••	•••		•••	

21	D'après ce tableau, ¡	nour quelle valeur	de γ aura-t-on la	e volume le i	nlus grand?
-,	D apres ce tableau, p	pour quene vaicur	ac a dala t oll it	c volunt ic	pius grunu .

3) Vérification graphique

Afficher la représentation graphique de la fonction V et donner son allure proprement ci-contre en utilisant le réglage de fenêtre ci-dessous.

Xmin: 0 Xmax: 30 Ymin: 0 Ymax: 15000

4) A l'aide des fonctionnalités de la calculatrice, **parcourir** la courbe et **donner** la valeur de x pour laquelle la valeur y est la plus grande (Arrondir x et y à l'unité).

Noter les coordonnées ci-contre.

Faire figurer ce point sur le graphique ci-dessus.

Partie 3 Valider Dimensions de la boîte

1)	Répondre à la première question du problème.

2) Sachant que $x=10\ cm$ pour le volume le plus grand, calculer les dimensions $L,\ l$ et h de la boîte.

3) Répondre à la deuxième question du problème.