	ļ
$\overline{}$	7

Mathématiques

T^{ale} Bac Pro

Activités

Les fonctions polynômiales de degré 3

Communiquer

	Compétence	 -	+	
Nom :	S'approprier			
	Analyser / Raisonner			
Classe :	Réaliser			
	Valider			

Je m'échauffe ...

1) Calculer les cubes suivants :

$$(-2)^3 = \dots$$

2) Compléter avec *extremum*, *croissante* ou *décroissante* :

Date évaluation :

- Si, sur un intervalle donné, la fonction dérivée f'(x) > 0 (positive), la fonction f est
- Si, sur un intervalle donné, la fonction dérivée f'(x) < 0 (négative), la fonction f est
- Si la fonction dérivée est nulle, soit f'(x) = 0, alors la fonction admet un
- 3) Déterminer la fonction dérivée g'(x) de la fonction g suivante :

$$g(x) = 3x^2 - 4x + 6$$
 \Rightarrow $g'(x) = \dots$

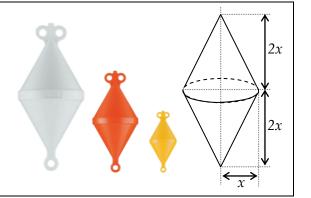
Fonction	χ^2	ax + b
Dérivée	2x	а

4) Simplifier les expressions suivantes :

$$\chi^2 \times \chi = \dots$$

$$x^2 \times x = \dots \qquad 5x^3 + 2x^3 = \dots$$

$$2 \times \pi \times x^3 + 2 \times \pi \times x^3 = \dots$$


Activité 1 La fonction cube

Afin de délimiter des couloirs nautiques, on utilise souvent des bouées lestées de forme biconique et de différents volumes.

Les dimensions de ces bouées sont données ci-contre en fonction de x. Le rayon est x et la hauteur d'un cône est 2x.

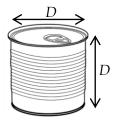
Son diamètre est donc égal à sa hauteur.

Problème : Quelles doivent être leurs dimensions afin d'avoir les 4 volumes de bouée : 5 L, 9 L , 15 L et 55 L?

•	3,14. En déduire le volume de la bouée biconique ayant ces dimensions.	
		Volume d'un cône : $V = \frac{\pi \times R^2 \times h}{3}$ R son rayon
2)	Analyser/Raisonner Sachant que $1~L=1000~cm^3$, en déduire le volume en litre de cette bouée.	h sa hauteur

1) S'approprier Calculer, en cm^3 , le volume d'un cône de dimensions R=11~cm et h=22~cm. On prendra $\pi=$

3) Valider A laquelle des 4 bouées données dans la question correspond-elle ?


4)			$nt R = x et h = \frac{1}{2}$ $ext{'écrit}: V(x) = \frac{4}{2}$					composée de 2 cônes)
-1		- Compatie	/ \3 aat			سوند .	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •
5)			on $u(x) = x^3$ est f) fonction dérive	• •	•	•	dérivée <i>u'(x)</i> :	$=3x^{2}$.
	•••••							
6)	Sans ca	alcul, donne	er le signe de la t	fonction dériv	ée $V'(x)$ sur	l'intervalle [0 ;	25].	
7)	fonctio	on $V(x)$ sur I'	des fonctionnal	25].	culatrice, tra	acer la représe	entation grap	hique de la
	Réglag	e de la fenê; —	etre d'affichage	: 	ı			الانالان
			Xmin = 0 Xmax = 25					
			Xmax = 25 Ymin = 0					
		Y	Ymax = 70000			I		
	Donne	er l'allure de	la représentation	on graphique τ	ci-contre.			
						I		
						·		
8)			er les conversion erminer graphic					e lecture graphique de <u>l'unité</u> .
			Volume (L)	5	9	15	55	7
			Volume (cm³)			†		-
		Ĺ	x					
9)	Valide	r Donner les	s dimensions dia	famètre D et hat $D = 2x$ et $H = 2x$		chacune des b	ouées.	
	Ré	férence boué	ée 108206	108207	108208	108209		
	Vo	olume (L)	5	9	15	55	•	H
	Dia	amètre D (cm	1)					
	har	uteur H (cm)						\bigvee
	-							\longleftrightarrow
Je	retiens							

Entrainement 1

Exercice 1.1: La fonction cube

Certaines boites de conserve de forme cylindrique ont un diamètre D identique à leur hauteur. Leur volume est alors donné par la relation : $V = \frac{\pi \times D^3}{\cdot}$

1) Calculer, en cm^3 , le volume V de la boite de conserve de diamètre $D=6.5\ cm$. Arrondir à l'unité. $\pi = 3.14$

2) Soit la fonction f telle que $f(x) = \frac{\pi \times x^3}{4}$ définie sur l'intervalle [0; 12].

x est le diamètre de la boite en cm et f(x) son volume en cm^3 .

En prenant $\pi = 3.14$, montrer que f(x) peut s'écrire $f(x) = 0.785 \times x^3$.

3) Dans le mode graphique de la calculatrice, saisir la fonction f, afficher sa représentation graphique et régler la fenêtre d'affichage comme ci-contre.

Xmin = 0Xmax = 12

4) A l'aide de la lecture graphique de la calculatrice, déterminer les diamètres des boites de conserve du commerce dont les volumes sont donnés ci-dessous. Arrondir à 0,1 cm.

Ymin = 0Ymax = 1400

 $1 \text{ cm}^3 = 1 \text{ mL}$

Volume (mL)	425	850
Diamètre (cm)		

Exercice 1.2 : La dérivée

Donner les fonctions dérivées des fonctions suivantes :

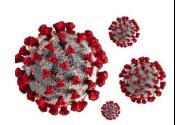
$$f(x) = x^3$$
 $g(x) = 4x^3$ $h(x) = -3x^3$ $k(x) = \frac{2x^3}{3}$ $m(x) = \frac{5x^3}{6}$
 $f'(x) = \dots$ $g'(x) = \dots$ $h'(x) = \dots$

Exercice 1.3 : Dérivée et variations | (:) | (:)

Soit la fonction g telle que $g(x) = 0.6x^3$ définie sur l'intervalle [-3; 3].

1) Déterminer l'expression de la fonction dérivée g'(x).

Donner le signe de g'(x) sur l'intervalle [-3; 3]. Justifier.

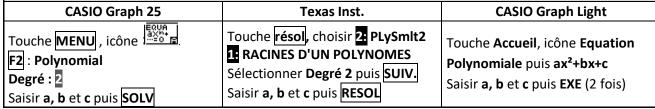

3) Compléter le tableau de variation ci-contre.

4) La fonction dérivée g'(x) = 0 pour x = 0. Pourquoi n'y a t-il pas d'extremum en ce point?

x	
Signe de $g'(x)$	
Variations de g	

Activité 2 Le polynôme de degré 3

Une épidémie de grippe très contagieuse se déclare parmi la population d'une ville. Le jour 0, il y a 250 malades et on sait que les premiers jours le nombre de malades augmente rapidement. Des dispositions de protection permettent ensuite de freiner la propagation puis de diminuer le nombre de malades. Des chercheurs ont modélisé le nombre de malade f(x) en fonction du nombre de jours x par :

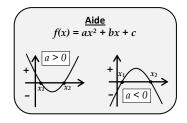


$$f(x) = -0.5x^3 + 18x^2 + 250$$
 sur l'intervalle [0; 30]

Problème : Quel jour l'épidémie atteindra-t-elle un pic de malades ? Combien y aura-t-il de malades?

1)	S'approprier Combien de malade a-t	t-on le jour C) ? le 10 ^{ème} j	our ?			
2)	Réaliser A l'aide du tableau ci-desso	us. détermin	er la fonctio	on dérivée f	(x).		
-,					(10)		
	Fonction		Dérivées	ax + b	x ²	x ³	
	Fonction	a	X	ux + v		+	
	Fonction dérivée	0	1	а	2x	$3x^2$	
3)	S'approprier La fonction dérivée est une fonction polynôme de degré 2 du type $f'(x) = ax^2 + bx + c$. Donne les valeurs suivantes :						
	<i>a</i> =	b = .			c =		
4)	Etude de la fonction dérivée $f'(x)$.						
	a) Réaliser A l'aide de la calculatri donner les solutions x_1 et x_2 telle			sous, résouc	lre l'équati	on $f'(x) = 0$	et 7336
	$x_1 =$	•••••		$x_2 =$	••••••		المالكات المالكات
Г	Découdre une équation du 3 nd degré qu' l'Iva I e en 0 à lleide de le coloniatrice						

Résoudre une équation du 2^{nd} degré $ax^2 + bx + c = 0$ à l'aide de la calculatrice						
CASIO Graph 25	Texas Inst.	CASIO Graph Light				
Touche MENU, icône F2: Polynomial Degré: 2	Touche résol, choisir 2: PLySmlt2 1: RACINES D'UN POLYNOMES Sélectionner Degré 2 puis SUIV.	Touche Accueil , icône Equation Polynomiale puis ax²+bx+c Saisir a , b et c puis EXE (2 fois)				


b)	Analyser/Raisonner	Compléter	:
	-		

Si
$$0 < x <$$

Si <
$$x < 30$$

f'(x) est positive / négative

f'(x) est positive / négative

5	Réaliser	Calculer	les valeurs	suivantes	
J	nealisei	Calculei	ies vaieurs	Survances	

f(0)	$f(x_2)$
f(30)	

6) Valider Compléter le tableau de variation :

x	0	30	0
Signe de $f'(x)$			
Variation de f			

Répondre	aux	auestions	du	problème.
reportare	uun	questions	uu	probleme.

Entrainement 2

Exercice 2.1 : Dérivées

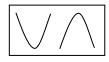
Fonction	χ^3	χ^2	ax + b
Dérivée	$3x^2$	2 <i>x</i>	а

Donner les dérivées des fonctions suivantes :

$f(x) = x^3 + 7x^2 + 2x + 13$	$g(x) = 3x^3 - 5x^2 + 8x - 10$	$h(x) = -7x^3 - 5x + 6$

Exercice 2.2 : Racines d'un polynôme du 2nd degré

A l'aide de la calculatrice, donner les racines x_1 et x_2 pour les quelles f(x) = 0 si elles existent :


$f(x) = x^2 - 5x - 14$	$f(x) = x^2 + 2x + 7$	$f(x) = x^2 - 2x + 1$
	• • • • • • • • • • • • • • • • • • • •	•••••

Exercice 2.3 : Signes d'un polynôme du 2nd degré

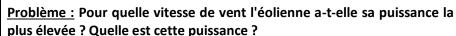
Une fonction polynôme du second est de la forme $ax^2 + bx + c$. Soit la fonction polynôme du second degré f telle que $f(x) = x^2 - 2x - 15$ définie sur l'intervalle [-5; 7].

- 1) Donner les valeurs des coefficients : $a = \dots b = \dots c = \dots$
- 2) Selon le signe de *a*, entourer ci-contre la forme de la représentation graphique de la parabole.

3) A l'aide des fonctionnalités de la calculatrice, déterminer, si elles existent les racines x_1 et x_2 du polynôme du 2^{nd} degré f, valeurs pour lesquelles f(x) = 0. Voir **Activité 2**. Les donner de telle manière que $x_1 < x_2$.

$$x_1 = \dots x_2 = \dots$$

4) En déduire le signe du polynôme f dans le tableau.


х	-5			7
<i>f</i> (<i>x</i>)		0	0	

Problème L'éolienne

Une éolienne utilise la force du vent pour produire de l'électricité. L'énergie mécanique du vent est transformée en énergie électrique via un alternateur.

La puissance P développée par l'éolienne est donnée en fonction de la vitesse v du vent par :

 $P = -2v^3 + 55v^2 - 210v + 186$ sur l'intervalle [4;21] ou v est exprimée en m/s et P en Watt.

1 -		-	•					
	Soit la	fonction f telle que	$ef(x) = -2x^3 +$	$55x^2 - 210x$	+ 186 définie sur	r l'intervalle [4	4 ; 21].	
1)	Réalis	Réaliser Déterminer la fonction dérivée $f'(x)$.						
2)		roprier La fonction refficients :	dérivée est un	ne fonction po	olynôme de degré	é 2 du type f	$'(x) = ax^2 + bx$	c+c . Donner
		<i>a</i> =	••••	<i>b</i> =		<i>c</i> =		
3)	Analys	ser/Raisonner <mark>Etud</mark>	e de la fonctio	on dérivée f '((x).			
		l'aide de la calculat rondies à 0,1.	rice, résoudre	l'équation	f'(x) = 0 et donn	ner les solutio	ons x_1 et x_2 telle	es que $x_1 < x_2$
			$x_1 = \dots$		$x_2 =$			
	Do	onner l'unique solut	tion de l'interv	ralle [4 ; 21] :		••••	$f(x) = \frac{\text{Aic}}{ax^2}$	<u>le</u>
	b) Co	ompléter avec "posi	tive" ou "néga	itive" :			$f(x) = ax^2$	+bx+c
			Si 4 < x <		Si < x <	21	+ $(a>0)$	+
		$f'(x) \in$	est	f	''(x) est		- x ₁ x ₂	-a < 0
4)	Páalic	er Calculer les vale						
4)	Nealis	Calculet les valet	$x_1 \circ f(4), f(x_2) \in$	<i>C</i> ₁ (21).				
	•••••			•••••				
	•••••			•••••				
				••••••		•••••	••••••	
5)	Valide	r Compléter le tabl	eau de variatio	on :				
		x	4				21	1
		Signe de $f'(x)$						
		Variation de <i>f</i>						
		variation de j						
6)	Valide	r Répondre aux qu	estions du pro	blème.				