Q1:

Pour les exercices 151 à 153, on considère la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = \frac{4n-1}{n+1}$.

- La valeur de u_1 est :
 - a 1

 $\frac{3}{2}$

c 3,5

d 5

Pour les exercices 151 à 153, on considère la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = \frac{4n-1}{n+1}$.

- 152 u_n prend la valeur 3 pour :

 - **a** n=2 **b** n=3 **c** n=4 **d** n=5

Q3:

Pour les exercices 151 à 153, on considère la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = \frac{4n-1}{n+1}$.

- 153 L'expression de u_{n+1} est :
 - a $\frac{4n}{n+2}$ b $\frac{5n}{n+1}$
 - $\frac{4n+3}{n+2}$ d $\frac{4n}{n+1}$

O4:

Pour les exercices 154 à 156, on considère la suite (v_n) définie par $v_0 = -2$ et, pour tout $n \in \mathbb{N}$, par $v_{n+1} = v_n + n - 1$.

- La valeur de v_1 est :
 - **a** −3

b –2

c –1

d

Q5:

Pour les exercices 154 à 156, on considère la suite (v_n) définie par $v_0 = -2$ et, pour tout $n \in \mathbb{N}$, par $v_{n+1} = v_n + n - 1$.

- La valeur de v_2 est :
 - **a** −3

b -1

c 2

d 3

Q6:

Pour les exercices 154 à 156, on considère la suite (v_n) définie par $v_0 = -2$ et, pour tout $n \in \mathbb{N}$, par $v_{n+1} = v_n + n - 1$.

- 156 On a la relation suivante:
 - $v_{10} = 17$
 - $v_{10} = v_9 + 10$
 - $v_{10} = v_9 + 9$
 - $| \mathbf{d} | v_{10} = v_9 + 8$

Q7:

Pour les exercices 157 à 159, on considère la suite (w_n) définie par $w_n = n^2 + n$.

157 L'expression de w_{n+1} est :

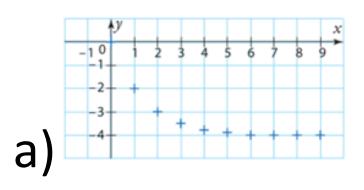
a
$$n^2 + n + 1$$

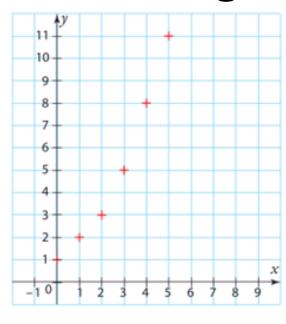
b
$$n^2 + n + 2$$

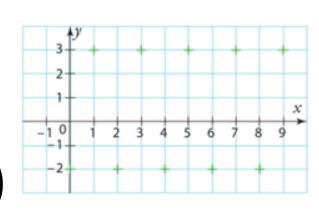
$$n^2 + 3n + 1$$

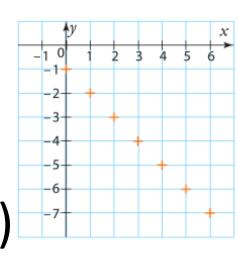
d
$$n^2 + 3n + 2$$

Q8 : Quelle suite semble convergente ?









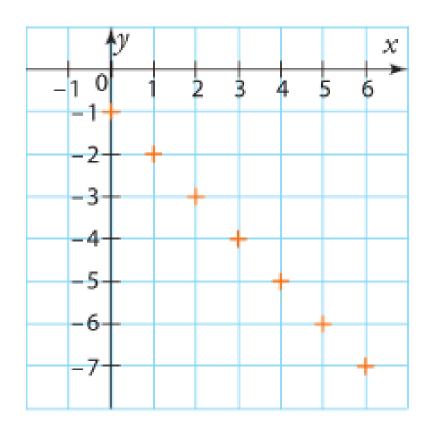
Q9 : Voici les premiers termes d'une suite (Un). Que peut-on conjecturer ?

a)
$$\lim_{n\to-\infty} Un = +\infty$$

b)
$$\lim_{n\to+\infty} Un = 0$$

c)
$$\lim_{n \to -\infty} Un = -1$$

$$d) \lim_{n \to +\infty} Un = -\infty$$



Q10:

Un tee-shirt qui était à 41€ avant les soldes bénéficie d'une remise de 15%. Le nouveau prix s'obtient en effectuant :

A:41-15

B: 41×0.85

 $C: 41 \times 0,15$

 $D:41 \times 1,15$

Q1 (151)

$$u_n = rac{4n-1}{n+1}$$

Pour n=1:

$$u_1=rac{4 imes 1-1}{1+1}=rac{3}{2}$$

Réponse : b) $\frac{3}{2}$

Q2 (152)

On cherche n tel que $u_n=3$:

$$\tfrac{4n-1}{n+1}=3$$

$$4n-1 = 3(n+1)$$

$$4n - 1 = 3n + 3$$

n = 4

Réponse : c) n=4

Q3 (153)

$$u_{n+1} = \frac{4(n+1)-1}{(n+1)+1} = \frac{4n+4-1}{n+2} = \frac{4n+3}{n+2}$$

Réponse : c) $\frac{4n+3}{n+2}$

Q4 (154)

$$v_0 = -2$$

$$v_{n+1} = v_n + n - 1$$

Pour n=0

$$v_1=v_0+0-1=-2-1=-3$$

Réponse : a) -3

Q5 (155)

$$v_2 = v_1 + 1 - 1 = v_1 + 0 = -3$$
 (car $v_1 = -3$ d'après Q4)

Réponse : a) -3

Q6 (156)

La relation de récurrence est $v_{n+1} = v_n + n - 1$.

Pour n=9:

$$v_{10} = v_9 + 9 - 1 = v_9 + 8$$

Réponse : d) $v_{10}=v_9+8$

Q7 (157)

$$w_n = n^2 + n$$

$$w_{n+1} = (n+1)^2 + (n+1) = n^2 + 2n + 1 + n + 1 = n^2 + 3n + 2$$

Réponse : d) $n^2 + 3n + 2$

Q8

Réponse : a)

Cette suite semble converger vers -4

Q9

Réponse : d) $\lim_{n\to+\infty} Un = -\infty$

Q10

Une remise de 15% signifie que le nouveau prix est $41 \times (1-0,15) = 41 \times 0,85$.

Réponse : B) $41 \times 0,85$