Eugenia Selivanov Irina Ciobanu Aliona Lașcu

Улыбаемся и пашем

Решаем варианты по математике, №2. Сборник задач по математике.

№	Итем	Бал.	лы
	І. Алгебра	T _	1 _
1	Вычислите значение выражения: $-\frac{7}{8} - 16^{-\frac{3}{4}}$ Решение:	L 0 1 2 3 4 5	L 0 1 2 3 4 5
	Ответ:		
2	Вычислите определитель матрицы $A = \begin{vmatrix} 2+5i & -3 \\ i^5 & 2-5i \end{vmatrix}$, где $i^2 = -1$ Решение:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
3	Omвет: Решите на множестве R неравенство $\frac{x}{x+2} \le 2x$	L	L
	Решение:	0 1 2 3 4 5 6 7 8	0 1 2 3 4 5 6 7 8
4	Разложите многочлен $P(X) = X^4 - 3X^3 - aX^2 + (3a+2)X - 6$ на неприводимые множители, зная, что $X = 1$ является двойным корнем многочлена $P(X)$. $Peшениe$:	L 0 1 2 3 4 5	L 0 1 2 3 4 5
5	Определить реальные значения $x \in \left(\pi; \frac{3\pi}{2}\right)$, для которого $\frac{\sin x}{\sin x - \cos x t g \frac{x}{2}} = \frac{1}{2}$. Решение:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8

	II. Геометрия	1	
6	Точки A и C принадлежат окружности с центром O , так что $m(\angle AOC) = 60^\circ$. Определите длину малой дуги AC , если известно, что площадь диска, ограниченного этой окружностью, равна 144π см². $Pewehue$:	L 0 1 2 3 4 5	L 0 1 2 3 4 5
	Ответ:		
7	Определите общую площадь правильной четырехугольной пирамиды с боковым ребром 10 см и высотой 5 см. Решение: Ответ:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
8	Пусть ABC — треугольник $cAC = 10$ см и $m(\angle ABC) = 45^\circ$. Окружность диаметром AC пересекает сторону AB в точке K , так что $AK = 6$ см. Вычислите косинус угла BCA . $Peшение$:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
	Omean		
	Ответ:		<u> </u>
9	Изучите монотонность функции $(a_n)_{n\geq 1}$, $a_n=\frac{n+3}{n+2}$ Решение:	L 0 1 2 3 4 5	L 0 1 2 3 4 5

10	Дана функция $f: R \setminus \{-3\} \to R, f(x) = \frac{3x^2}{x+3}$		
	а) Определить локальные экстремумы функции f. Решение:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
	O Определить наклонную асимптоту в точке +∞ графика функции f . P e m	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
	Ответ: в) Вычислите $\int_4^{64} \frac{f(x)(x+3)}{x(1+\sqrt{x})} dx$ Решение:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8

ЭЛЕМЕНТЫ КОМБИНАТОРИКИ. БИНОМ НЬЮТОНА. ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ						
11	Завод имеет 3 склада для хранения выпускаемого оборудования. Вероятность того, что	L	L			
	машина на первом складе неисправна, равна $\frac{1}{10}$, вероятность того, что машина на втором	0	0			
	складе неисправна, равна $\frac{1}{15}$, вероятность того, что машина на третьем складе неисправна,	2 3	2 3			
	равна $\frac{3}{40}$. Выделяется по одной машине с каждого склада. Вычислите вероятность того, что	4 5	4 5			
	две из этих машин окажутся неисправными. Решение:	6	6			
		7 8	7 8			
	Ответ:					
12	Определить количество рациональных членов в биномиальном разложении $(2\sqrt{5} + 4\sqrt[3]{2})^{50}$. <i>Решение</i> :	L 0	L 0			
		1 2	1 2			
		3	3			
		5	5			
		6 7	6 7			
		8	8			
I	Ответ:	I	1			