Exam Style Questions

 Angles - PolygonsEnsure you have: Pencil, pen, ruler, protractor, pair of compasses and eraser
You may use tracing paper if needed

Guidance

1. Read each question carefully before you begin answering it.
2. Don't spend too long on one question.
3. Attempt every question.
4. Check your answers seem right.
5. Always show your workings

Revision for this topic

www.corbettmaths.com/contents
Video 32

1.

(a) Calculate the size of angle x .

$$
\begin{array}{rr}
160 & 540 \\
1150 & -455 \\
+90 & 8 \\
\hline 455 & 85
\end{array}
$$

$$
x=\ldots \ldots
$$

(2)

(b) Calculate the size of angle y.

$$
\begin{array}{rr}
170 & 720 \\
110 & -575 \\
130 & \frac{145}{75} \\
90 &
\end{array}
$$

2. Shown below is a regular pentagon.

閊

(a) Find the size of each interior angle.

$$
540 \div 5=108
$$

$$
x=108
$$

(2)

(2)

Calculate angle x .

$$
\begin{array}{r}
720 \div 6=120 \\
180-120=60 \\
60 \div 2=30
\end{array}
$$

$$
x=30
$$

(3)

(a) Work out angle x .
$540 \div 5=108$

$$
x=108
$$

(2)
(b) Work out angle y .

$$
\begin{gathered}
180-108=72 \\
72 \div 2=36
\end{gathered}
$$

$$
y=36
$$

(2)
5.

Shown is a regular hexagon and a regular octagon.
擘

Calculate the size of angle y.

$$
\begin{aligned}
& 720 \div 6=120 \\
& 1080 \div 8=135 \\
& 120+135=255 \\
& 360-255=105 \quad y=105
\end{aligned}
$$

6. A regular polygon has 12 sides.Work out the size of each interior angle. exterior angle: $360 \div 12=30^{\circ}$
interior angle: $180-30=150$

$$
\begin{align*}
& \text { or }(12-2) \times 180=1800 \\
& 1800 \div 12=150 \tag{150}
\end{align*}
$$

7.

風

Explain why the sum of the interior angles in a regular pentagon is 540°. The sum of the angles in each triangle is 180°. There are three triangles that form the pentagon, so $3 \times 180=540^{\circ}$
\qquad
8. Shown below is a regular hexagon, with an exterior angle labeled y.瞰

Work out the size of each exterior angle.

$$
360 \div 6=60^{\circ}
$$

$$
y=60
$$

9. A regular polygon has 24 sides.

Work out the size of each exterior angle.

$$
360 \div 24=15^{\circ}
$$

(2)
10. Each exterior angle of a regular polygon is 20°.

開
Work out the number of sides of the polygon.

$$
360 \div 20=18 \text { sides }
$$

11. Each interior angle of a regular polygon is 174°.

单 Work out the number of sides of the polygon.

$$
\begin{aligned}
180-174 & =6 \\
360 \div 6 & =60 \text { sides }
\end{aligned}
$$

(2)
12. The interior angle of a regular polygon is 135°

最
Work out the number of sides of the polygon.

$$
\begin{aligned}
& 180-135=45^{\circ} \\
& 360^{\circ}: 45^{\circ}=8 \text { sides }
\end{aligned}
$$

(2)
13. ABCDEFGH is a regular octagon.

㾗

(a) Calculate the size of angle $A O B$.

$$
360 \div 8=45
$$

45
(2)
(b) Calculate the size of angle ABC.

$$
1080 \div 8=135^{\circ}
$$

$$
135^{\circ}
$$

(2)
14. Martin has drawn a regular nonagon (9 sided polygon).

閊
(a) What size is each exterior angle?

$$
360 \div 9=40^{\circ}
$$

(2)
(b) What size is each interior angle?

$$
180-40=140^{\circ}
$$

$$
140
$$

15. Shown below is an interior angle from a regular polygon.

風

Calculate the number of sides the polygon has.

$$
360 \div 5=72
$$

16. The diagram shows parts of two regular polygons A and B .

A has 10 sides and exterior angle $3 x$. B has exterior angle ex.

Work out the number of sides regular polygon B has.

$$
\begin{aligned}
& 360 \div 10=36^{\circ} \\
& 3 x=36 \\
& x=12^{\circ}
\end{aligned}
$$

$$
2 \times 12=24
$$

$$
360 \div 24=15 \text { soles }
$$

17. The diagram below shows part of a regular polygon.

目

(a) Calculate the size of each exterior angle.

$$
7 \cdot 5
$$

(1)
(b) Calculate the number of sides the polygon has.

$$
360 \div 7.5
$$

(2)
18. Explain why a regular octagon will not tessellate.

㞙
Since 360 is not divisible by 135 (the size of each angle) it is not possible for octagons to "fit together" without a gap.

19. Work out the sum of the interior angles for a 40 sided polygon.

E

$$
\begin{aligned}
& (40-2) \times 180 \\
& =38 \times 180=
\end{aligned}
$$

20. The sum of the interior angles in a polygon is 7380°.

目
Calculate the number of sides the polygon has.

$$
\begin{gathered}
7380 \div 180=41 \\
41+2=43
\end{gathered}
$$

43 side
21. Shown below are two identical regular polygons and an equilateral triangle.

風

Calculate the number of sides each regular polygon has.

$$
\begin{aligned}
\text { Interior angle } & =150^{\circ} & 360 \div 30 \\
\text { exterior angle } & =30^{\circ} & 12 \text { sites }
\end{aligned}
$$

22. A regular polygon has interior angles that are 5 times larger than each of its

最 exterior angles.
Calculate how many sides it has. interior +exterior $=180$
$5 x+x=180$

$$
6 x=180
$$

$$
x=30
$$

12 sides

$$
360 \div 30=12
$$

