

Course Content: Choose your topic ...

Whole Number and Functions

Measure and Shape

Topic Introduction : Volume

 is, how long, wide and high. All objects you can pick up, touch and move around have a volume no matter how thin they might be in any particular direction.

Volume is a measurement of the lengths along the sides of an object and multiplying these numbers tells you how many 'cubes' of 3D space fill it. Therefore the index number this time is 3 . This method finds simple box shaped volumes but more complicated shapes such as cylinders and sphere require formulas to find their volumes.

Choose an icon to select where to start

What does 'Volume' mean and what is it measuring?

What are the units for the volume of a shape?

How do you measure the volume of a liquid [not its capacity ! ? ?

 What are 'Dimensions' and why are they important in the topic of volume?What is a prism and what is it about prisms that make it easier to find their volume?

How can we find the volume of a sphere such as a planet, star ..?

Watch the introductory video and then discuss the above
Your thoughts..

volume

\cdot amount of space occupied by a 3D object, measured in cubic units.

EXAMPLE:

\squareWhat do you think the volume of the yellow container would be in cm^{3} ?

Volume: how to find volumes

 you can see.. this is called the object's 'Volume'
Just count the number of 'CUBES'

Volume: how to find volumes
If a 3D object is a culbe or cuboid shape it can be easier to find the volume [number of cubes) not by counting them but by multiplying the rows, columns and layers of cubes.

Below is a culbe but this is really made up of lots of layers of cubes on top of each other.

There are 3 cubes in a row... there are 3 rows.... There are 3 layers

Therefore the volume is $\mathbf{3 \times 3 \times 3 = 2 7}$
cubes

Lesson: Main Teach 3

Volume: culhoid shaped examples $\quad V=$ Volume

$V=4 \times 5 \times 4=80$
Top Layer

$4-4 \longrightarrow$
4 groups of $5 \mathrm{~cm}^{3}=20 \mathrm{~cm}^{3}$

Multiply the Rows x Columns x Layers

Lesson: Main Teach 4

Size of cubes...

1 cm
1 cm
1 cubic centimetre $=$ $1 \mathrm{cc}=1 \mathrm{~cm}^{3}=1 \mathrm{ml}$

Used for small volumes such as gas canisters, food containers, motorbike engines.

$1 \mathrm{~m}^{3}=1000 \mathrm{~L}$
1 cubic metre $=$
$1,000,000 \mathrm{cc}$ 1,000litres (1 KL)

Used for large volumes such as Storage space, buildings, chemicals \qquad

1 m

Cuboid volume examples....

Cube, side length 6 cm

$$
V=? \quad V=6 \times 6 \times 6=216 \mathrm{~cm}^{3}
$$

Cuboid W=10 L=6 H=4
$\mathrm{V}=$? $\mathrm{V}=10 \times 6 \times 4=240$
Cube, side length 8 m

$$
\mathrm{V}=? \quad \mathrm{~V}=8 \times 8 \times 8=512 \mathrm{~m}^{3}
$$

Cuboid W=2 L=? $\mathrm{H}=3$
$\mathrm{V}=18 \mathrm{~L}=18 / 2 / 3=3$

Lesson: Main Teach 5

10 cm 5
(8)

Can you find the volume of the ahove culoid shapes by multiplying their lengths x widths x heights?

Don't forget at the end to put the unit the size of the culbe]...either cm^{3} or m 3 ... or even mm^{3} !

Other shapes have a formula

 to he able to find their volume as the area changes through their height and so we cannot just multiply side
lengths

To work out these volumes...
1] Write down their formula
2] Replace the letters in the formula with the numbers you know

3] Solve the sum to find V

4) Add the unit [$\mathrm{eg} \mathrm{cm}^{3}$]

	Rectangular Prism	Triangle prism	Sphere
Shape			
Volume:	$V=w \times l \times h$	$V=1 / 2 \mathrm{bhH}$	$V=\frac{4}{3} \pi r^{3}$
Cylinder		Cone	Pyramid
Shape			
Volume:	$V=\pi r^{2} h$	$V=\frac{1}{3} \pi r^{2} h$	$\begin{aligned} & V=1 / 3 \\ & L W H \end{aligned}$

Lesson: Try out

Try these, 1 A A culboid with length 10 cm , width 3 cm and height $5 \mathrm{~cm}, \mathrm{~V}=$?
2] $14 \times 20 \times 3=$
3] \square
\square How many cc?

Block 2: Watch tutor Ied demo [in class or on videos
Try these, 4] Which is the largest cube?
cm ${ }^{3}$
M 3
mm^{3}
$\mathbf{K m}^{3}$
5] Find the volume $\mathrm{L}=\mathbf{2 . 3} \mathbf{W}=5.7 \mathrm{H}=9.1$
6] $V=$?

Block 3 : Watch tutor Ied demo [in class or on video]

8] Pyramid volume with $\mathrm{L}=4.5 \mathrm{ft} \mathbf{W}=\mathbf{2 f t} \mathbf{H}=9 \mathrm{ft}$
9] Cone volume is $30 \mathrm{~cm}^{\mathbf{3}}, \mathrm{r}=5 \mathrm{~cm}$, length $=$?
10J Triangle prism $\mathrm{L}=18, \mathrm{H}=\mathbf{2 0} \mathrm{W}=\mathbf{?} \mathrm{V}=40$
11] Sphere with radius $2,300 \mathrm{~m}, \mathrm{~V}=$?

Volume, shoot the culbes game

Volumes of cuboids, adjust the length width and height and see cuboids

Variety of volume videos on weh page with formula and examples

3D ohjects and their volumes weh page
Create and animate culboids of various
sizes
Video showing how the formula is derived for a sphere [hard!]

Great wehsite with volume of solids lessons
http://www.sheppardsoftware.com/mathgames/geo metry/shapeshoot/VolumeShapesShoot.htm
http://www.mathsisfun.com/flash.php?path=/geometry/images/cuboid-
http://www.mathsisfun.com/flash.php?path=/geometry/images/cuboid-
$\underline{\text { volume.swf\&w=750\&h=750\&col=\%23FFFFFF\&title=Volume+of+a+Cuboid }}$
http://www.onlinemathlearning.com/volumeformula.html
http://www.mathwarehouse.com/solid-geometry/
http://illuminations.nctm.org/ActivityDetail.aspx?ID= 6
http://www.youtube.com/watch?v=xuPI 80 i 7 k
http://www.mathexpression.com/volume-ofsolids.html

Lesson: Websites and links

Lesson: Practice - just the numbers

Find the volume of the Cuhoids

$$
V=L W H
$$

1] $L=8 \mathrm{~cm}, \mathrm{~W}=2 \mathrm{~cm}, \mathrm{H}=10 \mathrm{~cm} \quad \mathrm{~V}=$?
2] $L=5 \mathrm{~m}, \mathrm{~W}=3 \mathrm{~m}, \mathrm{H}=9 \mathrm{~m} \mathrm{~V}=$?
3] $\quad L=6 \mathrm{~km}, \mathrm{~W}=5 \mathrm{~km}, \mathrm{H}=2 \mathrm{~km} \quad \mathrm{~V}=$?
4] $[=11 \mathrm{~mm}, W=5 \mathrm{~mm}, \mathrm{H}=2 \mathrm{~mm} \quad \mathrm{~V}=$?
5] $\quad L=4.5 \mathrm{ft}, \mathrm{W}=5 \mathrm{ft}, \mathrm{H}=2 \mathrm{ft} \quad \mathrm{V}=$?
6] $L=0.1 \mathrm{in}, \mathrm{W}=5 \mathrm{in}, \mathrm{H}=2 \mathrm{in} \quad \mathrm{V}=$?
7] L=50miles, $\mathbf{W}=5$ miles, $\mathrm{H}=2$ miles $\quad \mathrm{V}=$?
8] $L=1 / 2 \mathrm{~cm}, W=5 \mathrm{~cm}, H=2 \mathrm{~cm} \quad V=$?
9] $L=30 \mathrm{~m}, \mathrm{~W}=5 \mathrm{~m}, \mathrm{H}=250 \mathrm{~cm} \quad \mathrm{~V}=$?
10] $L=78 \mathrm{~cm}, W=5 \mathrm{~cm}, \mathrm{H}=2 \mathrm{~m} \quad \mathrm{~V}=$?

Find the volume of the Pyramids

$$
V=1 / 3 \mathrm{LWH}
$$

1] $\quad L=3, W=2, H=4 \quad V=?$
2] $L=7, W=1, H=1 V=?$
3] $L=9, W=5, H=8 \quad V=$?
4] $L=0.5, W=3, H=2 \mathrm{~V}=$?
5] $L=6, W=3, H=2.4 \mathrm{~V}=?$
6] $I=800 \mathrm{~cm}, W=200 \mathrm{~cm}, \mathrm{H}=3 \mathrm{mV}=$?
7] $L=1 \mathrm{~mm}, W=1 \mathrm{~mm}, \mathrm{H}=3 \mathrm{~mm} \mathrm{~V}=?$
8] $L=2.3 \mathrm{~km}, \mathrm{~W}=1.9 \mathrm{~km}, \mathrm{H}=1 \mathrm{~km} \mathrm{~V}=$?
9] L=6in, W=2in, $H=1 \mathrm{ft} V=?$

Find the volume of the Cones

$$
V=1 / 3 \pi r^{2} L
$$

10] $\mathrm{r}=\mathrm{g} \quad \mathrm{L}=3 \quad \mathrm{~V}=$?
11] $\quad \mathrm{r}=0.5 \quad \mathrm{~L}=5 \quad \mathrm{~V}=$?
12] $\mathrm{r}=100 \mathrm{~cm} \quad \mathrm{~L}=2 \mathrm{~m} \quad \mathrm{~V}=$?
13] $\mathrm{d}=7 \quad \mathrm{l}=16 \quad \mathrm{~V}=$?
14] $d=3.4$ in $L=8$ in $\quad V=$?
15] $\mathrm{d}=26 \quad \mathrm{~L}=30 \quad \mathrm{~V}=$?

Find the volume of the Spheres

$$
V=4 / 3 \Pi R^{3}
$$

1] $\mathrm{r}=45 \mathrm{~cm} \quad \mathrm{~V}=$?
2] $\mathrm{r}=1 \mathrm{mile} \mathrm{V}=$?
3] $r=17 \mathrm{in} \quad V=$?
4] $r=80 f t \quad V=?$
5] $\mathrm{V}=20 \mathrm{~cm} \quad \mathrm{~V}=$?
6] $\mathrm{r}=90 \mathrm{~m} \quad \mathrm{~V}=$?
7] $\mathrm{r}=0.5 \mathrm{~cm} \quad \mathrm{~V}=$?
8] $r=6 \mathrm{~mm} \quad V=$?
9] $r=9.2 \mathrm{ft} \quad V=$?

Find the volume of the Cubes

$$
\mathrm{V}=\mathrm{L}^{3}
$$

11] $L=4, W=4, H=4 V=?$
12] $L=9, W=9, H=9 V=?$
13] $L=3 \mathrm{in}, \mathrm{W}=3 \mathrm{in}, \mathrm{H}=3 \mathrm{in} \mathrm{V}=$?
14] $L=1.5 \mathrm{~m}, W=1.5 \mathrm{~m}, H=1.5 \mathrm{mV}=$?
15] $\lfloor=0.2 \mathrm{~cm}, W=0.2 \mathrm{~cm}, H=0.2 \mathrm{~cm} \mathrm{~V}=$?
16] $L=10 \mathrm{~km}, \mathrm{~W}=10 \mathrm{~km}, \mathrm{H}=10 \mathrm{~km} \mathrm{~V}=$?

1] A tunnel through a mountain is half of a cylinder shape with the tunnel height of seven metres and the tunnel length of half a kilometre long. What is the volume of rock that was removed from the mountain to create the tunnel [in m³ ?

2] A foothall is inflated with $\mathbf{6 0 0 0} \mathrm{cm}^{\mathbf{3}}$ of air. What radius does the hall inflate to?

3] An office block advertises its 'To-let' space as having $\mathbf{4 0 , 0 0 0} \mathrm{ft}^{3}$. With a building length of $\mathbf{2 0 m}$ and width of 20 m , how tall is the building if it is a cuboid shape?

4] A container crate measures $6 \mathrm{~m} \times 3 \mathrm{~m} \times 3 \mathrm{~m}$. What volume of products can fill a container?
5] A funnel in a factory is filled with hot, meited chocolate during the production of sweets. If the funnel has a diameter of 2 m and contains $2 \mathrm{~m}^{3}$ of chocolate, how tall is the funnel?

6] The pyramids of Egypt are 800 m long and wide, having a square base and has a height of 139 m . Work out the total volume of the blocks that make up the pyramid.

Lesson: Practice - Making it Functional 1

- A warehouse is organising delivery of boxes containing a variety of food items. They are distributing them all over the country to supermarkets.
- The distribution lorry is 2.25 m wide, 2.2 m high and 6 m long.

- The boxes containing the food stuffs are 45 cms wide, 30 cms high and 50 cms long.

Lesson: Practice - Making it Functional 2
Use the information on the previous page

- 1.a) What do you need to do to find how many boxes will fit on a lorry?
- b) Calculate how many boxes can be loaded onto a lorry. Show your working.
- c) The warehouse has to deliver 2000 boxes of food this week. How many deliveries will they have to make?

The boxes contain different foodstuffs. 7% of the boxes being delivered contain baked beans. The tins themselves have an 8 cm diameter and are 11 cm high.

2 a) Calculate the maximum amount of tins of beans that can be packed in a box. Show your calculations.
b) How many boxes will you fill?
c) You have a weight limit for each box. The tins of beans weigh 20 grams per 40 cm cubed. How much will each tin weigh to 2 d.p.s? $(\mathbf{p i}=3.14)$
d) The weight limit for each box is 25 kg . Will you have to reduce the number of tins packed in the box?
e) Why do you think there might be a weight limit for the boxes?
(Calculators may be used for these questions)

TOPIC ANSWERS 3
1.a) Find how many boxes will fit into the width, height and length of the lorry and multiply the 3 totals.
b) Width $2.25 \mathrm{~m}(225 \mathrm{~cm}) / 45 \mathrm{~cm}=5$.

Height $2.2 \mathrm{~m}(220 \mathrm{~cm}) / 30 \mathrm{~cm}=7(10 \mathrm{~cm}$ left over)
Length $6 \mathrm{~m}(600 \mathrm{~cm}) / 50 \mathrm{~cm}=12$.
$5 \times 7 \times 12$ boxes $=\underline{420 \text { boxes on a lorry } . ~}$
c) Total of 5 deliveries. 4 deliveries can distribute 420 boxes each, and the $5^{\text {th }}$ delivery can put on the remaining 320 boxes.

2a) Boxes are 45 cm wide, so if you turned the tins sideways and widthways. The tins would be $30 / 8=3,45 / 11=4$ and $50 / 8=6$.
$3 \times 4 \times 6=72$ tins maximum.
If you packed them the other possible ways you would only fit in 60 tins. b) 7% of 2000 boxes $=140$. You could fit them into $\mathbf{2}$ boxes.
c) The volume for each tin is Pi r squared x height. $4 \times 4 \times 3.14=50.24 \mathrm{~cm}$ squared x $11 \mathrm{~cm}=552.64 \mathrm{~cm}$ cubed. $552.64 \times 20 \mathrm{~g} / 40 \mathrm{~cm}$ cubed $=$ Each tin weighs 276.32
grams. grams.
d) Tin $=276.32 \mathrm{~g} \times 72$ tins maximum $=19895 \mathrm{~g} .19895 / 1000=19.895 \mathrm{~kg}$. No the number of tins does not need reducing.
e) Any sensible answers. Maybe the boxes would be too heavy to be lifted safely, or the boxes will be more prone to splitting with too much weight.

What else can you do to help yourself to learn and practice? Here are ten suggestions, record which you do each week and also record your progress.

Try making a graph of number of practice methods you use against your progress score in each topic. Are you showing more practice gives hetter results?

